

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20709A 149.2115.B.12x20CVP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37309808 thru I37309841

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

June 5,2019

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	L		8-0-0							16-0-0		
	I		8-0-0			I				8-0-0		I
Plate Offs	ets (X,Y)	[6:0-3-0,0-3-4]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.09	2-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.20	2-6	>934	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	k-S						Weight: 58 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=690/0-3-8, 4=690/0-3-8 Max Horz 2=62(LC 16) Max Uplift 2=-98(LC 12), 4=-98(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-972/140, 3-4=-972/140

BOT CHORD 2-6=-35/802, 4-6=-35/802

WEBS 3-6=0/381

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 16-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 8-0-0, Exterior(2) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 15-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

(lb) - Max Horz 2=62(LC 12)

Max H012 2=02(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 10, 16, 17, 18, 14, 13, 12, 2

Max Grav All reactions 250 lb or less at joint(s) 10, 15, 16, 17, 18, 14, 13, 12, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 8-0-0, Corner(3) 8-0-0 to 11-0-0, Exterior(2) 11-0-0 to 16-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 16, 17, 18, 14, 13, 12, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	149.2115.B.12x20CVP	
					137	7309811
20709A	AG	Common Girder	1	2		
				J	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	3.220 s Nov	16 2018 MiTek Industries, Inc. Tue Jun 4 14:07:42 2019 Pag	ge 2
		ID:u??Rp	r1fY8 Hap	73zCKv?V	VzeKCq-UnXpR4WHfMLtoJW3freQ9Kl9B26IWRhh67MZ9qz9e	eM?

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 13=-1924(B) 14=-1923(B) 15=-1923(B) 16=-1923(B) 17=-1923(B) 18=-1923(B) 19=-1923(B) 20=-1925(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	9-10-0	18-6-8	1	29-6-4	39-4-0	48-9	-8
	9-10-0	8-8-8		10-11-12	9-9-12	9-5-	8
Plate Offsets (X,Y)	[6:0-3-0,0-3-8]					1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DO Lumber DOL Rep Stress Ir	2-0-0 DL 1.15 1.15 GCT YES	CSI. TC 0.68 BC 0.49 WB 0.94	DEFL. ir Vert(LL) -0.14 Vert(CT) -0.23 Horz(CT) 0.03	i (loc) l/defl L/d 13-15 >999 240 13-15 >999 180 13 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC20	15/TPI2014	Matrix-S			Weight: 329 lb	FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S	SP No.2 SP No.2 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing di Rigid ceiling directly applied of 1 Row at midpt 7 2 Rows at 1/3 pts 6	rectly applied or 5-0-10 or 6-0-0 oc bracing. -13 5-13	oc purlins.

REACTIONS. (Ib/size) 2=997/0-3-8, 13=2551/0-3-8, 10=400/Mechanical Max Horz 2=182(LC 16) Max Uplift 2=-177(LC 12), 13=-207(LC 12), 10=-111(LC 13) Max Grav 2=1030(LC 23), 13=2563(LC 2), 10=504(LC 24)

- WEBS 3-17=-409/222, 5-17=-14/573, 5-15=-893/348, 6-15=-182/1117, 6-13=-1844/300, 7-13=-934/355, 7-11=-5/599, 9-11=-423/222
 - 7-13=-934/3

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-0-1, Interior(1) 4-0-1 to 24-7-0, Exterior(2) 24-7-0 to 29-5-9, Interior(1) 29-5-9 to 48-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=177, 10=111.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1886/352, 3-5=-1542/268, 5-6=-710/214, 6-7=-42/1067, 7-9=-401/235,

^{9-10=-744/241}

BOT CHORD 2-17=-433/1688, 15-17=-241/1060, 11-13=-392/133, 10-11=-161/639

1	9-10-0	18-6-8	1	29-6-4	39-2-0	48-9-	8
	9-10-0	8-8-8		10-11-12	9-7-12	9-7-8	3
Plate Offsets (X,Y)	[6:0-3-0,0-3-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC20'	2-0-0 IL 1.15 1.15 cr YES 5/TPI2014	CSI. TC 0.68 BC 0.49 WB 0.94 Matrix-S	DEFL. i Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	n (loc) l/defl L/d 4 13-15 >999 240 3 13-15 >999 180 3 13 n/a n/a	PLATES MT20 Weight: 329 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S	SP No.2 SP No.2 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing di Rigid ceiling directly applied 1 Row at midpt 2 Rows at 1/3 pts	rectly applied or 5-0-10 or 6-0-0 oc bracing. 7-13 5-13	oc purlins.

REACTIONS. (Ib/size) 2=997/0-3-8, 13=2550/0-3-8, 10=401/Mechanical Max Horz 2=182(LC 12) Max Uplift 2=-177(LC 12), 13=-207(LC 12), 10=-111(LC 13) Max Grav 2=1030(LC 23), 13=2561(LC 2), 10=504(LC 24)

- TOP CHORD 2-3=-1887/352, 3-5=-1543/268, 5-6=-712/214, 6-7=-43/1067, 7-9=-388/243, 9-10=-741/243
- BOT CHORD 2-17=-433/1688, 15-17=-240/1061, 11-13=-390/134, 10-11=-163/637
- WEBS 3-17=-409/222, 5-17=-15/572, 5-15=-893/348, 6-15=-181/1117, 6-13=-1844/300,
 - 7-13=-936/353, 7-11=-2/591, 9-11=-430/225

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-0-1, Interior(1) 4-0-1 to 24-7-0, Exterior(2) 24-7-0 to 29-5-9, Interior(1) 29-5-9 to 48-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=177, 10=111.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

	9	9-10-0	18-6-8 8-8-8		24-7-0 6-0-8	30-7	7-8 -8	3	5-2-0 4-6-8	39-4-0	43-4-4	<u>49-0-8</u> 5-8-4	<u>49-2</u> -0 0-1-8
LOADIN TCLL TCDL BCLL BCDL	G (psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC BC WB Matri	0.70 0.84 0.92 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (l -0.28 15 -0.50 15 0.09	oc) -17 -17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 336 lb	GRIP 244/190 FT = 20	%
LUMBEI TOP CH BOT CH WEBS	LUMBER- BRACING- TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-4-0 oc purlins. BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SP No.3 WEBS 1 Row at midpt 6-15, 7-13												
REACTI	REACTIONS. (lb/size) 2=1725/0-3-8, 12=2515/0-3-8, 10=-206/0-3-0 Max Horz 2=177(LC 12) Max Uplift 2=-243(LC 12), 12=-261(LC 13), 10=-289(LC 25) Max Grav 2=1725(LC 1), 12=2515(LC 1), 10=54(LC 12)												
FORCES TOP CH	S. (lb) - Max. ORD 2-3=-3	Comp./Max. Ten All 3606/515, 3-5=-3282/4	forces 250 (lb) or I34, 5-6=-2555/38	less except 9, 6-7=-207	when shown. 0/334, 7-9=-10	42/180,							
BOT CH	ORD 2-19= 10-12		9/2711, 15-17=-88	8/1685, 13-	15=-109/1662,	12-13=-996/149,							
WEBS	3-19= 9-12=	365/218, 5-19=-14/52 2340/306, 6-15=-76/3	27, 5-17=-874/348 880, 7-13=-1323/1	, 6-17=-172 96, 9-13=-1	2/1147, 7-15=-5 64/2220	2/388,							
NOTES- 1) Unbal 2) Wind: MWF Interio	anced roof live ASCE 7-10; V RS (envelope) or(1) 29-6-0 to 5	loads have been cons ult=130mph (3-second gable end zone and C- 50-0-8 zone;C-C for m	sidered for this des I gust) Vasd=103n -C Exterior(2) -0-1 embers and forces	sign. nph; TCDL= 0-8 to 4-0-{ s & MWFR\$	=6.0psf; BCDL= 3, Interior(1) 4-0 5 for reactions :	:6.0psf; h=25ft; ()-8 to 24-7-0, Ex shown; Lumber [Cat. II; Exp terior(2) 24 DOL=1.60	B; En 4-7-0 to plate ç	iclosed; o 29-6-0, grip	,			

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=243.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	9 9	-10-0 -10-0	18-6-8 8-8-8		24-7-0 6-0-8		30-7 6-0-	-8 8		35-2-0 4-6-8	39-4-0		43-4-4 4-0-4	49-0-8 5-8-4	49-2-0 0-1-8
LOADING TCLL TCDL BCLL BCDL	G (psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip D Lumber DOL Rep Stress I Code IRC20	2-0-0 OL 1.15 - 1.15 nor YES 115/TPI2014	CSI. TC BC WB Mati	0.70 0.84 0.92 rix-S		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.28 1 -0.51 1 0.09	(loc) 4-16 4-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 334	GRIP 244/190 b FT = 2	0%
LUMBER TOP CHO	- DRD 2x6 SF	? No.2				E	BRACING-	D S	Struct	ural wood	sheathing dire	ectly a	applied or 3-3-	14 oc purlins	5.

BOT CHORD

WEBS

Rigid ceiling directly applied or 6-0-0 oc bracing.

5-14, 6-12

1 Row at midpt

TOP CHORD 2x6 SP No.2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 1=1663/0-3-8, 11=2516/0-3-8, 9=-207/0-3-0 (lb/size) Max Horz 1=-182(LC 13) Max Uplift 1=-221(LC 12), 11=-262(LC 13), 9=-289(LC 25) Max Grav 1=1663(LC 1), 11=2516(LC 1), 9=54(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-3616/521, 2-4=-3289/436, 4-5=-2557/396, 5-6=-2071/334, 6-8=-1042/180,

8-9=-130/1156

BOT CHORD	1-18=-584/3274, 16-18=-390/2714, 14-16=-89/1686, 12-14=-110/1663, 11-12=-997/150,
	9-11=-997/150
WEBS	2-18=-370/223, 4-18=-16/530, 4-16=-876/348, 5-16=-173/1148, 5-14=-76/380,

6-14=-51/389, 8-11=-2341/306, 6-12=-1324/199, 8-12=-169/2221

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 5-0-12, Interior(1) 5-0-12 to 24-7-0, Exterior(2) 24-7-0 to 29-6-0, Interior(1) 29-6-0 to 50-0-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=221

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11 and 9. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ŀ	9-	·10-0	18-6-8		30-7-8		39	-4-0	48-9-	8	
	9-		8-8-8	•	12-1-0		8-	-8-8	9-5-8	3	
Plate Of	rsets (X,Y)	[1:0-1-12,Edge], [9:0	0-0-0,0-0-13]								
LOADIN TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DC Lumber DOL Rep Stress Ir	2-0-0 DL 1.15 1.15 ncr YES	CSI. TC 0.87 BC 0.96 WB 0.92	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.38 12-14 -0.72 12-14 0.17 9	l/defl >999 >808 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC20	15/TPI2014	Matrix-S					Weight: 327 lb	FT = 20%	
TOP CH BOT CH WEBS REACTI	LUMBER- BRACING- TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD 2x6 SP No.2 BOT CHORD BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc bracing. WEBS 2x4 SP No.3 BOT CHORD BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. REACTIONS (lb/size) 1=1943/0-3-8, 9=1943/Mechanical Structural wood sheathing directly applied or 2-2-0 oc bracing. WEBS 2x4 SP No.3 Structural wood sheathing directly applied or 2-2-0 oc bracing. REACTIONS (lb/size) 1=1943/0-3-8, 9=1943/Mechanical Max Horz 1=-172(LC 17) Max Uplift 1=-237(LC 12), 9=-235(LC 13)										
FORCES TOP CH BOT CH WEBS	S. (lb) - Max. (ORD 1-2=-4 8-9=-4 ORD 1-16= 2-16= 6-12=	Comp./Max. Ten / 4311/562, 2-4=-399 4162/540 -627/3910, 14-16=- -358/222, 4-16=-16 -836/345, 6-10=-9/4	All forces 250 (lb) or 4/478, 4-5=-3273/46 433/3370, 12-14=-1 /515, 4-14=-871/348 458, 8-10=-271/207	less except when shown. 57, 5-6=-3254/466, 6-8=-3 34/2347, 10-12=-284/332 5, 5-14=-171/1148, 5-12=-	902/468, 9, 9-10=-432/3743 167/1117,	3					
NOTES- 1) Unba	anced roof live	loads have been co	onsidered for this de	sign.							

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 5-0-5, Interior(1) 5-0-5 to 24-7-0, Exterior(2) 24-7-0 to 29-5-9, Interior(1) 29-5-9 to 48-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=237, 9=235.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 			<u>48-9-8</u> 48-9-8								
Plate Offsets (X,Y)	Plate Offsets (X,Y) [28:0-0-12,0-1-12], [29:0-0-0,0-1-12], [37:0-0-0,0-1-12], [38:0-2-8,0-0-0], [38:0-1-12,0-0-0], [42:0-1-12,0-0-0], [43:0-0-0,0-1-12]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.09 BC 0.08 WB 0.15 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.01	(loc) I/defl L/d 1 n/r 120 1 n/r 120 29 n/a n/a	PLATES GRIP MT20 244/190 Weight: 339 lb FT = 20%						
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3 P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing of except end verticals. Rigid ceiling directly applied 1 Row at midpt	directly applied or 6-0-0 oc purlins, d or 10-0-0 oc bracing. 15-42, 14-44, 13-45, 16-41, 17-40						

REACTIONS. All bearings 48-9-8.

(lb) - Max Horz 2=189(LC 12)

Max Uplift All uplift 100 b or less at joint(s) 2, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30

Max Grav All reactions 250 lb or less at joint(s) 29, 2, 42, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 11-12=-86/252, 12-13=-99/290, 13-14=-113/331, 14-15=-126/364, 15-16=-126/367,

16-17=-113/334, 17-18=-99/293, 18-19=-86/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 4-0-1, Exterior(2) 4-0-1 to 24-7-0, Corner(3) 24-7-0 to 29-5-9, Exterior(2) 29-5-9 to 48-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30.

ENGINEERING BY EREENCO AliTek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					-	
Job	Truss	Truss Type	Qty	Ply	149.2115.B.12x20CVP	
					13730	9818
20709A	BE2	Common Supported Gable	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	.220 s Nov	/ 16 2018 MiTek Industries, Inc. Tue Jun 4 14:07:53 2019 Page	1
			ID:u??Rpr1fY	8_Hap73z	CKv?WzeKCg-fuhzlreA4kkJc?sBpfK?6ei9UUyPbXHJeLWf1iz9eL	q
1	24-7-0				48-9-8	
	24-7-0	1			24-2-8	

Scale = 1:81.5

			<u>48-9-8</u> 48-9-8			
Plate Offsets (X,Y)	[27:0-0-12,0-1-12], [28:0-0-0,0-1-12], [36	6:0-0-0,0-1-12], [37:0-2-8,0	-0-0], [37:0-1-12,0-0-0]	, [41:0-1-12,0-0-0],	[42:0-0-0,0-1-12]	
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.09 BC 0.08 WB 0.15 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	n (loc) l/defl n - n/a n - n/a 28 n/a	L/d PL 999 MT 999 n/a We	ATES GRIP ^20 244/190 eight: 338 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P No.2 P No.2 P No.3 P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s except end vertica Rigid ceiling direc 1 Row at midpt	heathing directly appl als. tly applied or 10-0-0 o 14-41, 13-4	ied or 6-0-0 oc purlins, oc bracing. 43, 12-44, 15-40, 16-39

REACTIONS. All bearings 48-9-8.

Max Horz 1=184(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29

Max Grav All reactions 250 lb or less at joint(s) 28, 1, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 10-11=-86/253, 11-12=-99/291, 12-13=-113/332, 13-14=-126/365, 14-15=-126/367,

15-16=-113/334, 16-17=-99/293, 17-18=-86/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-0-0 to 4-7-0, Exterior(2) 4-7-0 to 24-7-0, Corner(3) 24-7-0 to 29-5-9, Exterior(2) 29-5-9 to 48-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29.

818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L					20-8-0						
	1					20-8-0						1
LOADING TCLL TCDI	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15 1.15	CSI. TC BC	0.05	DEFL. Vert(LL)	in -0.00	(loc) 12 12	l/defl n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TF	YES 912014	WB Matrix	0.04 0.04 x-S	Horz(CT)	0.00	12	n/a	n/a	Weight: 100 lb	FT = 20%
I UMBER-				•		BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 20-8-0.

Max Horz 2=-78(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 10-4-0, Corner(3) 10-4-0 to 13-4-0, Exterior(2) 13-4-0 to 21-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Design valid for use only with MITEK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

humm June 5,2019

Job	Truss	Truss Type	Qty	Ply	149.2115.B.12x20CVP	
					1373	309820
20709A	CG	Common Girder	1	2		
				3	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	.220 s Nov	/ 16 2018 MiTek Industries, Inc. Tue Jun 4 14:07:56 2019 Pag	ge 2
		ID:	u??Rpr1fY	8 Hap73z	CKv?WzeKCq-4TN6Nsh3Mf6uTSblUnuikHKd1htSorrlKJlJe0z9	eLn

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 12=-484(B) 13=-484(B) 14=-484(B) 15=-484(B) 16=-484(B) 17=-484(B) 18=-484(B) 19=-484(B) 20=-484(B) 21=-489(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0 <mark>-</mark> 8	6-0-0		14-0-0			1		19-11-8	<u>20-</u> 0-0
	0-0-8	5-11-8		8-0-0					5-11-8	0-0-8
Plate Offset	ts (X,Y)	[2:0-1-7,0-6-10], [2:0-0-0,0-1-0], [3:0-2	4,0-0-12], [5:0-0-0,0-1-0], [5:0	-1-7,0-6-10]						
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.52 BC 0.63 WB 0.12 Matrix-S	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	in (la 1 7 23 7 04	loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS WEDGE Left: 2x4 SF	2D 2x4 SP 3-4: 2x6 D 2x4 SP 2x4 SP 2x4 SP	No.2 *Except* 5 SP No.2 No.2 No.3 t: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Str exc 2-0 Riç 1 F	ructura cept 0-0 oc gid ce Row a	al wood s purlins (iling dire t midpt	sheathing direc 5-4-6 max.): 3 ctly applied or 3-7	otly applied or 3-11- -4. 10-0-0 oc bracing.	7 oc purlins,
REACTION	S. (Ib/size Max He Max U) 2=850/0-3-0, 5=850/0-3-0 prz 2=46(LC 12) blift 2=-108(LC 8), 5=-108(LC 9)								

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1518/238, 3-4=-1322/264, 4-5=-1525/236

BOT CHORD 2-8=-160/1326, 7-8=-160/1326, 5-7=-152/1332

WEBS 3-8=0/312, 4-7=0/314

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2) 6-0-0 to 10-2-15, Interior(1) 10-2-15 to 14-0-0, Exterior(2) 14-0-0 to 18-2-15, Interior(1) 18-2-15 to 20-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-8</u> 0-0-8	<u>8-0-0</u> 7-11-8		12-0-0 4-0-0		<u>19-11</u> 7-11	1-8 -8	<u>20-</u> 0-0 0-0-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.98 BC 0.67 WB 0.10 Matrix-S	DEFL. in Vert(LL) 0.11 Vert(CT) -0.12 Horz(CT) 0.02	(loc) l/def 5-7 >999 5-7 >999 5 n/a	l L/d 9 240 9 180 a n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF	9 No.2 9 No.2		BRACING- TOP CHORD	Structural wo 2-0-0 oc purli	od sheathing dire ns (5-2-0 max.): 3	ectly applied, except 3-4.	

BOT CHORD

Rigid ceiling directly applied or 7-5-11 oc bracing.

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. 2=850/0-3-0, 5=850/0-3-0 (lb/size) Max Horz 2=-61(LC 13) Max Uplift 2=-266(LC 8), 5=-266(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1376/997, 3-4=-1163/955, 4-5=-1376/997

2-9=-835/1171, 7-9=-824/1163, 5-7=-832/1170 BOT CHORD

3-9=-248/270, 4-7=-262/270 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 16-2-15, Interior(1) 16-2-15 to 20-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-	-9 <mark>-</mark> 8		10-0-0			1				19-11-8		20- Q -0
0-	-0-8		9-11-8			1				9-11-8		0-0-8
Plate Offset	ts (X,Y)	[2:0-3-2,0-0-4], [6:0-3-2,0-0-4], [8:0-4-0,0-4-8]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	0.13	2-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.15	2-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	(-S						Weight: 104 lb	FT = 20%
LUMBER-						BRACING						

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-7-2 oc purlins.

Rigid ceiling directly applied or 7-9-6 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=850/0-3-0, 6=850/0-3-0 Max Horz 2=-76(LC 13) Max Uplift 2=-242(LC 8), 6=-242(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-1474/929, 3-4=-1108/848, 4-5=-1108/848, 5-6=-1474/929 TOP CHORD

BOT CHORD 2-8=-799/1295, 6-8=-805/1295

WEBS 4-8=-533/564, 5-8=-382/222, 3-8=-382/221

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-0-0, Exterior(2) 10-0-0 to 13-0-0, Interior(1) 13-0-0 to 20-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

пп

8x8 =

9

NAILED

ΠΠ

20

NAILED

ΠΠ

21

NAILED

Πп

2x4 ||

NAII ED

8

0-0 <u>-8</u> 0-0-8	4-0-0 3-11-8	9 0 2 01 (E:0 E 9 0	10-0-0 6-0-0	4 0 0 4 81		16-0-0 6-0-0	1		19-11-8 3-11-8	<u>20-</u> 0-0 0-0-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Experimental set of the set of	2-0-0 1.15 1.15 NO /TPI2014	CSI. TC 0.86 BC 0.64 WB 0.52 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.21 -0.27 0.04	(loc) 9 9 6	l/defl >999 >880 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP No.2 *Except* 3-5: 2x4 SP No.1 2x6 SP No.2 2x4 SP No.3			BRACING- TOP CHOR BOT CHOR	D	Structu except 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing di (2-9-4 max.): ectly applied o	rectly applied or 3-10-1 : 3-5. or 6-5-2 oc bracing.	oc purlins,
REACTIONS.	(Ib/size) 2=1109/0-3-0, 6= Max Horz 2=34(LC 12) Max Uplift 2=-490(LC 8), 6=-	1109/0-3-0 490(LC 9)								
FORCES. (lb) - TOP CHORD BOT CHORD	- Max. Comp./Max. Ten All 2-3=-2225/1444, 3-4=-3110 2-10=-1258/1975, 9-10=-12	forces 250 (lb) or /2051, 4-5=-3110/ 74/1991, 8-9=-127	less except when shown. 2051, 5-6=-2225/1444 71/1991, 6-8=-1256/1975							

WEBS 3-10=-189/326, 3-9=-746/1216, 4-9=-558/310, 5-9=-747/1216, 5-8=-188/326

חח

10

NAILED

2x4 ||

ΠΠ

18

NAILED

ΠΠ

19

NAILED

NOTES-

-6-4

 \mathbb{X}

4x6 =

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-0, Exterior(2) 4-0-0 to 8-2-15, Interior(1) 8-2-15 to 16-0-0, Exterior(2) 16-0-0 to 20-2-15, Interior(1) 20-2-15 to 20-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 3=-67(F) 5=-67(F) 10=-30(F) 9=-18(F) 4=-47(F) 8=-30(F) 12=-47(F) 13=-47(F) 14=-47(F) 15=-47(F) 18=-18(F) 19=-18(F) 20=-18(F) 21=-18(F)

⁶ 17₇

X

4x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					3-11-0						
Plate Offsets (X,	Y) [2:0-0-0,0-1-0], [2:0-0-1	5,0-6-10]	_								
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	0.02	2-4	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	2-4	>999	180		
BCLL 0.0	* Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 15 lb	FT = 20%
LUMBER-					BRACING						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=107/Mechanical, 2=220/0-3-0, 4=38/Mechanical Max Horz 2=77(LC 12) Max Uplift 3=-65(LC 12), 2=-62(LC 8), 4=-12(LC 8) Max Grav 3=107(LC 1), 2=220(LC 1), 4=76(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [2:0-0-15,0-6-10]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.39 BC 0.27 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.02 2-4 >999 240 MT20 244/190 Vert(CT) -0.03 2-4 >999 180 MT20 244/190 Horz(CT) -0.00 3 n/a n/a PLATES GRIP
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Weight: 15 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=127/Mechanical, 2=252/0-3-0, 4=50/Mechanical Max Horz 2=77(LC 12) Max Uplift 3=-76(LC 12), 2=-83(LC 8), 4=-18(LC 8) Max Grav 3=127(LC 1), 2=252(LC 1), 4=92(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

- 7) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 2-4=-20

Concentrated Loads (lb)

Vert: 6=-40(F) 7=-24(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0 <u>-8</u>	2-0-0				4-0-0		
Plate Offsets (X,Y)	[2:0-0-15,0-6-10], [2:0-0-0,0-1-0], [3:0-2	-0,0-2-11]				200		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.31 BC 0.16 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc 0.02 2- -0.02 2- 0.02	c) l/defl -5 >999 -5 >999 4 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF	2 No.2		BRACING TOP CHOI	RD Stru	ctural wood	sheathing di	rectly applied or 4-0-0	oc purlins, except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

 WEDGE

 Left: 2x4 SP No.3

 REACTIONS. (lb/size)
 4=100/Mechanical, 2=220/0-3-0, 5=44/Mechanical

Max Horz 2=46(LC 12) Max Uplift 4=-47(LC 9), 2=-80(LC 8), 5=-17(LC 9) Max Grav 4=100(LC 1), 2=220(LC 1), 5=71(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 32 lb down and 126 lb up at 2-0-0 on top chord, and 15 lb down and 41 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	13Ct3 (X, T)	[2.0 0 0,0 1 0], [2.0 0 10,0 0	10]								
LOADIN	G (psf)	SPACING- 2-	-0-0 CS		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.15 TC	0.15	Vert(LL)	-0.00	2	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1	.15 BC	0.04	Vert(CT)	-0.00	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr Y	YES WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	14 Ma	rix-P						Weight: 9 lb	FT = 20%
LUMBE	R-				BRACING						

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=46/Mechanical, 2=145/0-3-0, 4=20/Mechanical Max Horz 2=45(LC 12) Max Uplift 3=-32(LC 12), 2=-46(LC 8), 4=-6(LC 8) Max Grav 3=46(LC 1), 2=145(LC 1), 4=39(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-8-7	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.01 2-4 >999 240 Vert(CT) 0.01 2-4 >999 180 Horz(CT) -0.00 3 n/a n/a	

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=49/Mechanical, 2=208/0-4-7, 4=25/Mechanical Max Horz 2=46(LC 8) Max Uplift 3=-32(LC 12), 2=-105(LC 8), 4=-8(LC 8) Max Grav 3=49(LC 1), 2=208(LC 1), 4=49(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-10</u> 0-0-10			7-9-0 7-8-6					
Plate Offsets (X,Y)	[2:0-2-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.52 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) 0	in (loc) n/a - n/a - .00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	• No.2		BRACING- TOP CHORD	Structu	ral wood s	heathing di	rectly applied or 6-0-0) oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (lb/size) 1=250/7-7-13, 3=250/7-7-13 Max Horz 1=22(LC 12) Max Uplift 1=-30(LC 12), 3=-30(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-271/174, 2-3=-271/174

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 /

2x4 >

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <u>0-10</u> 0-0-10 Plate Offsets (X,Y)	[2:0-2-0,Edge]		3-9-0 3-8-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.04 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.3		BRACING- TOP CHORD Structural wood sheathing d	irectly applied or 3-9-0 oc purlins.

BOT CHORD

BOT CHORD 2x4 SP No.3

REACTIONS. (lb/size) 1=90/3-7-13, 3=90/3-7-13 Max Horz 1=8(LC 16) Max Uplift 1=-11(LC 12), 3=-11(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WEBS

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 6-2-8, Exterior(2) 6-2-8 to 9-2-8, Interior(1) 9-2-8 to 11-7-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

0-0-10			8-4-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.22 BC 0.12 WB 0.04	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 25 lb $FT = 20\%$
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS

2x4 SP No.3 REACTIONS. (lb/size) 1=136/8-3-13, 3=136/8-3-13, 4=280/8-3-13

Max Horz 1=24(LC 12) Max Uplift 1=-32(LC 12), 3=-36(LC 13), 4=-4(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 4-2-8, Exterior(2) 4-2-8 to 7-2-8, Interior(1) 7-2-8 to 7-7-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 💋

 $2x4 \ge$

Structural wood sheathing directly applied or 4-5-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <u>0-10</u> 0-0-10				4-5-0								
ate Offse	ets (X,Y)	[2:0-2-0,Edge]										
OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	n/a	-	n/a	999		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-P						Weight: 11 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (lb/size) 1=116/4-3-13, 3=116/4-3-13 Max Horz 1=10(LC 12) Max Uplift 1=-14(LC 12), 3=-14(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.34 BC 0.21 WB 0.07 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 69 lb FT = 20%
I UMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 19-9-0.

(lb) - Max Horz 1=64(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-124(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=451(LC 23), 6=451(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-8=-332/179, 4-6=-332/179 WEBS

NOTES-

5)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 9-10-8, Exterior(2) 9-10-8 to 12-10-8, Interior(1) 12-10-8 to 18-11-15 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=124. 6=123.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

William Contraction WITTER PARTY SEAL 044925 S ///////// June 5,2019

				15-9-0
LOADING TCLL TCDL	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.19 BC 0.11	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(CT) n/a - n/a 999
BCDL	0.0 ^ 10.0	Code IRC2015/TPI2014	WB 0.05 Matrix-S	Horz(CT) 0.00 5 n/a n/a Weight: 53 lb FT = 20%
LUMBER	2-			BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 15-9-0. (lb) - Max Horz 1=-50(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=284(LC 1), 8=337(LC 23), 6=337(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-8=-256/140, 4-6=-256/140

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-9-1 to 3-10-8, Interior(1) 3-10-8 to 7-10-8, Exterior(2) 7-10-8 to 10-10-8, Interior(1) 10-10-8 to 14-11-15 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-10</u> 0-0-10			7	7-9-0 7-8-6						
Plate Offsets (X,Y)	[2:0-2-0,Edge]	1								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code IRC2015/TPI20	-0-0 CSI. 1.15 TC 1.15 BC YES WB 14 Matrix	0.18 0.52 0.00 -P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2	·		BRACING- TOP CHOR	D	Structu	ral wood	sheathing dir	ectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=250/7-7-13, 3=250/7-7-13 Max Horz 1=22(LC 12) Max Uplift 1=-30(LC 12), 3=-30(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-271/174, 2-3=-271/174

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 /

2x4 >

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-0-10 0-0-10 Plate Offsets (X Y)	[2:0-2-0 Edge]		3-9-0 3-8-6	I
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.04 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d F Vert(LL) n/a - n/a 999 M Vert(CT) n/a - n/a 999 M Horz(CT) 0.00 3 n/a n/a V	'LATES GRIP 1T20 244/190 Veight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.3		BRACING- TOP CHORD Structural wood sheathing directly ap	plied or 3-9-0 oc purlins.

BOT CHORD

BOT CHORD 2x4 SP No.3

REACTIONS. (lb/size) 1=90/3-7-13, 3=90/3-7-13 Max Horz 1=-8(LC 13) Max Uplift 1=-11(LC 12), 3=-11(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

