

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21437A 140.1582.A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37749890 thru I37749920

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

July 11,2019

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	1	7-4-5	1	14-6-4			1	20-2-0	1	
	Γ	7-4-5	Ι	7-1-15			1	5-7-12		
Plate Offsets (X,Y) [[2:0-0-0,0-0-8], [2:0-0-15,0-4	4-5], [6:0-0-15,0-4-5],	6:0-0-0,0-0-12], [9	:0-0-0,0-1-12],	[9:0-3-1	2,0-3-0]			
LOADING (psf)	SPACING- 2	2-0-0 CS	I.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15 TC	0.54	Vert(LL)	0.11	2-10	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15 BC	0.46	Vert(CT)	-0.14	8-10	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES WE	0.43	Horz(CT)	0.01	8	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014 Ma	trix-S						Weight: 104 lb	FT = 20%

BOT CHORD

WEBS

Rigid ceiling directly applied or 6-0-0 oc bracing.

4-8

1 Row at midpt

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=528/0-3-8, 8=1188/0-3-8 Max Horz 2=181(LC 11) Max Uplift 2=-89(LC 12), 8=-145(LC 13) Max Grav 2=559(LC 23), 8=1188(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-653/367, 3-4=-451/362, 4-5=-224/575, 5-6=-253/377
- BOT CHORD 2-10=-240/611, 6-8=-229/253
- WEBS 4-10=-405/436, 4-8=-933/519, 5-8=-335/223, 3-10=-316/221

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-1-0, Exterior(2) 10-1-0 to 13-1-0, Interior(1) 13-1-0 to 21-0-8 zone; cantilever right exposed ; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

July 11,2019

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and premanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Design valid for use only with MI lek® connectors. Ihis design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1582.A
21437A	BG	COMMON GIRDER	1	2	137749892
-	-			Z	Job Reference (optional)
					8.220 s Jun 21 2019 MiTek Industries, Inc. Thu Jul 11 11:50:24 2019 Page 2
		ID:RUSz4	LGuFS2C	1bODNZV	/BaZyX6cZ-UlgkmPPzVLlealGYKt0EnMmy87pxeA_RTaVVk3yz8oj

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 814 lb down and 325 lb up at 4-11-4, 1960 lb down and 240 lb up at 6-6-12, 1960 lb down and 192 lb up at 8-6-12, 1960 lb down and 162 lb up at 10-6-12, 1960 lb down and 189 lb up at 12-6-12, and 1007 lb down and 201 lb up at 16-6-12, and 1008 lb down and 201 lb up at 18-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 2-6=-20 Concentrated Loads (Ib)

Vert: 15=-814(B) 16=-1960(B) 17=-1960(B) 18=-1960(B) 19=-1960(B) 20=-964(B) 21=-965(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/VTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:88.0

 	9-0-0	17-0-14 8-0-14	25-0-0 7-11-2	32-11	-2 -2		41-0-0 8-0-14	49-8-12	
Plate Offsets (X,Y)	[5:0-4-0,0-4-8], [7:0-4-0,0-	4-8], [17:0-3-4,0-	0-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC 0.51 BC 0.97 WB 0.81 Matrix-S	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (I 45 89 21	loc) l/defl 14 >999 14 >665 10 n/a	L/d 240 180 n/a	PLATES MT20 MT18H Weight: 316 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF 1-4,8-1 BOT CHORD 2x6 SF 12-15, WEBS 2x4 SF	P No.2 *Except* 0: 2x4 SP No.2 P No.2 *Except* 15-17: 2x6 SP DSS P No.3			BRACING- TOP CHORD BOT CHORD WEBS	Sti ex 2-0 Rig 1 I	tructural wood kcept -0-0 oc purlins igid ceiling dir Row at midpt Rows at 1/3 p	sheathing ((2-10-12 m ectly applied ts	directly applied or 2-6-12 ax.): 4-8. d or 2-2-0 oc bracing. 6-16, 6-13 5-18, 7-11	oc purlins,
REACTIONS. (Ib/size Max H Max U	e) 10=1980/Mechanical, lorz 2=89(LC 16) lplift 10=-220(LC 8), 2=-22	2=2043/0-3-8 5(LC 9)							
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- 7-8=- BOT CHORD 2-18= 10-1 4-18= 6-13= 6-13=	Comp./Max. Ten All forc -3995/661, 3-4=-3777/578, -3275/539, 8-9=-3721/571, 551/3510, 16-18=-792/52 1=-522/3392 =-110/1288, 5-18=-2267/45 =-744/141, 7-13=0/551, 7-1	es 250 (lb) or les 4-5=-3324/550, { 9-10=-3893/644 274, 14-16=-870/{ 56, 5-16=0/539, 6 11=-2291/457, 8-	s except when shown. 5-6=-5277/837, 6-7=-5 5853, 13-14=-870/585 i-16=-716/138, 6-14=0 11=-112/1264	250/832, 3, 11-13=-746/5247, /324,					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; W MWFRS (envelope) Interior(1) 16-0-6 to reactions shown; Lu 3) Provide adequate di 4) All plates are MT20 5) This truss has been 6) * This truss has been will fit between the b 7) Refer to girder(s) for 8) Provide mechanical 10-220. 9) One RT7A USP con and does not consid 10) Graphical purlin reference 	a loads have been conside (/ult=130mph (3-second gu: gable end zone and C-C E 41-0-0, Exterior(2) 41-0-0 mber DOL=1.60 plate grip rainage to prevent water pp plates unless otherwise ind designed for a 10.0 psf bo n designed for a live load of bottom chord and any other t rruss to truss connections connection (by others) of t unectors recommended to of ler lateral forces. presentation does not depi	red for this design staterior(2) -0-10-8 to 48-0-6, Interior DOL=1.60 onding, dicated. thom chord live lo of 20.0psf on the l r members. s. rruss to bearing p connect truss to b ict the size or the	n. n; TCDL=6.0psf; BCDL 8 to 4-1-3, Interior(1) 4 (1) 48-0-6 to 49-8-0 zo ad nonconcurrent with bottom chord in all are late capable of withsta bearing walls due to UF orientation of the purli	=6.0psf; h=30ft; Cat. -1-3 to 9-0-0, Exterior one;C-C for members a any other live loads. as where a rectangle Inding 100 lb uplift at j PLIFT at jt(s) 2. This c n along the top and/or	II; Exp (2) 9-0 and fo 3-6-0 t oint(s) onnect	b B; Enclosed;)-0 to 16-0-6, orces & MWFf tall by 2-0-0 w) except (jt=lb) ction is for upli om chord.	RS for ride ft only	Alto and an and a second and a	SEAL GINEER. SOTUTION

July 11,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6-	1-4 11-8-0 1-4 5-6-12	<u>25-0-0</u> 13-4-0		<u>38-4-0</u> 13-4-0	<u>43-10-12</u> <u>49-8-12</u> <u>5-6-12</u> <u>5-10-0</u>
Plate Offsets (X,Y)	[13:0-4-0,0-4-8], [14:0-3-12,0-4-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.80 BC 0.98 WB 0.89 Matrix-S	DEFL. ir Vert(LL) -0.34 Vert(CT) -0.70 Horz(CT) 0.17	1 (loc) l/defl L/d 13-14 >999 240 11-13 >845 180 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 303 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP 4-6,6-8 BOT CHORD 2x6 SP 12-13,1 WEBS 2x4 SP	P No.2 *Except* :: 2x6 SP No.2 P No.2 *Except* 13-14: 2x6 SP DSS P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (3-2-8 may Rigid ceiling directly applie 1 Row at midpt	directly applied or 2-2-0 oc purlins, except <.): 4-8. d or 2-2-0 oc bracing. 5-14, 7-11
REACTIONS. (Ib/size Max H Max U	e) 10=1980/Mechanical, 2=2043/0-3-8 orz 2=111(LC 12) plift 10=-172(LC 8), 2=-177(LC 9)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-14= WEBS 3-14= 7-11=	Comp./Max. Ten All forces 250 (lb) or 3927/661, 3-4=-3580/555, 4-5=-3131/54 3542/546, 9-10=-3851/649 =-544/3442, 13-14=-579/4310, 11-13=-5 =-325/244, 4-14=-72/1157, 5-14=-1495/3 =-1519/376, 8-11=-81/1140, 9-11=-269/2	less except when shown. 0, 5-7=-4411/673, 7-8=-3/ 48/4298, 10-11=-521/3355 76, 5-13=0/339, 7-13=0/3 47	096/532, 5 54,		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 18-8-6 to reactions shown; Lu 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) Refer to girder(s) for 7) Provide mechanical 10=172. 8) One RT7A USP con	e loads have been considered for this de fult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) -0- 38-4-0, Exterior(2) 38-4-0 to 45-4-6, Inte mber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on t tottom chord and any other members, wi russ to truss connections. connection (by others) of truss to bearin nectors recommended to connect truss i	sign. nph; TCDL=6.0psf; BCDL 10-8 to 4-1-3, Interior(1) 4- rior(1) 45-4-6 to 49-8-0 zo e load nonconcurrent with he bottom chord in all area th BCDL = 10.0psf. g plate capable of withstar to bearing walls due to UF	=6.0psf; h=30ft; Cat. II; 1-3 to 11-8-0, Exterior(2 ne;C-C for members ar any other live loads. as where a rectangle 3- nding 100 lb uplift at join PLIFT at it(s) 2. This con	Exp B; Enclosed; 2) 11-8-0 to 18-8-6, 1d forces & MWFRS for 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) nnection is for uplift only	ALL SEAL

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	7-5-4 14-4-0	21-5-15	28-6-1	35-8-0	42-6-12	49-8	3-12	
I	7-5-4 6-10-12	7-1-15	7-0-3	7-1-15	6-10-12	7-2	2-0	
Plate Offsets (X,Y)	[3:0-2-8,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.86 BC 0.78 WB 0.69 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) l/defl 1.26 14-16 >999 1.52 14-16 >999 1.18 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 328 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 Sf 3-4: 2) BOT CHORD 2x6 Sf WEBS 2x4 Sf REACTIONS. (Ib/siz Max H Max L	P No.2 *Except* k4 SP No.1, 8-10: 2x4 SP DSS, 1-3 P No.2 P No.3 e) 10=1980/Mechanical, 2=2043, torz 2=133(LC 16) Jplift 10=-142(LC 13), 2=-166(LC 13)	2x4 SP No.2 0-3-8 2)	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s 2-0-0 oc purlins (Rigid ceiling direc 1 Row at midpt	theathing directly 3-9-5 max.): 4-8. ty applied or 10 5-17,	applied, except -0-0 oc bracing. 5-14, 7-13		
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9= 8-9= BOT CHORD 2-19 11-' 11-' WEBS 3-19 7-13 7-13	Comp./Max. Ten All forces 250 (-3934/597, 3-4=-3318/564, 4-5=-28 -3293/556, 9-10=-3871/581 =-477/3433, 17-19=-474/3438, 16- 13=-450/3363, 10-11=-450/3363 =0/294, 3-17=-618/222, 4-17=-88/1 =-1070/219, 8-13=-99/1072, 9-13=-	lb) or less except when showr 78/557, 5-7=-3517/627, 7-8=- 7=-387/3523, 14-16=-387/352 083, 5-17=-1066/221, 5-16=0/ 564/223, 9-11=0/290	n. 2856/548, 23, 13-14=-387/3517, /343, 7-14=0/320,					
 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; \ MWFRS (envelope) Interior(1) 21-5-15 t for reactions shown 3) Provide adequate d 4) This truss has been will fit between the H 6) Refer to girder(s) fo 7) Provide mechanical 10=142. 8) One RT7A USP con and does not consid 9) Graphical purlin rep 	e loads have been considered for th /ult=130mph (3-second gust) Vasd) gable end zone and C-C Exterior(2 o 35-8-0, Exterior(2) 35-8-0 to 42-6 ; Lumber DOL=1.60 plate grip DOL trainage to prevent water ponding. I designed for a 10.0 psf bottom cho an designed for a live load of 20.0ps bottom chord and any other member r truss to truss connections. I connection (by others) of truss to the nectors recommended to connect der lateral forces. resentation does not depict the size	his design. =103mph; TCDL=6.0psf; BCD 2) -0-10-8 to 4-1-3, Interior(1) - -12, Interior(1) 42-6-12 to 49-8 =1.60 and live load nonconcurrent with f on the bottom chord in all ar- rs, with BCDL = 10.0psf. the aring plate capable of withst russ to bearing walls due to U a or the orientation of the purling a or the orientation of the p	PL=6.0psf; h=30ft; Cat. 4-1-3 to 14-4-0, Exteri 3-0 zone;C-C for mem th any other live loads eas where a rectangle canding 100 lb uplift at JPLIFT at jt(s) 2. This o n along the top and/or	II; Exp B; Enclosed; or(2) 14-4-0 to 21-5-15 bers and forces & MW	5, FRS de only	ALL OR THE	SEAL 45844	ALL BARNEN AND

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

W JON July 11,2019

L	8-9-4	17-0-0	25-0-0	33-0-0	<u> </u>	41-2-12	49-8-12	2
1	8-9-4	8-2-12	8-0-0	8-0-0	<u> </u>	8-2-12	8-6-0	1
Plate Offsets (X,Y)) [7:0-4-0,0-4-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC 0.81 BC 0.79 WB 0.65 Matrix-S	DEFL. ir Vert(LL) -0.26 Vert(CT) -0.52 Horz(CT) 0.16	i (loc) l/defl i 17-18 >999 i 17-18 >999 i 17-18 >999 i 12 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 331 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.2 *Except* 8,6-7: 2x6 SP No.2 6 SP No.2 4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing dire (4-1-8 max.): 6 ectly applied or 7-	ctly applied or 2-2-0 c 5-8. 10-0-0 oc bracing. 18, 7-15	oc purlins, except
REACTIONS. (Ib M M	o/size) 2=2043/0-3-8, 12= ax Horz 2=155(LC 16) ax Uplift 2=-193(LC 12), 12	⊧1980/Mechanical 2=-169(LC 13)						
FORCES. (lb) - M TOP CHORD 2 BOT CHORD 2 WEBS 2	Max. Comp./Max. Ten All 2-3=-3949/581, 3-5=-3698/5 3-9=-3047/549, 9-11=-3639 2-20=-471/3459, 18-20=-38 12-13=-448/3372 3-20=-313/194, 5-20=-39/48 7-17=0/422, 7-15=-747/174 11-13=-268/195	forces 250 (lb) or l i71, 5-6=-3062/556 /560, 11-12=-3873 5/3049, 17-18=-30 30, 5-18=-560/219, , 8-15=-89/1025, 9	less except when shown. 6, 6-7=-2689/539, 7-8=-26 %579 %3/3114, 15-17=-303/3114 , 6-18=-92/1031, 7-18=-73 -15=-532/217, 9-13=-38/4	676/533, I, 13-15=-366/3016, 30/174, I44,				
NOTES- 1) Unbalanced roc 2) Wind: ASCE 7- MWFRS (envel- Interior(1) 24-0- reactions showi 3) Provide adequa 4) This truss has b 5) * This truss has b	of live loads have been cons 10; Vult=130mph (3-second ope) gable end zone and C 6 to 33-0-0, Exterior(2) 33- 1; Lumber DOL=1.60 plate - tte drainage to prevent wate oeen designed for a 10.0 ps been designed for a live lo	sidered for this des l gust) Vasd=103rr -C Exterior(2) -0-1 0-0 to 40-0-6, Inter grip DOL=1.60 er ponding. f bottom chord live ad of 20.0psf on th	sign. ph; TCDL=6.0psf; BCDL: 0-8 to 4-1-3, Interior(1) 4- ior(1) 40-0-6 to 49-8-0 zo bload nonconcurrent with he bottom chord in all area	=6.0psf; h=30ft; Cat. II; 1-3 to 17-0-0, Exterior(; ne;C-C for members ar any other live loads. as where a rectangle 3-	Exp B; Enclosed; 2) 17-0-0 to 24-0-6 nd forces & MWFR 6-0 tall by 2-0-0 w	5, IS for	AutoRT	CAROLIN

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss to nucleons.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=169.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	10-1-4	19-8-0	0	25-0-0	30-4-0)	39-10-1	12	42-2-0	49-8-8		
	10-1-4	9-6-12	2	5-4-0	5-4-0	1	9-6-12	2	2-3-4	7-6-8	1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.71 BC 0.72 WB 0.60 Matrix-S		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 16-18 -0.46 14-16 0.10 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 3	2 18 lb	FT = 20%	
LUMBER- TOP CHORD 2x BOT CHORD 2x 17 WEBS 2x	4 SP No.2 6 SP DSS *Except* -19: 2x6 SP No.2 4 SP No.3			I	BRACING- TOP CHOR BOT CHOR WEBS	D Structu 2-0-0 c D Rigid c 1 Row	ural wood s oc purlins (seiling dire at midpt	sheathing dir (3-8-14 max.) ctly applied c 5-	ectly applied or 2): 6-8. or 10-0-0 oc brac -18, 7-18, 7-16, 9	2-2-0 oc ing. 9-16	purlins, except	
REACTIONS. A (Ib) - M M M	All bearings 0-3-8 except (jt=le ax Horz 2=178(LC 12) ax Uplift All uplift 100 lb or le ax Grav All reactions 250 lb 1)	ngth) 12=7-10-0 ss at joint(s) 13 or less at joint(s)). except 2=-217(L0) except 2=1885(C 12), 12=- LC 1), 12≕	158(LC 13) 1111(LC 1), 13	3=1030(LC 1),	13=1030(LC				
FORCES. (Ib) - N TOP CHORD 2 BOT CHORD 2 WEBS 3 7	Aax. Comp./Max. Ten All for 2-3=-3550/522, 3-5=-3287/512 3-9=-2342/472, 9-11=-2029/38 2-20=-431/3094, 18-20=-312/2 12-13=-290/1946 3-20=-367/223, 5-20=-48/569, 7-16=-531/155, 8-16=-77/754,	ces 250 (lb) or le 2, 5-6=-2519/493 10, 11-12=-2266/ 2637, 16-18=-182 5-18=-706/262, 9-14=-585/118,	ess except when 8, 6-7=-2182/487, 407 2/2197, 14-16=-2 6-18=-85/832, 7- 11-14=-347/228	shown. 7-8=-2024 36/1994, 1 18=-261/16	-/469, 3-14=-290/194 68,	6,						
NOTES- 1) Unbalanced roo 2) Wind: ASCE 7- MWFRS (envelor Interior(1) 26-8- reactions showr 3) Provide adequa 4) This truss has b 5) * This truss has will fit between t 6) Provide mechar 12=158.	f live loads have been conside 10; Vult=130mph (3-second gu- ppe) gable end zone and C-C 6 to 30-4-0, Exterior(2) 30-4-0 1; Lumber DOL=1.60 plate gripted te drainage to prevent water pre- een designed for a 10.0 psf broken been designed for a live load the bottom chord and any other hical connection (by others) of	ered for this desi ist) Vasd=103m Exterior(2) -0-10 to 37-4-6, Interi b DOL=1.60 bonding. bottom chord live of 20.0psf on the r members, with truss to bearing	ign. ph; TCDL=6.0psf)-8 to 4-1-3, Interi or(1) 37-4-6 to 45 load nonconcurre e bottom chord in h BCDL = 10.0psf plate capable of	; BCDL=6. or(1) 4-1-3 -8-8 zone; all areas v withstandir	Opsf; h=30ft; C to 19-8-0, Ext C-C for memb y other live loa where a rectan ng 100 lb uplift	tat. II; Exp B; E erior(2) 19-8-(ers and forces ds. gle 3-6-0 tall b at joint(s) exc	nclosed; to 26-8-6 & MWFR y 2-0-0 wi ept (jt=lb)	, S for de		ATH	CAROZ SBOOK	2 Long

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-2-4	19-8-0	2	24-3-8	29-6-0	30-4 ₁ 0	3	89-9-12		50-0-0			
	10-2-4	9-5-12	· ·	4-7-8	5-2-8	0-10-0	ç	9-5-12	I	10-2-4			
Plate Offsets (X,	<u>Y) [17:0-3-0,0-3-12], [20:0-1-</u>	12,0-2-0]											
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- Plate Grip DOL Lumber DOL * Rep Stress Incr Code IRC2015/TPI	2-0-0 (1.15 T 1.15 E YES V 2014 M	SI. C 0.86 3C 0.91 VB 0.95 Matrix-S		DEFL. Vert(LL) Vert(CT) Horz(CT) Attic	in -0.65 -1.15 0.12 -0.61	(loc) 20-22 20-22 13 18-20	l/defl >536 >302 n/a 375	L/d 240 180 n/a 360	PLATES MT20 Weight: 356 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP No.2 2x6 SP No.2 *Except* 16-19,19-21: 2x6 SP DSS 2x4 SP No.3 *Except* 6-20,9-17,8-18: 2x4 SP No.2	sheathing dir 3-2-5 max.): ctly applied o 5 23, 24, 25	rectly applied, except : 6-9. or 10-0-0 oc bracing. 5-20, 10-17										
REACTIONS.	(lb/size) 2=1843/0-3-8, 18=612 Max Horz 2=170(LC 16) Max Uplift 2=-255(LC 12), 18=-22 Max Grav 2=2023(LC 26), 18=85	/0-3-8, 13=1740/0-3- 27(LC 13), 13=-100(L 07(LC 25), 13=1863(L	8 .C 12) .C 2)										
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	Max Grav 2=2023(LC 26), 18=897(LC 25), 13=1863(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-3971/480, 3-5=-3728/466, 5-6=-2829/431, 6-7=-2781/518, 7-8=-2779/516, 8-9=-2394/422, 9-10=-2702/441, 10-12=-3305/436, 12-13=-3555/456 SOT CHORD 2-22=-503/3480, 20-22=-317/2973, 18-20=-131/2434, 17-18=-127/2398, 15-17=-170/2697, 13-15=-288/3113												
NOTES- 1) Unbalanced r	7-23362/147, 9-17=-118/1010 18-25=-456/134, 8-25=-434/144 oof live loads have been consider	, 10-17=-675/280, 10 , 6-23=-117/360, 8-2 red for this design.	-15=-70/534 3=-132/568	l, 12-15=	=-387/227,								

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-1-8, Interior(1) 4-1-8 to 19-8-0, Exterior(2) 19-8-0 to 26-8-14, Interior(1) 26-8-14 to 30-4-0, Exterior(2) 30-4-0 to 37-4-14, Interior(1) 37-4-14 to 50-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Ceiling dead load (5.0 psf) on member(s). 23-24, 23-25
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 18-20

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 18, and 13. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u> </u>	8-9-4	17-0-0		25-0-0		29-4-4		33-0-0	-1	41-2-12	50-0-0	
	8-9-4	<u>8-2-12</u>	1	8-0-0	1	4-4-4	'	3-7-12	1	8-2-12	8-9-4	
Plate Olisets (X, Y)	[7:0-4-0,0-4-8], [8:0-4-6	,Eugej										
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.58	Vert(L	.L) ·	-0.20	17-19	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.57	Vert(C	CT) -	-0.34	17-19	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.02	17	n/a	n/a		
BCDL 10.0	Code IRC2015/	FPI2014	Matri	x-S							Weight: 332 lb	FT = 20%
BCDL 10.0 Code IRC2015/TPI2014 Matrix-S LUMBER- TOP CHORD 2x4 SP No.2 *Except* 7-8,6-7: 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-1-5 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 6-8. BOT CHORD 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 6-19, 7-17, 8-17 REACTIONS. (Ib/size) 2=955/0-3-8, 17=2655/0-3-8, 12=489/0-3-8 Max Horz 2=147(LC 16), Max Uplift 2=-154(LC 12), 17=-94(LC 12), 12=-143(LC 13), Max Grav 2=1010(LC 23), 17=2655(LC 1), 12=571(LC 24) WEBS I Row at midpt												oc purlins, except
FORCES. (lb) - Ma TOP CHORD 2- 9- BOT CHORD 2-2 WEBS 3-2 8-7	x. Comp./Max. Ten All fi }=-1671/259, 3-5=-1415/2 1=-461/201, 11-12=-718/2 21=-293/1427, 19-21=-135 21=-328/194, 5-21=-53/462 17=-1191/247, 8-16=-120/4	orces 250 (lb) or 45, 5-6=-735/211 230 /1002, 17-19=-3(2, 5-19=-602/230 497, 9-16=-649/2	less except , 6-7=-598/2)0/231, 16-1 , 7-19=-109 17, 9-14=-3	when shown. 230, 7-8=-6/96 17=-488/235, 1 /1081, 7-17=- ⁻ 3/543, 11-14=	7, 8-9=-11/5 2-14=-120/ 1492/340, -334/195	598, 577						
NOTES- 1) Unbalanced roof I 2) Wind: ASCE 7-10 MWFRS (envelop	ive loads have been consi ; Vult=130mph (3-second e) gable end zone and C-0	dered for this de gust) Vasd=103r C Exterior(2) -0-1	sign. nph; TCDL= 0-8 to 4-1-8	6.0psf; BCDL: 8, Interior(1) 4-	=6.0psf; h=3 1-8 to 17-0-	30ft; Ca 0, Exte	at. II; E erior(2	Exp B; E) 17-0-0	nclosed; to 24-0-1	14,		

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-1-8, Interior(1) 4-1-8 to 17-0-0, Exterior(2) 17-0-0 to 24-0-14, Interior(1) 24-0-14 to 33-0-0, Exterior(2) 33-0-0 to 40-0-14, Interior(1) 40-0-14 to 50-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 17, and 12. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-5-4 14-4-0		21-9-4	29-4-4	35-8-0	42-6-12	50-0-0	
	1	7-5-4	6-10-12	7-5-4	7-7-0	6-3-12	6-10-12	7-5-4
Plate Offsets (X	,Y)	[3:0-3-0,0-3-4], [5:	0-2-12,0-3-4], [8:0-3-0	,0-3-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip I Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.15 DL 1.15 Incr YES 2015/TPI2014	CSI. TC 0.77 BC 0.87 WB 0.90 Matrix-S	DEFL. in Vert(LL) -0.31 Vert(CT) -0.66 Horz(CT) 0.02	n (loc) l/defl l 2-16 >999 6 2-16 >527 2 9 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 304 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP 2x6 SP 2x4 SP (Ib/size Max H Max U Max U Max G	No.2 No.2 No.3 e) 2=1023/0-3-8 orz 2=126(LC 12) plift 2=-140(LC 12 rav 2=1058(LC 2)	, 13=2488/0-3-8, 9=58), 13=-206(LC 9), 9=-1 3), 13=2488(LC 1), 9=€	7/0-3-8 34(LC 13) 640(LC 24)	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing directly a (4-10-7 max.): 4-7. ctly applied or 6-0-(6-13, 7-	pplied or 3-6-1 oc purlins, except) oc bracing. 13
FORCES. (lb) TOP CHORD BOT CHORD WEBS	- Max. 2-3=- 8-9=- 2-16= 3-16= 7-13=	Comp./Max. Ten. 1644/327, 3-4=-11 719/246 255/1395, 15-16 522/307, 5-16=-9 1182/167, 7-12=	- All forces 250 (lb) or 45/200, 4-5=-935/232 =-69/463, 13-15=-814/ 96/706, 5-15=-969/232 0/631, 8-12=-544/307	less except when shown. 5-6=-449/160, 6-7=-16/815, 283, 9-12=-119/571 , 6-15=-233/1573, 6-13=-1499	5/341,			
NOTES-								

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-1-8, Interior(1) 4-1-8 to 14-4-0, Exterior(2) 14-4-0 to 21-4-14, Interior(1) 21-4-14 to 35-8-0, Exterior(2) 35-8-0 to 42-8-3, Interior(1) 42-8-3 to 50-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, and 9. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	6-1-4	11-8-0	-	20-5-4		29-4-4			38-4-0		43-10-12	5	0-0-0
	6-1-4	5-6-12	4 01 147 0	8-9-4	·	8-11-0	0.01		8-11-12	1	5-6-12	é	6-1-4
Plate Offsets (X,Y)	[7:0-3-0,E	:agej, [13:0-3-12,0	-4-8], [17:0-	<u>2-12,0-4-8],</u>	[17:0-0-0,0-2	-12], [18:0-1-12,0-	0-0]				-		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SP Pla Lui Re Co	ACING- 2 ate Grip DOL mber DOL p Stress Incr de IRC2015/TPI2	2-0-0 1.15 1.15 YES 014	CSI. TC BC WB Matri:	0.86 0.61 0.74 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.30 0.03	(loc) 2-18 2-18 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PL M	_ATES T20 eight: 296 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 7-9: BOT CHORD 2x6 WEBS 2x4	SP No.2 *Ex 2x4 SP No.1 SP No.2 SP No.3	cept*				BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structu 2-0-0 o Rigid c 1 Row	iral wood oc purlins eiling dire at midpt	sheathing di (4-3-6 max.) ctly applied	rectly app : 4-9. or 6-0-0 o 6-14	lied or 4-0-6 o	oc purlins, except
REACTIONS. (Ib/s Max Max Max	size) 2=103 (Horz 2=104 (Uplift 2=-12 (Grav 2=104	30/0-3-8, 14=2473 4(LC 12) 28(LC 12), 14=-285 49(LC 23), 14=247	/0-3-8, 11=5 5(LC 9), 11= 3(LC 1), 11	597/0-3-8 -134(LC 13) =635(LC 24))								
FORCES. (lb) - Ma TOP CHORD 2- 8-5 BOT CHORD 2- WEBS 3- 8-7	Max Oplint 2=-128(LC 12), 14=-285(LC 9), 11=-134(LC 13) Max Grav 2=1049(LC 23), 14=2473(LC 1), 11=635(LC 24) ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-1729/353, 3-4=-1324/235, 4-5=-1104/252, 5-6=-593/143, 6-8=-46/944, 8-9=-307/153, 9-10=-408/129, 10-11=-801/242 OT CHORD 2-18=-244/1485, 16-18=-152/1034, 13-14=-944/272, 11-13=-131/655 3-18=-244/252, 4-18=-11/366, 5-16=-745/193, 6-16=-66/940, 6-14=-1426/237, 8-14=-1176/272, 8-13=-213/1379, 9-13=-307/145, 10-13=-405/244												
NOTES- 1) Unbalanced roof I 2) Wind: ASCE 7-10 MWFRS (envelop	ive loads ha ; Vult=130m e) gable end	ve been considere ph (3-second gust) I zone and C-C Ex	d for this de Vasd=103r terior(2) -0-1	sign. nph; TCDL= 10-8 to 4-1-8	6.0psf; BCDL 3, Interior(1) 4	L=6.0psf; h=30ft; C I-1-8 to 11-8-0, Ex	Cat. II; I terior(2	Exp B; E) 11-8-0	inclosed; to 18-8-1	4,			

- Interior(1) 18-8-14 to 38-4-0, Exterior(2) 38-4-0 to 45-4-14, Interior(1) 45-4-14 to 50-10-8 zone; C-C for members and forces &
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 14, and 11. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	9-0-0	19-8-0		1	29-4-4	1	35-2-	2	41-0-0	50-0-0	
		9-0-0	10-8-0			9-8-4		5-9-1	4	5-9-14	9-0-0	
Plate Offset	s (X,Y)	[7:0-4-0,0-4-12], [8:0-4	4-6,Edge]									
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc Code IRC2015	2-0-0 - 1.15 1.15 r YES 5/TPI2014	CSI. TC BC WB Matrix-	0.89 0.55 1.00 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.25 0.06	(loc) 16-18 16-18 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 311 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	D 2x6 SP 1-4,8-1 D 2x6 SP 2x4 SP	No.2 *Except* 1: 2x4 SP No.2 No.2 No.3	<u> </u>		<u> </u>	BRACING- TOP CHOR BOT CHOR WEBS	D	Structu except 2-0-0 o Rigid c 1 Row	ral wood c purlins eiling dire at midpt	sheathing d (3-6-8 max. ectly applied	irectly applied or 3-11-5): 4-8. or 10-0-0 oc bracing. 6-18 6-14 8 14	oc purlins,
REACTION	S. (Ib/size Max He Max U Max G	e) 2=1102/0-3-8, 14 orz 2=81(LC 12) plift 2=-109(LC 12), 14 rav 2=1107(LC 23), 1	=2315/0-3-8, 10=68 4=-342(LC 9), 10=- 4=2315(LC 1), 10=	33/0-3-8 116(LC 13) 697(LC 24)				211000				
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1946/364, 3-4=-1695/277, 4-6=-1481/286, 6-7=-63/690, 7-8=-62/693, 8-9=-767/146, 9-10=-1037/234 BOT CHORD 2-18=-261/1683, 16-18=-203/1367, 14-16=-203/1367, 12-14=0/637, 10-12=-148/874 WEBS 4-18=0/415, 6-16=0/390, 6-14=-2213/353, 7-14=-709/311, 8-14=-1389/212, 8-12=0/484, 9-12=-257/189												
NOTES-		laada baya baan aan	aidarad far thia daa	·								

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 4-1-8, Interior(1) 4-1-8 to 9-0-0, Exterior(2) 9-0-0 to 16-0-14, Interior(1) 16-0-14 to 41-0-0, Exterior(2) 41-0-0 to 48-0-14, Interior(1) 48-0-14 to 50-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 14, and 10. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOAD CASE(S) Standard Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1582.A
					137749903
21437A	HG1	HALF HIP GIRDER	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.220 s Nov	/ 16 2018 MiTek Industries, Inc. Thu Jul 11 11:03:57 2019 Page 2
		ID:RUSz4LG	uFS2C1b0	DNZWBa	ZyX6cZ-gWbyEFPnrEwMOTcw8Z7altrWWgkb8iZDbTtXQ6yz9UG

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-14=-60, 2-15=-20

Concentrated Loads (lb)

Vert: 25=-27(F) 27=-58(F) 6=-73(F) 23=-27(F) 11=-73(F) 18=-27(F) 21=-27(F) 28=-63(F) 29=-73(F) 30=-73(F) 31=-73(F) 32=-73(F) 33=-73(F) 34=-73(F) 35=-73(F) 35=-27(F) 55=-27(F) 5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1582.A
					137749904
21437A	HG15	HIP GIRDER	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,			3.220 s Nov	v 16 2018 MiTek Industries, Inc. Thu Jul 11 11:04:02 2019 Page 2

ID:RUSz4LGuFS2C1bODNZWBaZyX6cZ-BTOrHyTwgnYfVEUux6jlSxYNJhQ7pzPyllbl5Jyz9UB

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-12=-60, 12-15=-60, 1-14=-20

Concentrated Loads (lb)

Vert: 26=-27(B) 2=-83(B) 29=-58(B) 5=-73(B) 25=-27(B) 7=-73(B) 23=-27(B) 20=-27(B) 10=-73(B) 13=-83(B) 16=-58(B) 19=-27(B) 22=-27(B) 32=-63(B) 33=-73(B) 34=-73(B) 35=-73(B) 35=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.39	Vert(LL) -0.03 2-4	4 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -0.06 2-4	4 >984 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3	3 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 18 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-10-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Leit. 284 SP NU.3

REACTIONS. (lb/size) 3=133/Mechanical, 2=255/0-3-8, 4=47/Mechanical Max Horz 2=144(LC 12) Max Uplift 3=-107(LC 12), 2=-11(LC 12) Max Grav 3=148(LC 19), 2=255(LC 1), 4=93(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-9-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=107.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

except

2-0-0 oc purlins: 3-4.

FORCES.	(Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.
NOTES-	

LUMBER-

WEDGE

Left: 2x4 SP No.3

REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

1) Unbalanced roof live loads have been considered for this design.

Max Uplift 4=-69(LC 12), 2=-21(LC 12) Max Grav 4=123(LC 1), 2=255(LC 1), 5=88(LC 3)

Max Horz 2=128(LC 12)

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-1-11, Exterior(2) 4-1-11 to 4-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Provide adequate drainage to prevent water ponding.

3) Floride adequate dialitage to prevent water boliding.

(lb/size) 4=123/Mechanical, 2=255/0-3-8, 5=57/Mechanical

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 4-10-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A Mi lek Affilia 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

818 Soundside Road Edenton, NC 27932

F		3-10-4	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.16 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 2-4 >999 240 Vert(CT) -0.02 2-4 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=101/Mechanical, 2=216/0-3-8, 4=36/Mechanical Max Horz 2=88(LC 12) Max Uplift 3=-65(LC 12), 2=-32(LC 12)

Max Grav 3=101(LC 1), 2=216(LC 1), 4=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 3-10-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			1-6-0		3-10-4		
Plate Offsets (X,Y)	[3:0-2-0,0-2-8]		100		2		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.18 BC 0.13 WB 0.00 Matrix-P	DEFL. i Vert(LL) -0.0' Vert(CT) -0.0' Horz(CT) 0.0'	n (loc) l/defl L/d 1 2-5 >999 240 2 2-5 >999 180 1 4 n/a n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	9 No.2 9 No.2			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied o	ectly applied or 3-10- or 10-0-0 oc bracing.	4 oc purlins,

REACTIONS. (Ib/size) 4=96/Mechanical, 2=216/0-3-8, 5=42/Mechanical Max Horz 2=44(LC 12) Max Uplift 4=-38(LC 9), 2=-36(LC 12)

Max Grav 4=96(LC 1), 2=216(LC 1), 5=67(LC 3)

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

H		1	0-8-0						
Plate Offsets (X,Y)	[2:0-2-10,0-1-8], [3:0-2-0,Edge], [4:0-2-0	,Edge], [5:0-2-10,0-1-8]	0-0-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.71 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.01	(loc) 6 6 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP REACTIONS. (lb/size Max H Max U	No.2 No.2 e) 2=384/8-9-6, 5=384/8-9-6 orz 2=-18(LC 17) plift 2=-39(LC 9), 5=-39(LC 8)		BRACING- TOP CHOR BOT CHOR	כ כ	Structu 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing dii (6-0-0 max.): ectly applied d	rectly applied or 6-0-0 3-4. or 10-0-0 oc bracing.	oc purlins, except
FORCES.(lb) - Max.TOP CHORD2-3=-BOT CHORD2-5=-	Comp./Max. Ten All forces 250 (lb) or 662/298, 3-4=-608/281, 4-5=-662/298 227/608	less except when shown.							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope)	loads have been considered for this de ult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) 0-4	sign. nph; TCDL=6.0psf; BCDL=6. ·11 to 6-10-15, Interior(1) 6-1	0psf; h=30ft; C 0-15 to 8-0-0, I	at. II; E Exterioi	xp B; E r(2) 8-0-	nclosed; 0 to 10-3	3-5		

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			10-8-0					_	
10-8-0									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL) -0.	01 4-6	>999	240	MT20	244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.	02 4-6	>999	180			
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.	00 4	n/a	n/a			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 33 lb	FT = 20%	
LUMBER-			BRACING.						

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 10-6-0 except (jt=length) 5=0-3-8, 5=0-3-8.

Max Horz 1=-44(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 1=-210(LC 1), 2=-218(LC 12), 4=-174(LC 13), 5=-146(LC 1), 5=-146(LC 1) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 2=457(LC 1), 4=406(LC 1), 6=300(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-11 to 3-4-11, Interior(1) 3-4-11 to 5-4-0, Exterior(2) 5-4-0 to 8-4-0, Interior(1) 8-4-0 to 10-5-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 210 lb uplift at joint 1, 218 lb uplift at joint 2, 174 lb uplift at joint 4 and 146 lb uplift at joint 5.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

C MANDER 1 Vernanning SEAL 5844 101 minim July 11,2019

	10-1-4 19-6	-0 25-0-0	30-4-0	36-8-8	42-0-4 49-8-12	2
Plate Offsets (X,Y)	[6:0-7-0,0-2-8], [8:0-6-8,0-2-4], [16:0-	2-12,0-2-8], [18:0-2-0,0-2-0]	5-4-0	0-4-0	J-J-12 7-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.87 BC 0.71 WB 0.90 Matrix-S	DEFL. in Vert(LL) -0.57 Vert(CT) -1.00 Horz(CT) 0.09 Attic -0.30	(loc) l/defl L/d 18-20 >889 240 18-20 >502 180 12 n/a n/a 16-18 411 360	PLATES MT20 Weight: 352 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF 16-18: WEBS 2x4 SF 6-18,8-	P No.2 P DSS *Except* 2x6 SP No.2 P No.3 *Except* -16: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathii 2-0-0 oc purlins (2-9-9 n Rigid ceiling directly app 1 Row at midpt 1 Brace at Jt(s): 21, 22,	ng directly applied, except nax.): 6-8. olied or 9-7-6 oc bracing. 5-18 23	
REACTIONS. (Ib/size Max H Max U Max G	e) 2=1894/0-3-8, 13=1297/0-3-8, 12 forz 2=180(LC 12) Jplift 2=-219(LC 12), 13=-338(LC 13), Grav 2=2034(LC 2), 13=1659(LC 27),	=935/Mechanical I2=-181(LC 12) 2=1027(LC 26)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- 8-9=- BOT CHORD 2-20- 12-13 2-20- WEBS 3-20- 7-21- 9-14-	Comp./Max. Ten All forces 250 (lb) -3997/461, 3-5=-3758/451, 5-6=-2852 -2774/415, 9-11=-2485/359, 11-12=-2 =-442/3504, 18-20=-257/3012, 16-18= 3=-325/1755 =-358/221, 5-20=-69/677, 5-18=-835/ =-337/162, 8-21=-154/587, 16-23=-51 =-722/181, 11-14=-151/1066, 11-13=-	or less except when shown. 409, 6-7=-2830/512, 7-8=-26 107/435 -80/2448, 14-16=-130/2161, 85, 18-22=-27/859, 6-22=-16 715, 8-23=-39/735, 9-16=-12 408/410, 6-21=-162/413	330/512, 13-14=-325/1755, 5/888, 2/425,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 26-8-6 to forces & MWFRS fo 3) Provide adequate di 4) This truss has been 5) * This truss has been will fit between the b 6) Ceiling dead load (5 7) Bottom chord live lo 8) Refer to girder(s) for 9) Provide mechanical 10) One RTTA USP co uplift only and does 11) Graphical purlin re 12) ATTIC SPACE SH	e loads have been considered for this /ult=130mph (3-second gust) Vasd=11 gable end zone and C-C Exterior(2) - 30-4-0, Exterior(2) 30-4-0 to 37-4-6, I or reactions shown; Lumber DOL=1.60 and esigned for a 10.0 psf bottom chord en designed for a 10.0 psf bottom chord en designed for a live load of 20.0psf c bottom chord and any other members, 5.0 psf) on member(s). 21-22, 21-23 ad (40.0 psf) and additional bottom ch r truss to truss connections. I connection (by others) of truss to bea connectors recommended to connect tr s not consider lateral forces. I COWN IS DESIGNED AS UNINHABIT.	design. 3mph; TCDL=6.0psf; BCDL= 0-10-8 to 4-1-3, Interior(1) 4- terior(1) 37-4-6 to 49-8-0 zor plate grip DOL=1.60 ive load nonconcurrent with n the bottom chord in all area with BCDL = 10.0psf. ord dead load (0.0 psf) applied ing plate capable of withstar ss to bearing walls due to UI or the orientation of the purlin BLE.	=6.0psf; h=30ft; Cat. II; E 1-3 to 19-8-0, Exterior(2) ne; porch right exposed;(any other live loads. as where a rectangle 3-6- ed only to room. 16-18 nding 181 lb uplift at joint PLIFT at jt(s) 2 and 13. T a along the top and/or bot	xp B; Enclosed; 19-8-0 to 26-8-6, C-C for members and 0 tall by 2-0-0 wide 12. 'his connection is for tom chord.	AND	SEAL 45844 W JOHNUUMUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	I	10-1-4	19-8-	0	24-7-0	29-6-0	30-4-0	3	9-10-12		50-0-0	
Plate Offsets ()	· x y) I	10-1-4 6-0-7-0 0-2-81 [9-0-3-8 0	9-6-1 -2-41 [19:0-2-4	2 0-2-01	4-11-0	4-11-0	0-10-0		9-6-12		10-1-4	<u> </u>
	Λ, Τ)	0.0-7-0,0-2-0], [9.0-3-0,0	-2-4], [13.0-2-4,	0-2-0]								
LOADING (pst	f)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	0	Plate Grip DOL	1.15	TC (0.85	Vert(LL)	-0.54	19-21	>655	240	MT20	244/190
TCDL 10.0	0	Lumber DOL	1.15	BC (0.58	Vert(CT)	-0.98	19-21	>358	180		
BCLL 0.	0 *	Rep Stress Incr	YES	WB (0.81	Horz(CT) 0.10	13	n/a	n/a	M	FT 000/
BCDL 10.0	0	Code IRC2015/TF	12014	Matrix-	5	Attic	-0.25	17-19	466	360	Weight: 356 lb	FT = 20%
LUMBER-						BRACIN	G-					
TOP CHORD	2x4 SP	No.2 *Except*				TOP CH	- ORD	Structu	iral wood	sheathing of	directly applied, except	
	11-13:2	2x4 SP No.1						2-0-0 c	c purlins	(3-0-12 ma	x.): 6-9.	
BOT CHORD	2x6 SP	DSS *Except*				BOT CH	ORD	Rigid c	eiling dire	ctly applied	d or 10-0-0 oc bracing.	
	17-19: 2	2x6 SP No.2				WEBS		1 Row	at midpt		5-19, 10-16	
WEBS	2x4 SP	No.3 *Except*				JOINTS		1 Brac	e at Jt(s):	22, 23, 24		
	6-19,9-	16,8-17: 2x4 SP No.2										
REACTIONS	(lb/cizo) 2-1960/0 2 9 17-55	6/0 2 9 12-170	0/0 2 0								
REACTIONS.	Max Ho	2 = 1809/0-3-8, 17=33	0/0-3-0, 13=170	0/0-3-0								
	Max Ur	olift 2=-254(LC 12), 17=-2	218(LC 13), 13=	-95(LC 12)								
	Max G	av 2=2027(LC 26), 17=8	34(LC 25), 13=	1831(LC 2)								
			- (/ / -									
FORCES. (lb) - Max. (Comp./Max. Ten All for	ces 250 (lb) or l	ess except w	hen shown.							
TOP CHORD	2-3=-3	3981/483, 3-5=-3743/473	, 5-6=-2836/437	′, 6-7=-2757/	517, 7-8=-27	57/517,						
	8-9=-2	2406/431, 9-10=-2694/44	4, 10-12=-3355	/459, 12-13=	-3604/486							
BOT CHORD	2-21=	-507/3489, 19-21=-328/2	999, 17-19=-13	3/2433, 16-1	7=-130/2405,	14-16=-210/2	2740,					
	13-14	I=-351/3160	E 40 000/074	10.00 01/0	00 0 00 50	010						
WEB5	3-21=	-307/221, 5-21=-30/000, 210/144 8 22- 110/516	5 - 19 = -820/274	19-23=-01/8	88, 0-23=-52/ 2/272 10 11-	918,						
	12_1/	-310/144, 0-22=-119/310	5 17-24383/1	24 8-2436	2/2/2, 10-14= 30/137	-01/337,						
	12-14		5, 17-24=-303/1	24, 0-24=-30	00/134							
NOTES-												
1) Unbalanced	roof live	loads have been conside	ered for this des	ign.								ATTURE.
2) Wind: ASCE	E 7-10; V	ult=130mph (3-second gu	ust) Vasd=103m	ph; TCDL=6.	0psf; BCDL=	6.0psf; h=30f	; Cat. II; I	Exp B; E	nclosed;		11111	CAP
MWFRS (en	velope)	gable end zone and C-C	Exterior(2) -0-10	0-8 to 4-1-8, I	nterior(1) 4-1	-8 to 19-8-0,	Exterior(2	2) 19-8-0	to 26-8-1	14,	0 11 211	
Interior(1) 26	6-8-14 to	30-4-0, Exterior(2) 30-4-	0 to 37-4-14, Int	terior(1) 37-4	-14 to 49-10-4	4 zone;C-C fo	r membe	rs and fo	orces &		N.O	Essid: N'
MWFRS for	reaction	s shown; Lumber DOL=1	.60 plate grip D	OL=1.60							anter a	Letin
3) Provide ade	quate dra	ainage to prevent water p	onding.									F 41 =
 4) This truss has a first trusp of the second se	as been (designed for a 10.0 pst be	of 20 Oper on th	load noncon	current with a	iny other live	loads.			ida		OFAL SE
will fit betwee	nas Deer	ottom chord and any othe	or members with		Opef	s where a rec	angle 3-0	5-0 tali D	y 2-0-0 w	lue		SEAL
6) Ceiling dead	lload (5	() nsf) on member(s) 22-	23 22-24	10000 - 10	.0031.						E 1 1	45844
7) Bottom chor	d live los	d (40 0 psf) and addition	al bottom chord	dead load (0	0 nsf) applie	d only to room	n 17-19				5 1	1 2
8) One RT7A L	JSP conr	nectors recommended to	connect truss to	bearing wal	Is due to UPL	IFT at jt(s) 2.	17, and 1	13. This	connectio	on is		1.3
for uplift only	y and doe	es not consider lateral for	ces.	3.10			,			-	E. PA. SA	Conception 2

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

5 July 11 2 \mathcal{C}

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		10-1-4	19-8-0)	24-7-0	29-6-0	30-4-0	39	9-10-12	I	50-0-0	1
	1	10-1-4	9-6-12	2	4-11-0	4-11-0	0-10-0	ç	9-6-12	1	10-1-4	
Plate Offsets (X	(,Y) [6	6:0-7-0,0-2-8], [9:0-3-8,0-	-2-4], [20:0-2-4,0)-2-0]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- TOP CHORD BOT CHORD BOT CHORD	2x4 SP I 2x6 SP I 18-20: 2	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.85 0.58 0.85 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Attic BRACING TOP CHO BOT CHO	in -0.54 -0.99 0.10 -0.50 G- DRD	(loc) 20-22 20-22 13 18-20 Structu 2-0-0 o Rigid c	I/defl >647 >354 n/a 457 ral wood s c purlins (eiling dire	L/d 240 180 n/a 360 sheathing dii (3-1-8 max.): ctlv applied	PLATES MT20 Weight: 358 lb rectly applied, except : 6-9. or 10-0-0 oc bracing.	GRIP 244/190 FT = 20%
WEBS	2x4 SP I	No.3 *Except*				WEBS		1 Row	at midpt	5	5-20, 10-17	
REACTIONS. FORCES. (Ib) TOP CHORD BOT CHORD WEBS	6-20,9-1 (lb/size) Max Ho Max Up Max Gra- - Max. C 2-3=-3 8-9=-2 2-22=- 13-15: 3-22=- 6-23=- 12-15=	7,8-18: 2x4 SP No.2 2=1862/0-3-8, 18=574 rz 2=172(LC 12) lift 2=-253(LC 12), 18=-2 av 2=2018(LC 26), 18=8 comp./Max. Ten All ford 962/484, 3-5=-3724/474, 381/431, 9-10=-2667/444 498/3472, 20-22=-319/29 =-295/3123 357/221, 5-22=-55/668, 4 122/285, 8-23=-110/487, 376/224, 18-25=-385/12	4/0-3-8, 13=175 15(LC 13), 13=- 46(LC 25), 13=1 ces 250 (lb) or le , 5-6=-2815/437 5, 10-12=-3321/ 981, 18-20=-124 5-20=-822/274, , 9-17=-108/979 23, 8-25=-363/1	9/0-3-8 99(LC 12) 1870(LC 2) 285 except 6-7=-2700 445, 12-13 1/2411, 17- 20-24=-61/ 33, 7-23=-	when shown. 5/509, 7-8=-27 3=-3567/463 -18=-120/2380 /885, 6-24=-52 91/273, 10-15: 313/144	JOINTS 705/509, 0, 15-17=-180/2 2/912, =-58/533,	2714,	1 Brace	∍ at Jt(s): ∶	23, 24, 25		
NOTES- 1) Unbalanced 2) Wind: ASCE MWFRS (env Interior(1) 26 MWFRS for r 3) Provide adec 4) This truss ha 5) * This truss ha	roof live I 7-10; Vu velope) g S-8-14 to 3 reactions quate dra us been d	oads have been conside It=130mph (3-second gu able end zone and C-C f 30-4-0, Exterior(2) 30-4-(shown; Lumber DOL=1. inage to prevent water pr esigned for a 10.0 ps foc designed for a 10.0 ps foc	red for this designs st) Vasd=103mp Exterior(2) -0-10 D to 37-4-14, Intr 60 plate grip DC onding. ottom chord live	gn. bh; TCDL= -8 to 4-1-8 erior(1) 37- DL=1.60 load noncc	6.0psf; BCDL= ;, Interior(1) 4- -4-14 to 50-10- poncurrent with	=6.0psf; h=30ft 1-8 to 19-8-0, E -8 zone;C-C fo any other live 1	; Cat. II; E Exterior(2 r member oads.	Exp B; E) 19-8-0 rs and fc	nclosed; to 26-8-1 prces &	4, do	ANNORTH AND ROL	CAROLINI Egslowinkar

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Ceiling dead load (5.0 psf) on member(s). 23-24, 23-25
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 18-20

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 18, and 13. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-265/83

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-1-0, Exterior(2) 5-1-0 to 8-1-0, Interior(1)
- 8-1-0 to 10-3-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (Ib/size) 1=162/8-4-10, 3=162/8-4-10, 4=276/8-4-10 Max Horz 1=-62(LC 8) Max Uplift 1=-36(LC 12), 3=-44(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-2-11, Exterior(2) 4-2-11 to 7-2-11, Interior(1) 7-2-11 to 7-11-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>		5-5-0 5-5-0		<u>5-5-</u> 6 0-0-6
Plate Offsets (X,Y)	2:0-2-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.09 BC 0.25 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORD	Structural wood sheathing dire	ctly applied or 5-5-6 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=179/5-4-10, 3=179/5-4-10 Max Horz 1=-37(LC 8) Max Uplift 1=-19(LC 12), 3=-19(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 🥢

2x4 📎

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-5-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-5-6 0-0-6 2-5-0 2-5-0 Plate Offsets (X,Y)--[2:0-2-0,Edge] SPACING-DEFL. PLATES GRIP LOADING (psf) 2-0-0 CSI. in l/defl L/d (loc) Plate Grip DOL TCLL 20.0 1.15 тс 0.01 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2015/TPI2014 FT = 20% BCDL 10.0 Matrix-P Weight: 6 lb BRACING-LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (lb/size) 1=59/2-4-10, 3=59/2-4-10 Max Horz 1=-12(LC 8) Max Uplift 1=-6(LC 12), 3=-6(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

