

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21572-21572A

23 MASON POINTE - ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37903319 thru I37903355

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

July 24,2019

Johnson, Andrew

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903319 21572-21572A ΑE Common Supported Gable Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:20:54 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-q7TjIXC5T86PYCj3ArSAo54LRvg0LufFLGLEHryv7j7 -0-10-8 0-10-8 14-10-8 7-0-0 7-0-0 0-10-8

3x6 =

7-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6 8.00 12 10 11 3x4 =3x7 || 3x4 = 17 16 15 14 13 12 3x7 ||

14-0-0

Plate Off	sets (X,Y)	[2:0-0-15,0-4-5], [2:0-0-0,0-0	0-12], [6:0-3-	0,Eage], [10	0:Eage,0-0-12	2], [10:0-0-15,0-4-	5]					
LOADIN	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	10	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	10	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	014	Matri	x-S						Weight: 74 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. All bearings 14-0-0.

Max Horz 2=130(LC 11) (lb) -

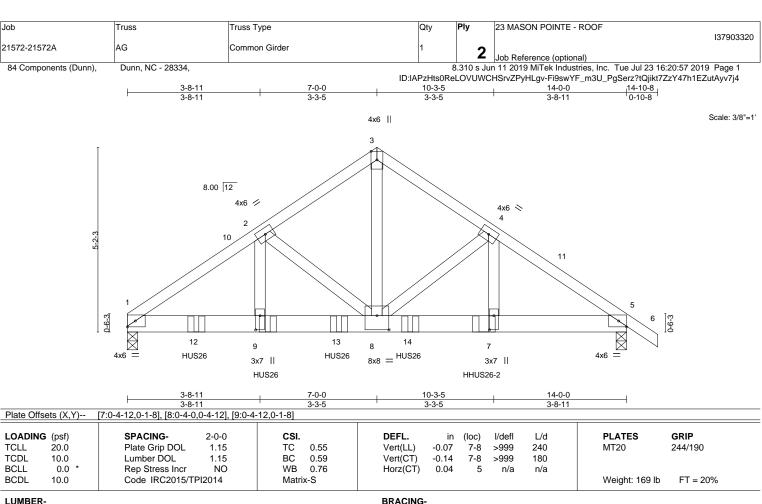
Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 13, 14, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 10, 12, 13, 14, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 7-0-0, Corner(3) 7-0-0 to 10-0-0, Exterior(2) 10-0-0 to 14-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) n/a

Scale = 1:34.0



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x6 SP DSS WEBS 2x4 SP No.3 *Except*

3-8: 2x4 SP No.2

REACTIONS. (lb/size) 1=6015/0-3-8, 5=5018/0-3-8

Max Horz 1=-126(LC 8)

Max Uplift 1=-751(LC 12), 5=-1018(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-8591/1147, 2-3=-5852/981, 3-4=-5849/973, 4-5=-8070/1643 TOP CHORD **BOT CHORD** $1-9 = -916/6922, \ 8-9 = -916/6922, \ 7-8 = -1268/6476, \ 5-7 = -1268/6476$

WFBS 3-8=-1000/6206, 4-8=-2091/794, 4-7=-828/2598, 2-8=-2660/277, 2-9=-202/3237

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-0-0, Exterior(2) 7-0-0 to 10-3-6, Interior(1) 10-3-6 to 14-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 5. This connection is for uplift only and does not consider lateral forces.
- 8) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 7-11-4 to connect truss(es) to back face of bottom chord.
- 9) Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 6-10d Truss) or equivalent at 10-0-0 from the left end to connect truss(es) to back face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Structural wood sheathing directly applied or 3-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

July 24,2019

Continued on page 2

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply 23 MASON POINTE - ROOF 137903320 AG 21572-21572A Common Girder **Z** Job Reference (optional) 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:20:58 2019 Page 2

84 Components (Dunn),

Dunn, NC - 28334,

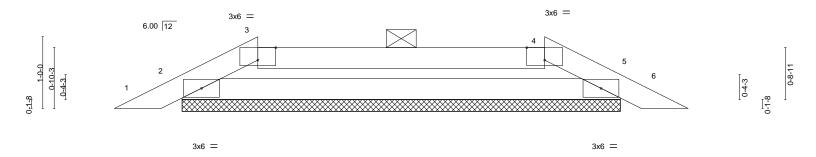
ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-jujE8uGcXNcr1q1rPhW6zxFvdXvCHXNqGuJRQdyv7j3

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-60, 1-5=-20


Concentrated Loads (lb)

Vert: 7=-2520(B) 9=-1837(B) 12=-1837(B) 13=-1837(B) 14=-1843(B)

Job Truss Truss Type 23 MASON POINTE - ROOF 137903321 C1 21572-21572A Piggyback Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:20:58 2019 Page 1 Dunn, NC - 28334, 84 Components (Dunn), ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-jujE8uGcXNcr1q1rPhW6zxF_cXz_HiGqGuJRQdyv7j3 2-0-0 4-0-0 2-0-0

Scale: 3/4"=1'

⊢					8-0-0						\dashv
N-1- Off1- (V/)/)	0.0.0.0.5.11.[4.0.0.0.1	T.J 1			8-0-0						
Plate Offsets (X,Y) [3	3:0-3-0,Edge], [4:0-3-0,I	=agej									
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	0.00	6	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	0.01	6	n/r	90		
CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	k-R						Weight: 22 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2

REACTIONS. 2=282/6-1-6, 5=282/6-1-6 (lb/size) Max Horz 2=13(LC 12) Max Uplift 2=-31(LC 9), 5=-31(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-476/265, 3-4=-439/249, 4-5=-476/265 TOP CHORD

BOT CHORD 2-5=-207/439

NOTES-

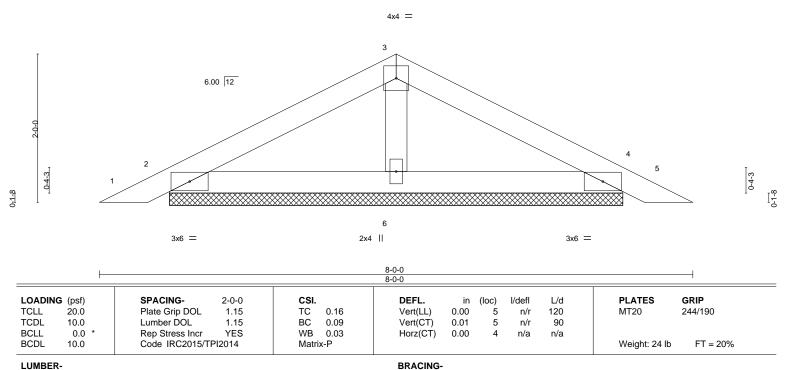
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) n/a
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903322 C2 21572-21572A Piggyback Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:00 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-fHq_ZaHs3_tZG7ADX5Za2MKLJKiSlcH7jBoYUVyv7j1 4-0-0 4-0-0

Scale = 1:15.5

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SP No.3 **OTHERS**

REACTIONS. 2=164/6-1-6, 4=164/6-1-6, 6=234/6-1-6 (lb/size)

Max Horz 2=31(LC 12)

Max Uplift 2=-44(LC 12), 4=-50(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

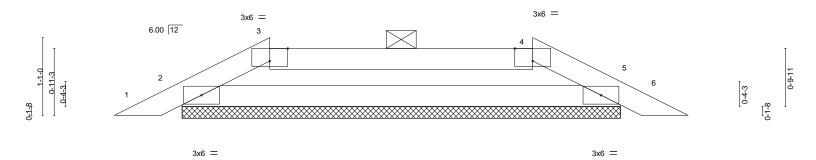
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type 23 MASON POINTE - ROOF 137903323 21572-21572A C3 Piggyback Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:02 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-bgylzGJ7bb7HWRKceWb27nQgF8K0DWFQBVHfZOyv7j? 2-2-0 2-2-0 5-10-0 8-0-0 3-8-0 2-2-0

Scale: 3/4"=1'

						8-0-0						
						8-0-0						ı
Plate Offs	sets (X,Y)	[3:0-3-0,Edge], [4:0-3-0,E	Edge]									
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	0.00	6	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	0.01	6	n/r	90		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	ĸ-R						Weight: 22 lb	FT = 20%
											_	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 2=282/6-1-6, 5=282/6-1-6 (lb/size)

Max Horz 2=-14(LC 13)

Max Uplift 2=-28(LC 9), 5=-28(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-441/249, 3-4=-401/234, 4-5=-441/249

BOT CHORD 2-5=-187/401

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) n/a
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

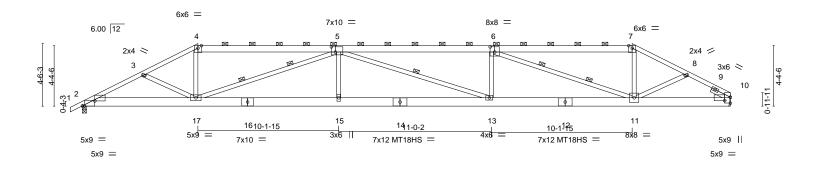
MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903324 21572-21572A Н1 Hip Job Reference (optional) 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:03 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-3sW7BcJIMvF87bvoCE6Hg_ygFYXHym5ZP90C5qyv7j_ 43-6-12 31-9-2 39-8-0 46-9-0

7-9-2


7-10-14

3-10-12

5-6-1

Scale = 1:83.1

3-2-4

		8-4-0	18-5-1	5	24-0-0	31-9-2		-1	39-8-0	46-9-0)
	1	8-4-0	10-1-1	5	5-6-1	7-9-2		'	7-10-14	7-1-0	<u> </u>
Plate Offsets	s (X,Y)	[2:0-1-11,Edge], [2:0	-10-11,0-4-4], [5:0-3	3-8,0-4-8], [6:0	-4-0,0-4-8], [10:0-5-	0,0-3-0]					
LOADING ((psf)	SPACING-	2-0-0	CSI.	Di	FL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DC	L 1.15	TC 0	.94 Ve	rt(LL) -0.41	13-15	>999	240	MT20	244/190
TCDL 1	10.0	Lumber DOL	1.15	BC 0	.92 Ve	ert(CT) -0.85	13-15	>657	180	MT18HS	244/190
BCLL	0.0 *	Rep Stress In	cr YES	WB 0	.86 Ho	orz(CT) 0.16	10	n/a	n/a		
BCDL 1	10.0	Code IRC20	15/TPI2014	Matrix-N	IS					Weight: 328 lb	FT = 20%

LUMBER-**BRACING-**

18-5-15

10-1-15

2x6 SP No.2 *Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied or 1-9-15 oc purlins,

1-4,7-10: 2x4 SP No.2

BOT CHORD 2x8 SP No.2 2-0-0 oc purlins (2-2-0 max.): 4-7.

2x4 SP No.3 *Except* **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc bracing. **WEBS** 5-17,6-11: 2x4 SP DSS **WEBS** 5-13 1 Row at midpt

Right 2x4 SP No.3 -H 1-6-0 **SLIDER** 2 Rows at 1/3 pts 5-17, 6-11

REACTIONS. (lb/size) 10=1863/Mechanical, 2=1926/0-3-8

Max Horz 2=96(LC 12)

4-5-4

3-10-12

Max Uplift 10=-221(LC 8), 2=-219(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3794/820, 3-4=-3624/757, 4-5=-3201/711, 5-6=-5432/1157, 6-7=-2806/631,

7-8=-3162/664, 8-10=-3114/684

BOT CHORD 2-17=-695/3352, 15-17=-1052/5573, 13-15=-1052/5573, 11-13=-1022/5414,

10-11=-550/2671

WEBS 4-17=-147/1193, 5-15=0/420, 5-17=-2615/528, 6-13=0/483, 6-11=-2847/575,

7-11=-101/962, 8-11=-62/319

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=221.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Qua
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903325 21572-21572A H2 Hip Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:09 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-u0tORfOWxl?HrWMyYUDhvFCkNybHMWISo5TWHUyv7iu

29-4-0

10-8-0

46-9-0

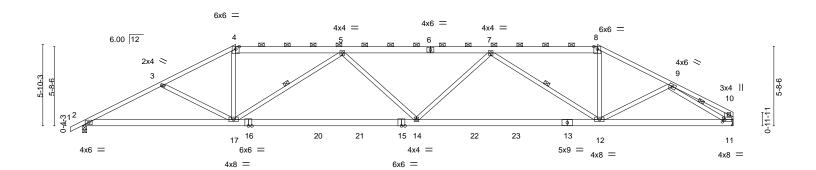
4-6-4

42-2-12

5-2-12

Structural wood sheathing directly applied or 2-7-11 oc purlins,

5-17, 7-12, 9-11


except end verticals, and 2-0-0 oc purlins (2-8-12 max.): 4-8.

Rigid ceiling directly applied or 8-2-15 oc bracing.

1 Row at midpt

7-8-0

Scale = 1:82.8

5-9-4 11-0-0 5-9-4 5-2-12	24-0-0 13-0-0	37-0-0 13-0-0	46-9-0 9-9-0
Plate Offsets (X,Y) [11:0-2-0,0-2-0]	10 0 0	10 0 0	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014	BC 0.88 Ver	FL. in (loc) I/defl L/d tt(LL) -0.29 14-17 >999 240 tt(CT) -0.62 14-17 >900 180 rz(CT) 0.14 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 295 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

-0₇10₇8 0-10-8

5-9-4

5-2-12

7-8-0

TOP CHORD 2x4 SP No.2 *Except*

4-6,6-8: 2x6 SP No.2 **BOT CHORD** 2x6 SP DSS *Except*

15-16: 2x6 SP No.2 **WEBS** 2x4 SP No.3 *Except* 10-11: 2x8 SP No.2

REACTIONS. (lb/size) 2=1911/0-3-8, 11=1857/Mechanical

Max Horz 2=122(LC 12)

Max Uplift 2=-170(LC 9), 11=-174(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2\text{-}3\text{=-}3697/838,\ 3\text{-}4\text{=-}3383/726,\ 4\text{-}5\text{=-}2949/687,\ 5\text{-}7\text{=-}4089/872,\ 7\text{-}8\text{=-}2629/622,\ 3\text{-}383/726,\ 3\text$

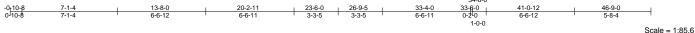
8-9=-3017/652, 9-10=-458/101, 10-11=-302/93

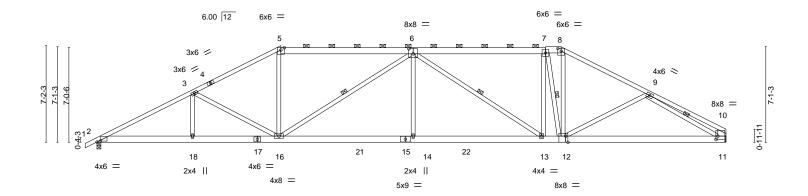
2-17=-706/3275, 14-17=-776/4019, 12-14=-749/3886, 11-12=-541/2521 **BOT CHORD WEBS** 3-17=-341/240, 4-17=-164/1169, 5-17=-1391/376, 5-14=0/313, 7-14=0/457,

7-12=-1591/390, 8-12=-130/996, 9-12=-37/310, 9-11=-2609/604

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=174.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	7-1-4 7-1-4	13-8-0 6-6-12 -4-0,0-4-8], [8:0-3-0,0	23-6-0 9-10-0		33-4-0 9-10-0 O], [12:0-2-0,Ec	34-6-0 33-6-0 0-2 ¹ 0 1-0-0	41-0-12 6-6-12	46-9-0 5-8-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOI Lumber DOL Rep Stress Inc Code IRC2015	1.15 or YES	CSI. TC 0.84 BC 0.95 WB 0.73 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 14-16 -0.50 14-16 0.16 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 319	GRIP 244/190 lb FT = 20%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied, except end verticals, and

5-6,7-8,6-7: 2x6 SP No.2 2-0-0 oc purlins (3-7-5 max.): 5-8.

BOT CHORD 2x6 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc bracing. 2x4 SP No.3 *Except* **WEBS** 6-16, 6-13, 9-11, 7-12 **WEBS** 1 Row at midpt 10-11: 2x8 SP No.2

REACTIONS. (lb/size) 2=1911/0-3-8, 11=1857/Mechanical

Max Horz 2=144(LC 12)

Max Uplift 2=-157(LC 12), 11=-123(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3719/822, 3-5=-3113/729, 5-6=-2699/699, 6-7=-2709/701, 7-8=-2469/637,

8-9=-2902/667. 9-10=-569/86. 10-11=-375/102

BOT CHORD 2-18=-674/3261, 16-18=-674/3261, 14-16=-590/3391, 13-14=-590/3391, 12-13=-449/2697,

11-12=-577/2598

WEBS 3-18=0/287, 3-16=-625/257, 5-16=-114/951, 6-16=-1031/233, 6-14=0/489, 6-13=-995/186, 9-11=-2546/669, 8-12=-286/1346, 7-13=-78/610, 7-12=-1212/351

NOTES-

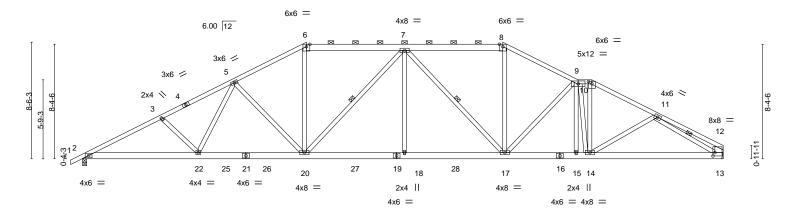
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=123.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7-2-0


30-8-0

7-2-0

Scale = 1:84.1

46-9-0

4-11-4

	8-5-4							46-9-0	
	0-0-4	7-10-12	7-2-0	l	7-2-0	5-6-0	1'-0-0	9-7-0	<u> </u>
Plate Offsets (X,Y) [10:0-	-3-0,0-2-0], [12:0-3-1	0,0-1-13], [12:0-1-	12,0-3-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES	CSI. TC 0.69 BC 0.87 WB 0.62 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.21 18-20 -0.42 18-20 0.14 13	l/defl L/d >999 240 >999 180 n/a n/d)	PLATES MT20 Weight: 338 lb	GRIP 244/190 FT = 20%

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 *Except*

6-8: 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 *Except*

5-9-11

5-3-3

5-3-3

12-13: 2x8 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-6-0 oc purlins, except end verticals, and 2-0-0 oc purlins (3-5-9 max.): 6-8, 9-10.

37-2-0 1-0-0

36-2-0

5-6-0

41-9-12

4-7-12

BOT CHORD WEBS

Rigid ceiling directly applied or 8-7-1 oc bracing. 7-20, 7-17, 11-13 1 Row at midpt

REACTIONS. (lb/size) 2=1911/0-3-8, 13=1857/Mechanical

Max Horz 2=167(LC 12)

Max Uplift 2=-184(LC 12), 13=-160(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3723/861, 3-5=-3510/827, 5-6=-2824/732, 6-7=-2463/692, 7-8=-2429/686,

8-9=-2775/717, 9-10=-2619/661, 10-11=-2963/692, 11-12=-503/102, 12-13=-339/104

 $2-22 = -725/3295, \ 20-22 = -555/2870, \ 18-20 = -451/2775, \ 17-18 = -451/2775, \ 15-17 = -511/2753, \ 18-20 = -451/2775, \ 18-20 =$

14-15=-510/2757, 13-14=-567/2534

WEBS 3-22=-314/203, 5-22=-65/500, 5-20=-583/250, 6-20=-168/955, 7-20=-618/156,

7-18=0/378, 7-17=-708/148, 8-17=-142/888, 9-17=-458/187, 10-14=-235/1104,

11-13=-2566/639, 9-14=-884/306

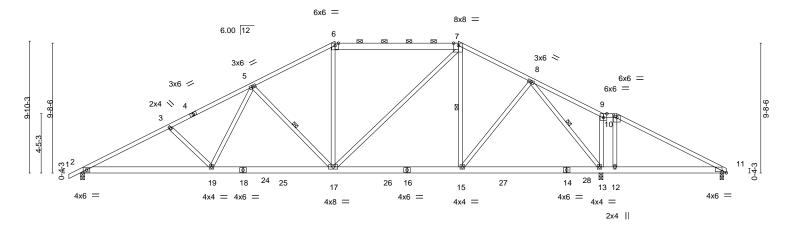
NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=160
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-IbZX4hQOEgNsiz5XEdmPXuqFyAeDZsHuU3iBupyv7ir 48-0-0 7-11-8 19-0-0 6-1-13 28-2-8 4-8-8 33-7-8 4-6-0

Scale = 1:86.0

Plate Offsets (X,Y)	late Offsets (X,Y) [7:0-4-6,Edge], [9:0-3-0,Edge], [10:0-3-0,0-2-0], [11:0-3-12,0-1-1]												
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.75	DEFL. in (loc) I/defl L/d Vert(LL) -0.14 17-19 >999 240	PLATES GRIP MT20 244/190									
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.80 WB 0.73	Vert(CT) -0.28 19-21 >999 180 Horz(CT) 0.07 11 n/a n/a	W1120 24-4/130									
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS		Weight: 311 lb FT = 20%									

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

6-7: 2x6 SP No.2 2x6 SP No.2

BOT CHORD 2x4 SP No.3 *Except* **WEBS**

7-17: 2x4 SP No.2

REACTIONS. (lb/size) 2=1581/0-3-8, 13=2070/0-3-8, 11=258/0-3-0

Max Horz 2=172(LC 12)

Max Uplift 2=-199(LC 12), 13=-122(LC 13), 11=-101(LC 13) Max Grav 2=1581(LC 1), 13=2143(LC 2), 11=313(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2920/719, 3-5=-2668/679, 5-6=-1859/566, 6-7=-1595/554, 7-8=-1457/478,

8-9=-67/414, 9-10=-3/319, 10-11=-115/381

BOT CHORD 2-19=-554/2571, 17-19=-353/2068, 15-17=-70/1259, 13-15=-114/934, 12-13=-319/76, 11-12=-311/72

3-19=-372/239, 5-19=-77/583, 5-17=-691/293, 6-17=-26/424, 7-17=-134/610,

WEBS 7-15=-278/135, 8-15=-17/657, 8-13=-1831/317, 10-12=-301/115

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, and 11. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

40-0-8 39-0-8 0-0-8

Structural wood sheathing directly applied or 2-9-10 oc purlins,

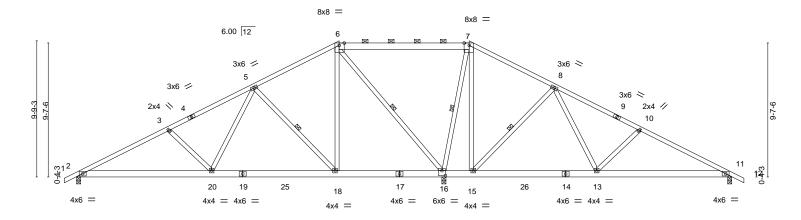
5-17, 7-15, 8-13

2-0-0 oc purlins (3-10-9 max.): 6-7, 9-10.

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903329 21572-21572A Н8 Hip Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:13 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334,

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-nn7vH0R0?_VjK7gjnKHe35NQqa22IFM1jjRkRFyv7iq 40-4-5 47-0-0 -0₇10₇8 0-10-8 18-10-0 28-2-0 34-3-3 6-7-11 6-1-3 6-1-3 4-8-0 4-8-0 6-1-3 6-1-3 6-7-11 0-10-8

Scale = 1:82.6

		9-8-4	18	-10-0	1 26-4-4	28-2-0	1	37-3-	12	47-0-0	
	ı	9-8-4	' 9-	1-12	7-6-4	1-9-12	ı	9-1-1	2	9-8-4	<u> </u>
Plate Offs	ets (X,Y)	[6:0-4-6,Edge], [7:0-4-6,E	Edge], [16:0-3-	0,0-4-4]							
LOADING	(psf)	SPACING-	2-0-0	CSI.	Di	EFL . ir	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.	75 Ve	ert(LL) 0.14	20-22	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.	51 Ve	ert(CT) -0.17	20-22	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB 1.	00 H	orz(CT) 0.02	16	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix-M	s					Weight: 312 lb	FT = 20%

LUMBER-

2x4 SP No.2 *Except* TOP CHORD

6-7: 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-3 oc purlins, except

2-0-0 oc purlins (10-0-0 max.): 6-7.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **WEBS** 1 Row at midpt

5-18, 6-16, 7-16, 8-15

REACTIONS. 2=795/0-3-8, 16=2584/(0-3-8 + H10A Simpson Strong-Tie) (req. 0-4-1), 11=486/0-3-8

Max Horz 2=163(LC 16)

Max Uplift 2=-187(LC 9), 16=-580(LC 9), 11=-134(LC 13) Max Grav 2=866(LC 23), 16=2584(LC 1), 11=584(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1321/716, 3-5=-1071/669, 5-6=-256/156, 6-7=-400/883, 7-8=-345/773, TOP CHORD

8-10=-440/214. 10-11=-690/260 2-20=-534/1141, 18-20=-167/636, 16-18=-88/293, 15-16=-632/667, 13-15=-285/276,

BOT CHORD WEBS

3-20=-369/258, 5-20=-488/591, 5-18=-707/551, 6-18=-557/754, 6-16=-1416/915, 7-16=-1283/811, 7-15=-434/529, 8-15=-721/561, 8-13=-498/605, 10-13=-369/258

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 16. This connection is for uplift only and does not consider lateral forces.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903330 21572-21572A H9 Hip Job Reference (optional) 84 Components (Dunn), Dunn, NC - 28334, 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:14 2019 Page 1 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-FzgHVMSemHdayHFvL2ptcJvbyzO71lcBxNBHzhyv7ip

7-4-0

26-4-4

2-10-4

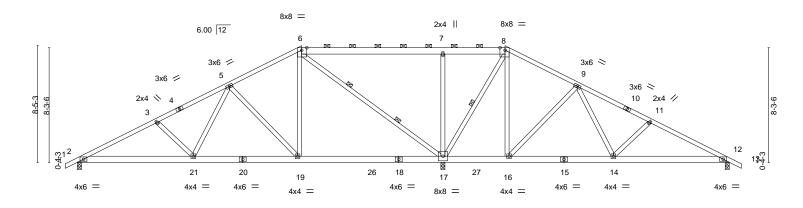
30-10-0

4-5-12

36-0-8

5-2-8

41-3-0


5-2-8

Scale = 1:83.1

0-10-8

47-0-0

5-9-0

<u></u>	8-4-4	7-9-12	5-1-2	5-1-2	4-5-12	7-9-12	8-4-4	
Plate Offsets (X,	Y) [6:0-4-6,Edge], [8:0-	-4-6,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DO Lumber DOL * Rep Stress Ir Code IRC20	1.15 ncr YES	CSI. TC 0.72 BC 0.45 WB 0.81 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.10 21-23 -0.15 17-19 0.02 12	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%

LUMBER-

-0₇10₇8 0-10-8

5-9-0

TOP CHORD 2x4 SP No.2 *Except*

6-8: 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 *Except* **WEBS**

6-17: 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-7-8 oc purlins, except

2-0-0 oc purlins (10-0-0 max.): 6-8.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 8-17 1 Row at midpt 2 Rows at 1/3 pts 6-17

REACTIONS. 2=820/0-3-8, 17=2533/(0-3-8 + H10A Simpson Strong-Tie) (req. 0-4-0), 12=512/0-3-8 (lb/size)

16-2-0

5-2-8

Max Horz 2=-141(LC 13)

Max Uplift 2=-200(LC 9), 17=-677(LC 9), 12=-131(LC 13) Max Grav 2=879(LC 23), 17=2533(LC 1), 12=586(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1409/799, 3-5=-1196/759, 5-6=-523/341, 6-7=-425/875, 7-8=-424/872,

8-9=-159/466, 9-11=-544/317, 11-12=-754/355

BOT CHORD 2-21=-619/1227, 19-21=-292/802, 17-19=-101/448, 16-17=-376/458, 12-14=-227/640 **WEBS**

3-21=-318/223, 5-21=-401/476, 5-19=-586/455, 6-19=-526/665, 6-17=-1451/958,

7-17=-573/264, 8-17=-1010/678, 8-16=-433/522, 9-16=-633/487, 9-14=-424/520,

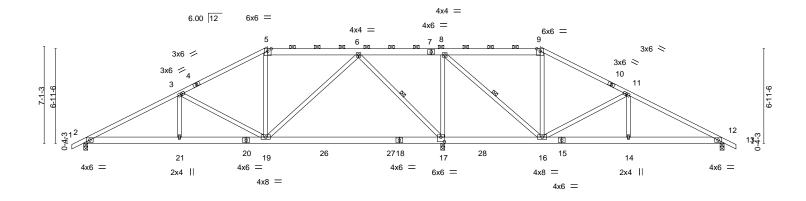
11-14=-310/218

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
 7) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903331 21572-21572A H10 Hip Job Reference (optional) 84 Components (Dunn), Dunn, NC - 28334, 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:05 2019 Page 1

				טו	:IAPZHtSURe	LOVUWCHSrvzPy	/HLgv-0EetcHL?uvvvsNu	I3BJf8IIP15NLJJQfL	.st i vj8jyv7iy
-0 ₁ 10 ₁ 8	7-0-4	13-6-0	20-2-0	26-4-4	26-10-0	33-6-0	39-11-12	47-0-0	47 _г 10 _г 8
0-10-8	7-0-4	6-5-12	6-8-0	6-2-4	0-5-12	6-8-0	6-5-12	7-0-4	0-10-8

Scale = 1:84.6

1	7-0-4	13-6-0	20-2-0	26-4-4	33-6-0	1 39-11-12	47-0-0
	7-0-4	6-5-12	6-8-0	6-2-4	7-1-12	6-5-12	7-0-4
Plate Offsets (X,Y)	[17:0-3-0,0-4-0]						
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) I/defl	L/d PL	ATES GRIP
TCLL 20.0	Plate Grip [OOL 1.15	TC 0.52	Vert(LL)	-0.20 17-19 >999	240 M	Γ20 244/190
TCDL 10.0	Lumber DC	L 1.15	BC 0.56	Vert(CT)	-0.36 17-19 >883	180	
BCLL 0.0 *	Rep Stress	Incr YES	WB 0.94	Horz(CT)	0.02 12 n/a	n/a	
BCDL 10.0	Code IRC2	2015/TPI2014	Matrix-MS			W	eight: 302 lb FT = 20%

LUMBER-**BRACING-**

2x4 SP No.2 *Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied or 4-3-12 oc purlins, 5-7,7-9: 2x6 SP No.2

2x6 SP No.2 2-0-0 oc purlins (6-0-0 max.): 5-9. **BOT CHORD**

WEBS 2x4 SP No.3 Rigid ceiling directly applied or 6-0-0 oc bracing. **WEBS** 6-17, 8-16 1 Row at midpt

REACTIONS. 17=2391/(0-3-8 + H10A Simpson Strong-Tie) (req. 0-3-12), 12=592/0-3-8, 2=882/0-3-8

Max Horz 2=119(LC 16)

Max Uplift 17=-735(LC 9), 12=-146(LC 13), 2=-227(LC 9) Max Grav 17=2391(LC 1), 12=643(LC 24), 2=917(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\text{-}3\text{=-}1489/893,\ 3\text{-}5\text{=-}890/577,\ 5\text{-}6\text{=-}718/560,\ 6\text{-}8\text{=-}398/826,\ 11\text{-}12\text{=-}889/491}$ TOP CHORD

BOT CHORD $2\text{-}21\text{-}-683/1269,\ 19\text{-}21\text{-}-683/1269,\ 16\text{-}17\text{-}-826/702,\ 14\text{-}16\text{-}-330/733,\ 12\text{-}14\text{-}-330/733}$ WEBS 3-19=-636/489, 6-19=-559/785, 6-17=-1304/790, 8-17=-1198/687, 8-16=-729/1142,

9-16=-352/129, 11-16=-696/551, 11-14=-210/329

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

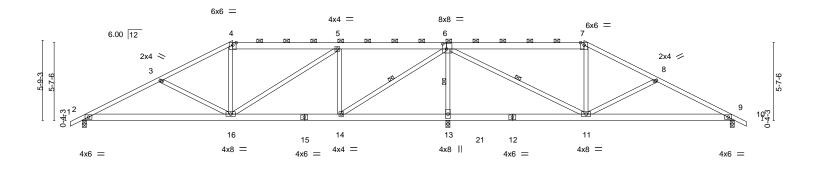
ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Qua
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903332 H11 21572-21572A Hip Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:06 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334,

Structural wood sheathing directly applied or 4-3-0 oc purlins, except

6-14, 6-13, 6-11


2-0-0 oc purlins (6-0-0 max.): 4-7.

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing.

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-URBFpdMdfqdj_2eNtMf_HdaF7lf09Bf067Fsh9yv7ix 41-3-12 47₋10₋8 0-10-8 -0₇10₇8 0-10-8 17-2-0 29-10-0 36-2-0 47-0-0 5-8-4 5-1-12 6-4-0 4-11-12 2-10-4 3-5-12 6-4-0 5-1-12 5-8-4

Scale = 1:83.1

	8-4 10-10-0 8-4 5-1-12	18-6-4 7-8-4	26-4-4 7-10-0	36-2-0 9-9-12		7-0-0 5-8-4
	[6:0-3-4,0-4-8]	704	7 10 0	0.0.12	0112	70 +
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	1.15 BC YES WB	DEFL. 0.58 Vert(LL) 0.53 Vert(CT) 0.61 Horz(CT) MS	in (loc) l/defl L/d 0.18 16-18 >999 240 -0.24 16-18 >999 180 0.02 9 n/a n/a	PLATES MT20 Weight: 296 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

2x4 SP No.2 *Except* TOP CHORD

4-6,6-7: 2x6 SP No.2 2x6 SP No.2

BOT CHORD WEBS 2x4 SP No.3

(lb/size) 2=962/0-3-8, 13=2210/0-3-8, 9=693/0-3-8

Max Horz 2=-96(LC 13)

Max Uplift 2=-266(LC 9), 13=-762(LC 9), 9=-180(LC 8) Max Grav 2=978(LC 23), 13=2210(LC 1), 9=720(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1599/979, 3-4=-1264/845, 4-5=-1069/790, 5-6=-713/531, 6-7=-555/453,

7-8=-680/464 8-9=-1015/598

BOT CHORD 2-16=-789/1404, 14-16=-285/713, 13-14=-578/497, 11-13=-619/521, 9-11=-453/882 **WEBS** 3-16=-379/275, 4-16=-209/294, 5-16=-307/450, 5-14=-711/383, 6-14=-933/1483,

6-13=-2013/1178, 6-11=-812/1252, 8-11=-381/278

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 8) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903333 21572-21572A H12 Hip Job Reference (optional) 84 Components (Dunn), Dunn, NC - 28334, 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:08 2019 Page 1 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-QpJ0EJNtARtQEMnm?niSN2fYIZFjd1MIZRkzl1yv7iv

2-10-4

6-2-14

32-8-14 1-6-14

38-10-0

6-1-2

31-2-0

4-9-12

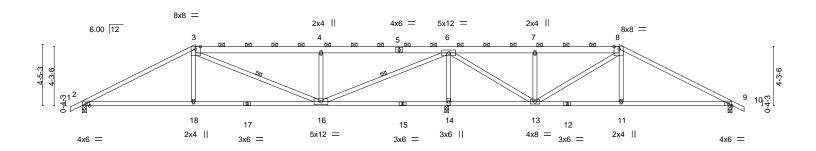
0-10-8 Scale = 1:83.3

47-0-0

4-4-4

42-7-12

3-9-12


Structural wood sheathing directly applied or 2-2-0 oc purlins, except

3-16, 6-16

2-0-0 oc purlins (5-10-6 max.): 3-8.

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing.

<u> </u>	8-2-0 8-2-0	17-3-2 9-1-2		26-4-4 9-1-2	32-8-14 6-4-10	-	38-10-0 6-1-2	47-0-0 8-2-0	——
Plate Offsets (X,Y)-					0110		V.2		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL	SPACING- Plate Grip D Lumber DOL Rep Stress I Code IRC20	1.15 ncr YES	CSI. TC 0.83 BC 0.84 WB 0.86 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.22 11-24 -0.28 16-18 0.03 9	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

-0₇10₇8 0-10-8

4-4-4

3-9-12

2x4 SP No.1 *Except* TOP CHORD

3-5,5-8: 2x6 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 *Except* **WEBS**

8-13: 2x4 SP No.2

REACTIONS. (lb/size) 2=994/0-3-8, 14=2152/0-3-8, 9=719/0-3-8

Max Horz 2=-74(LC 13)

Max Uplift 2=-294(LC 9), 14=-812(LC 9), 9=-194(LC 8) Max Grav 2=999(LC 23), 14=2152(LC 1), 9=726(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1595/1005, 3-4=-1270/892, 4-6=-1265/888, 6-7=-401/351, 7-8=-405/354,

8-9=-974/614

BOT CHORD 2-18=-776/1348, 16-18=-768/1340, 14-16=-665/476, 13-14=-665/476, 11-13=-423/783,

15-10-0

7-8-0

17-3-2 1-5-2

9-11=-431/791

WEBS 3-18=-227/371, 4-16=-611/276, 6-16=-1272/2072, 6-14=-1972/1141, 8-13=-473/312,

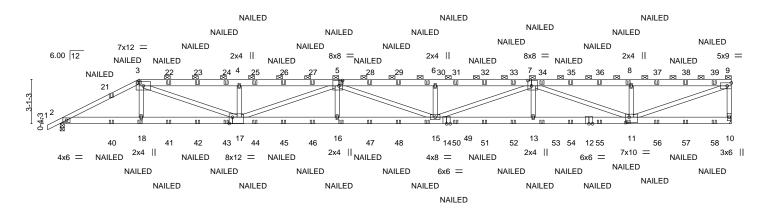
8-11=-209/329, 7-13=-342/159, 6-13=-750/1229

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 8) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty Ply 23 MASON POINTE - ROOF 137903334 21572-21572A HG1 Half Hip Girder Job Reference (optional)

8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:23 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-UijhNRZIe2mIXfReNRT_TCnBfcL?eqCW0HsGngyv7ig 32-11-7 39-9-5 5-6-0 6-11-11 6-9-15 6-9-15 6-9-15 6-9-15 6-11-11

Scale = 1:80.3

5-6-0 5-6-0	12-5-11 6-11-11		19-3-9 6-9-15	26-1-8 6-9-15	32-11-7 6-9-15		39-9-5 6-9-15	46-9- 6-11-	
Plate Offsets (X,Y)	[5:0-3-0,0-4-8], [7:0-3-0	,0-4-8], [11:0-3-	0,0-4-8], [17:0-2	2-12,0-5-4]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 1.15 1.15 NO FPI2014	BC 0	DEFL. 0.47 Vert(LL) 0.98 Vert(CT) 0.78 Horz(CT)	,	l/defl >758 >494 n/a	240 180	PLATES MT20 Weight: 601 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 *Except* 1-3: 2x4 SP No.2

BOT CHORD 2x6 SP No.2 *Except* 14-17: 2x6 SP DSS

WEBS 2x4 SP No.3 *Except* 3-17,5-17,5-15,7-15,7-11,9-11: 2x4 SP No.2

REACTIONS. (lb/size) 10=2540/Mechanical, 2=2542/0-3-8

Max Horz 2=119(LC 12)

Max Uplift 10=-892(LC 9), 2=-743(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5257/1779, 3-4=-8817/3148, 4-5=-8815/3145, 5-6=-11047/3941, 6-7=-11047/3941,

7-8=-5702/2039, 8-9=-5702/2039, 9-10=-2426/943 2-18=-1632/4647, 17-18=-1629/4665, 16-17=-3909/10962, 15-16=-3914/10952,

13-15=-3357/9380, 11-13=-3353/9389 WFBS

3-18=0/452, 3-17=-1653/4492, 4-17=-658/442, 5-17=-2311/823, 5-16=0/396, 6-15=-521/368, 7-15=-627/1791, 7-13=0/383, 7-11=-3944/1405, 8-11=-586/418,

9-11=-2148/6009

NOTES-

BOT CHORD

1) 2-ply truss to be connected together with 10d (0.120"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 11) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This Continue tionais for uplift only and does not consider lateral forces

ALL JOUR

July 24,2019

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-1-15 oc purlins,

except end verticals, and 2-0-0 oc purlins (4-3-11 max.): 3-9.

Rigid ceiling directly applied or 8-9-6 oc bracing.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Job	Truss	Truss Type	Qty	Ply	23 MASON POINTE - ROOF	
						137903334
21572-21572A	HG1	Half Hip Girder	1	2		
					Job Reference (optional)	

84 Components (Dunn),

Dunn, NC - 28334,

8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:23 2019 Page 2 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-UijhNRZIe2mIXfReNRT_TCnBfcL?eqCW0HsGngyv7ig

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-9=-60, 2-10=-20

Concentrated Loads (lb)

Vert: 3=-41(B) 18=-17(B) 5=-41(B) 16=-17(B) 8=-41(B) 11=-17(B) 21=-38(B) 22=-41(B) 23=-41(B) 24=-41(B) 25=-41(B) 26=-41(B) 27=-41(B) 28=-41(B) 29=-41(B) 28=-41(B) 28= 30=-41(B) 31=-41(B) 32=-41(B) 32=-41(B) 33=-41(B) 34=-41(B) 35=-41(B) 35=-41(B) 35=-41(B) 35=-41(B) 39=-41(B) 40=-42(B) 41=-17(B) 42=-17(B) 42=-17(B) 43=-17(B) 43=-17

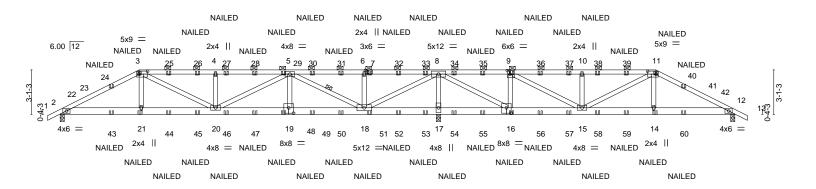
45=-17(B) 46=-17(B) 47=-17(B) 48=-17(B) 49=-17(B) 50=-17(B) 51=-17(B) 52=-17(B) 53=-17(B) 54=-17(B) 55=-17(B) 55=-17

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903335 21572-21572A HG2 Hip Girder Job Reference (optional) 84 Components (Dunn), Dunn, NC - 28334, 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:26 2019 Page 1 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-uHPp0TbAxz8tO7AD2Z0h5rPfxpUPr8ByiE5wO?yv7id 26-4-4 0-3-6 31-2-8 36-3-4 41-6-0 47-0-0

4-9-0

4-10-4

5-0-12


5-2-12

5-5-10

Scale = 1:80.3

0-10-8

5-6-0

L	5-6-0	10-8-2	15-10-4	21-3-14	26-4-4	31-2-8	36-3-4	41-6-0	47-0-0
	5-6-0	5-2-2	5-2-2	5-5-10	5-0-6	4-10-4	5-0-12	5-2-12	5-6-0
Plate Offs	sets (X,Y)	[3:0-7-0,0-2-8], [7:0-1-1-	4,0-1-8], [9:0-2-4	1,0-3-0], [11:0-7-0,0-2-8]], [16:0-4-0,0-4-8],	[19:0-4-0,0-4-8]			
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.66	Vert(LL)	0.15 19-20	>999 240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.49	Vert(CT)	-0.24 19-20	>999 180		
BCLL	0.0 *	Rep Stress Incr	NO	WB 0.96	Horz(CT)	0.03 17	n/a n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix-S	` ′			Weight: 269 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2

5-6-0

5-2-2

2x4 SP No.3 *Except* WEBS

3-20,5-20,5-18,8-18: 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-5-2 oc purlins, except

2-0-0 oc purlins (3-2-12 max.): 3-11 Rigid ceiling directly applied or 4-6-3 oc bracing.

BOT CHORD WEBS 1 Row at midpt 5-18

REACTIONS. (lb/size) 2=1180/0-3-8, 17=3150/0-3-8 (req. 0-3-11), 12=795/0-3-8

Max Horz 2=53(LC 35)

Max Uplift 2=-291(LC 12), 17=-1067(LC 9), 12=-189(LC 13) Max Grav 2=1182(LC 23), 17=3150(LC 1), 12=798(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2078/618, 3-4=-2344/810, 4-5=-2344/810, 8-9=-91/335, 9-10=-879/327,

10-11=-879/327. 11-12=-1228/341

BOT CHORD 2-21=-513/1780, 20-21=-508/1792, 19-20=-616/1842, 18-19=-618/1837, 17-18=-2361/821,

16-17=-2361/821, 15-16=-342/180, 14-15=-224/1033, 12-14=-228/1022

3-21=0/349, 3-20=-315/664, 4-20=-444/311, 5-20=-172/571, 5-19=0/313,

5-18=-1844/618, 6-18=-408/287, 8-18=-982/2884, 8-17=-2890/1113, 8-16=-766/2321,

9-16=-1029/472, 9-15=-433/1359, 10-15=-438/304, 11-14=0/338

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-6-0, Exterior(2) 5-6-0 to 9-8-15, Interior(1) 9-8-15 to 41-6-0, Exterior(2) 41-6-0 to 45-8-15, Interior(1) 45-8-15 to 47-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) WARNING: Required bearing size at joint(s) 17 greater than input bearing size.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
- 8) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

minnin

July 24,2019

Job	Truss	Truss Type	Qty	Ply	23 MASON POINTE - ROOF
21572-21572A	HG2	Hip Girder	1	1	137903335
21312-21312A	1102	inp Graci	ļ'		Job Reference (optional)

84 Components (Dunn),

Dunn, NC - 28334,

8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:26 2019 Page 2 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-uHPp0TbAxz8tO7AD2Z0h5rPfxpUPr8ByiE5wO?yv7id

LOAD CASE(S) Standard

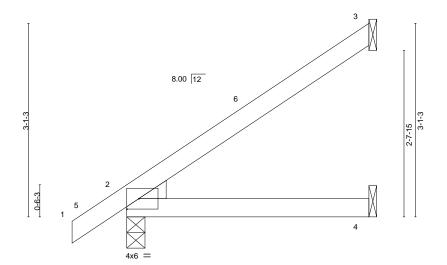
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-11=-60, 11-13=-60, 2-12=-20

Concentrated Loads (lb)

Vert: 3=-41(F) 7=-41(F) 11=-41(F) 21=-17(F) 16=-17(F) 9=-41(F) 14=-17(F) 24=-38(F) 25=-41(F) 26=-41(F) 27=-41(F) 28=-41(F) 29=-41(F) 30=-41(F) 31=-41(F) 31= $32 = -41(F) \ 33 = -41(F) \ 34 = -41(F) \ 35 = -41(F) \ 36 = -41(F) \ 36 = -41(F) \ 38 = -41(F) \ 39 = -41(F) \ 40 = -38(F) \ 43 = -42(F) \ 44 = -17(F) \ 45 = -17(F) \ 46 = -17(F) \ 46 = -17(F) \ 46 = -17(F) \ 47 = -17(F) \$



Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903336 21572-21572A J1 Jack-Open 40 Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:27 2019 Page 1

84 Components (Dunn), Dunn, NC - 28334, ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-MTzBDpcoiHGk0HkPcGYwe2yxFDvlaqS5xuqTwRyv7ic

-0-10-8 3-10-8 0-10-8 3-10-8

Scale = 1:18.4

3-10-8

DEFL.

LOADIN	G (psf)	SPACING-	2-0-0	CSI.
TCLL	20.0	Plate Grip DOL	1.15	TC 0.24
TCDL	10.0	Lumber DOL	1.15	BC 0.16
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.00
BCDL	10.0	Code IRC2015/Ti	PI2014	Matrix-P

Vert(LL) -0.01 2-4 >999 240 MT20 Vert(CT) -0.022-4 >999 180 -0.00 Horz(CT) n/a n/a

I/defI

(loc)

244/190

GRIP

PLATES

Weight: 15 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEDGE Left: 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-10-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

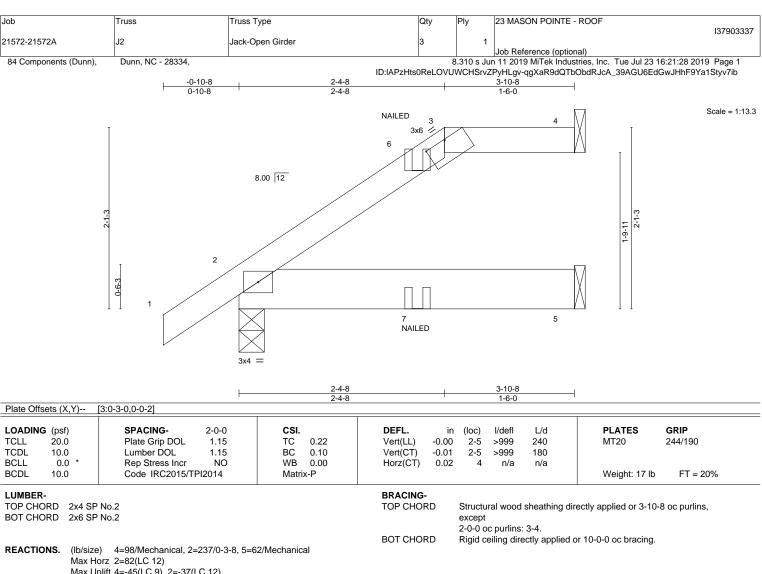
L/d

REACTIONS. (lb/size) 3=101/Mechanical, 2=216/0-3-8, 4=37/Mechanical

Max Horz 2=119(LC 12)

Plate Offsets (X,Y)-- [2:0-1-3,0-0-12], [2:0-5-13,0-1-9]

Max Uplift 3=-85(LC 12), 2=-13(LC 12)


Max Grav 3=113(LC 19), 2=216(LC 1), 4=73(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Max Uplift 4=-45(LC 9), 2=-37(LC 12)

Max Grav 4=98(LC 1), 2=237(LC 1), 5=88(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

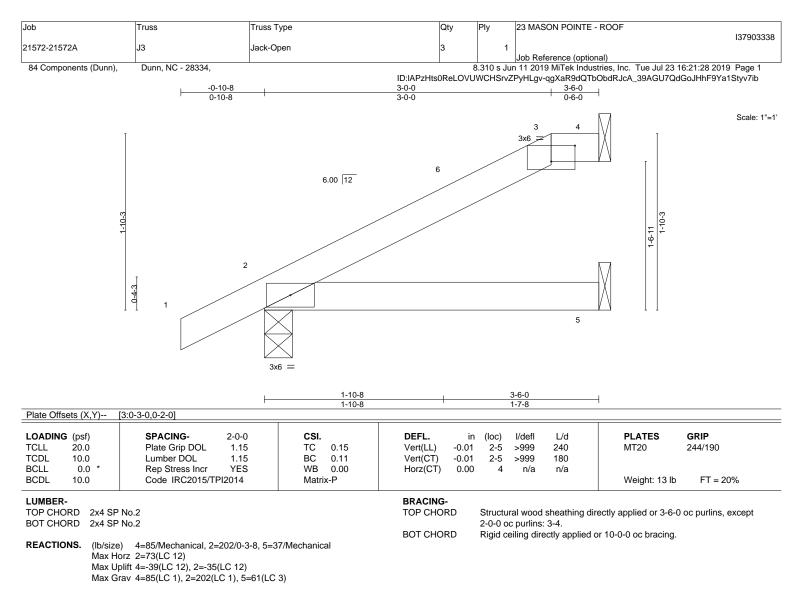
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (lb)

Vert: 6=-25(F) 7=-17(F)



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-0-0, Exterior(2) 3-0-0 to 3-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Qua
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903339 21572-21572A Common Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:29 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:WRU0VEQdOJp5FPgJ5XsbyzzDMSL-Js4yeVe2EuWSFauojhaOjT1GK0Zh2jcOOCJa?Kyv7ia -0-10-8 0-10-8 10-10-8 5-0-0 5-0-0 5-0-0 0-10-8 Scale = 1:26.4 4x4 = 3 8.00 12 0-6-3 0-6-3

		U- ₁ 1-78		5-0-0		1		9-	10-8		10-0-0	
		0-1-8		4-10-8		l		4-	10-8		0-1-8	
Plate Offs	ets (X,Y)	[2:0-1-3,0-0-12], [2:0-5-1	3,0-1-9], [4:0-1	3,0-0-12], [4	4:0-5-13,0-1-9]						
LOADING	u /	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.02	6-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	6-9	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	2	n/a	n/a		

BRACING-

TOP CHORD

BOT CHORD

6 2x4 ||

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3

10.0

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=452/0-3-0, 4=452/0-3-0

Max Horz 2=-87(LC 10)

Max Uplift 2=-75(LC 12), 4=-75(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

TOP CHORD 2-3=-456/110, 3-4=-456/110 2-6=0/322, 4-6=0/322 **BOT CHORD**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

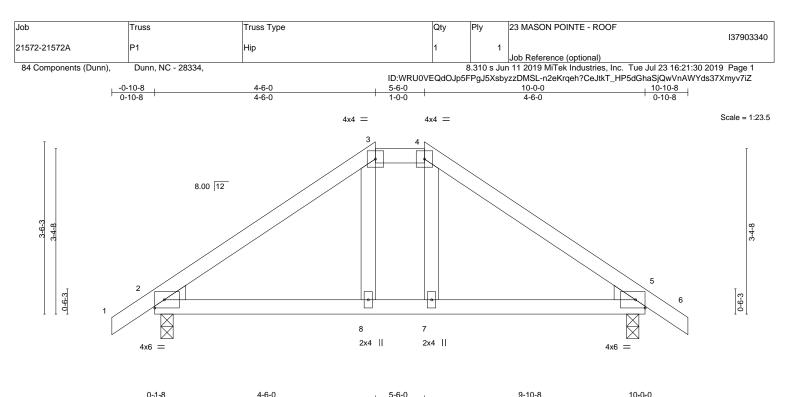
4x6 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 43 lb

FT = 20%



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-1-8				1-0-0					0-1-8	
sets (X,Y)	[2:0-1-3,0-0-12], [2:0-5-1	3,0-1-9], [5:0-	1-3,0-0-12], [5	:0-5-13,0-1	-9]						
(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.02	7-14	>999	240	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.03	7-14	>999	180		
0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	2	n/a	n/a		
10.0	Code IRC2015/TI	PI2014	Matrix	-MS						Weight: 46 lb	FT = 20%
	10.0 0.0 *	0-1-8 sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-1 G (psf) 20.0	0-1-8 4- sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0- 6 (psf) SPACING- 2-0-0 20.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0 * Rep Stress Incr YES	0-1-8 4-4-8 sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5 6 (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0 * Rep Stress Incr YES WB	Sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.15 TC 0.22 10.0 Lumber DOL 1.15 BC 0.22 0.0 * Rep Stress Incr YES WB 0.04	6-1/-8 4-4-8 1-0-0 sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] 3- (psf) SPACING- 2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT)	0-1-8 4-4-8 1-0-0 Sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] (Fig. (psf) SPACING- 2-0-0 CSI. DEFL. in 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) -0.02 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.03 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT) 0.00	0-1-8 4-4-8 1-0-0 Sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] G (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) -0.02 7-14 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.03 7-14 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 2	0-1-8 4-4-8 1-0-0 4-4-4-8 sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] 3 (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) -0.02 7-14 >999 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.03 7-14 >999 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 2 n/a	0-1-8 4-4-8 1-0-0 4-4-8 Sets (X,Y) [2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1-3,0-0-12], [5:0-5-13,0-1-9] Sets (X,Y) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) -0.02 7-14 >999 240 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.03 7-14 >999 180 0.0 * Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 2 n/a n/a	6 (psf) SPACING- 20.0 2-0-0 10.0 CSI. Plate Grip DOL 10.0 DEFL. 1.15 in (loc) l/defl 1.02 L/d 1.03 PLATES 20.0 MT20 10.0 Lumber DOL 10.0 1.15 BC 1.15 0.22 Vert(LL) 1.00 -0.02 7-14 >999 180 180 180 MT20 10.0 Rep Stress Incr YES WB 1.04 Horz(CT) 1.00 0.00 2 2 1.00 1.00 2 1.00 2 <t< td=""></t<>

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=452/0-3-0, 5=452/0-3-0

Max Horz 2=-78(LC 10)

Max Uplift 2=-75(LC 12), 5=-75(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-467/118, 3-4=-351/138, 4-5=-467/118 **BOT CHORD** 2-8=-2/340, 7-8=-2/336, 5-7=-2/340

NOTES-

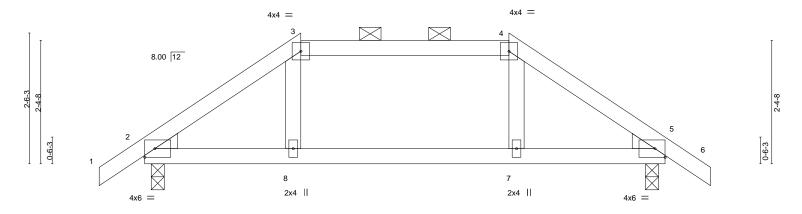
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903341 P2 21572-21572A Hip Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:30 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334,

ID:WRU0VEQdOJp5FPgJ5XsbyzzDMSL-n2eKrqeh?CeJtkT_HP5dGhaSZQx8nAKYds37Xmyv7iZ 10-10-8 7-0-0 10-0-0 4-0-0 3-0-0 0-10-8

Scale = 1:22.1

	0-1-8 3-0-0	7-0-0		9-10-8	10 ₇ 0 ₇ 0	
	0-1-8 2-10-8	4-0-0		2-10-8	0-1-8	
Plate Offsets (X,Y)	[2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1	-3,0-0-12], [5:0-5-13,0-1-9]				
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. DEFL. TC 0.23 Vert(L BC 0.18 Vert(C	,	l/defl L/d >999 240 >999 180	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Horz(0 Matrix-MS	ST) 0.01 5	n/a n/a	Weight: 42 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

0-10-8

3-0-0

REACTIONS. (lb/size) 2=452/0-3-0, 5=452/0-3-0

Max Horz 2=-56(LC 10)

Max Uplift 2=-75(LC 12), 5=-75(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-525/140, 3-4=-408/147, 4-5=-525/140 2-8=-48/413, 7-8=-51/408, 5-7=-48/413 BOT CHORD

NOTES-

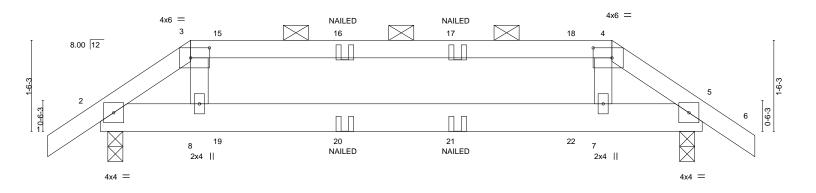
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903342 P3 21572-21572A Hip Girder Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:31 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:WRU0VEQdOJp5FPgJ5XsbyzzDMSL-FFCi3AfJmWm9Uu2Br6csou6TlqGNWcEhrWoh3Cyv7iY 8-6-0 10-0-0 10-10-8 0-10-8 1-6-0 1-6-0 0-10-8

Scale = 1:19.1

0 ₋₁ 1-8	1-6-0			8-6-0					9-10-8	$10_{\Gamma}0_{\Gamma}0$
0-1-8	1-4-8	7-0-0						1-4-8	0-1-8	
Plate Offsets (X,Y)	[3:0-3-12,0-2-0], [4:0-3-1	2,0-2-0]								
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.84	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC 0.24	Vert(CT)	-0.04	7-8	>999	180		
3CLL 0.0 *	Rep Stress Incr	NO	WB 0.08	Horz(CT)	0.01	5	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix-MS						Weight: 45 lb	FT = 20%
LUMBER-				BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=488/0-3-0, 5=488/0-3-0

Max Horz 2=-36(LC 10)

Max Uplift 2=-100(LC 12), 5=-100(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-713/186, 3-4=-646/198, 4-5=-713/186 TOP CHORD BOT CHORD 2-8=-152/640, 7-8=-138/646, 5-7=-152/640

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 58 lb up at 2-0-12, and 69 lb down and 58 lb up at 7-11-4 on top chord, and 25 lb down and 23 lb up at 2-0-12, and 25 lb down and 23 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

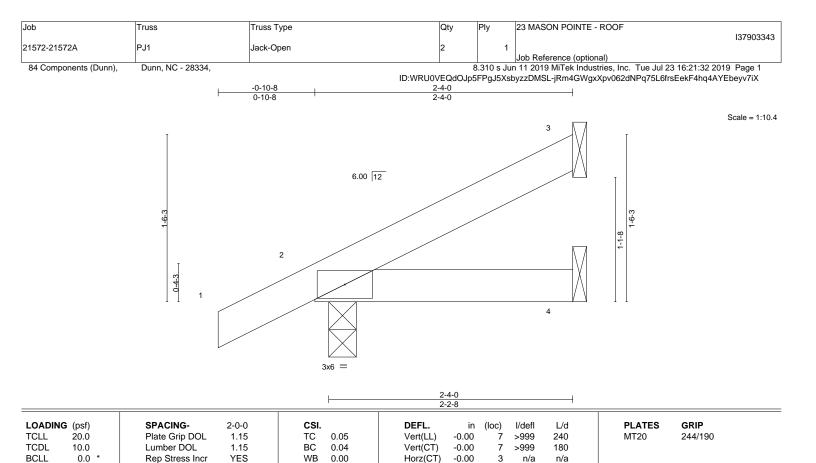
Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 15=-3(B) 16=-1(B) 17=-1(B) 18=-3(B) 19=-25(B) 20=-8(B) 21=-8(B) 22=-25(B)

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (4-8-11 max.): 3-4.


Rigid ceiling directly applied or 10-0-0 oc bracing

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with release controlled in the controlle

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2

10.0

2x4 SP No.2 **BOT CHORD**

REACTIONS. 3=53/Mechanical, 4=28/Mechanical, 2=153/0-3-0 (lb/size)

Code IRC2015/TPI2014

Max Horz 2=58(LC 12)

Max Uplift 3=-20(LC 12), 2=-39(LC 12)

Max Grav 3=53(LC 1), 4=40(LC 3), 2=153(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MP

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Weight: 9 lb

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

FT = 20%

🛝 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903344 PJ2 21572-21572A Jack-Open Girder Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:33 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334, ID:WRU0VEQdOJp5FPgJ5XsbyzzDMSL-BdKTUshZI71tkCCZyXeKtJC?Bez6_Xx_JqHo85yv7iW -0-10-8 2-4-0 0-10-8 Scale = 1:10.4 6.00 12 -6-3 1-6-3 2 0-4-3 4 NAILED 3x6 =

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

L/d

240

180

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing

(loc)

3

-0.00

-0.00

-0.00

I/defl

>999

>999

n/a

PLATES

Weight: 9 lb

MT20

Structural wood sheathing directly applied or 2-4-0 oc purlins.

GRIP

244/190

FT = 20%

BCDL 10.0 LUMBER-

REACTIONS.

TCLL

TCDL

BCLL

LOADING (psf)

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

20.0

10.0

0.0

Code IRC2015/TPI2014

SPACING-

Plate Grip DOL

Rep Stress Incr

Lumber DOL

3=61/Mechanical, 4=45/Mechanical, 2=182/0-3-0 (lb/size)

Max Horz 2=58(LC 12) Max Uplift 3=-27(LC 12), 4=-7(LC 12), 2=-65(LC 12) Max Grav 3=61(LC 1), 4=45(LC 3), 2=182(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CSI.

TC

ВС

WB

Matrix-MP

0.08

0.10

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2-0-0

1.15

1.15

NO

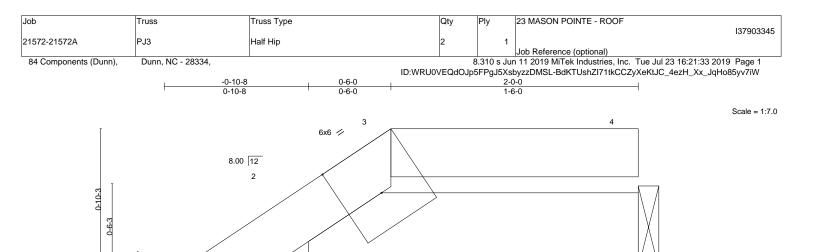
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 4-5=-20

Concentrated Loads (lb) Vert: 8=-54(B)

July 24,2019


🛝 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Sefety Information, available from Truss Plate pictities 218 N. Les Street, Suite 312, Alexanderia, VA 22314. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Qua
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-11-7 2-0-0 0-9-15 1-0-9

2-0-0 oc purlins: 3-4.

Plate Offsets (X,Y)	Plate Offsets (X,Y) [2:0-3-3,0-0-0], [3:0-2-13,Edge], [3:0-1-0,0-1-7]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP						
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.00 8 >999 240	MT20 244/190						
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) -0.00 8 >999 180							
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 2 n/a n/a							
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 10 lb FT = 20%						

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

(lb/size)

Max Horz 2=40(LC 12)

Max Uplift 5=-36(LC 12), 2=-68(LC 12) Max Grav 5=74(LC 22), 2=144(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5=69/Mechanical, 2=144/0-3-0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-0-0 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Sefety Information, available from Truss Plate pictities 218 N. Les Street, Suite 312, Alexanderia, VA 22314. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Qua
Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903346 21572-21572A T5 Piggyback Base Job Reference (optional) 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:35 2019 Page 1

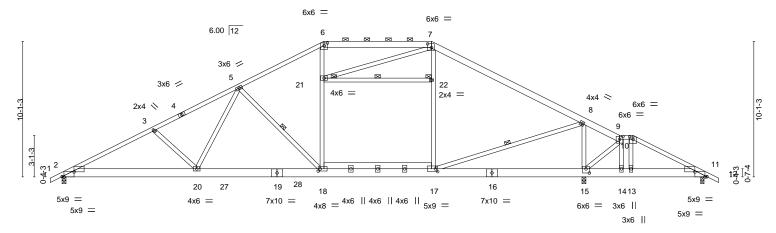
19-6-0

6-3-13

6-3-13

84 Components (Dunn), Dunn, NC - 28334,

6-10-5


-0₁10₁8 0-10-8

41-6-0 42-6-0

ID:IAPzHts0ReLOVUWCHSrvZPyHLqv-70SDvYippkHbzVMy4yhozkHCTRTjSFbHm8muCzyv7iU 41-6-042-6-0 2-7-12 1-0-0 27-6-0 34-6-0 38-10-4 48-0-0 8-0-0 7-0-0 4-4-4 5-6-0 0-10-8

Scale = 1:85.8

48-0-0

I	1004	1000	2,00	0 7 0 0	00 10 4	1 -1 0 0 -4 0 0	77 0 0	-10 Pr 0
	10-0-4	9-5-12	8-0-0	7-0-0	4-4-4	2-7-12 1-0-0	5-3-8	0-2-8
Plate Offsets (X	(,Y) [2:0-10-11,0-4-4], [2:0-	1-11,Edge], [6:0-3-0,0-2-7], [7:0	-3-8,0-3-4], [9:0-3-0,0-2-8], [10:0-3-0,0-2-0], [11:0-10	-11,0-4-4], [1	1:0-1-11,Edge],	[15:0-3-0,0-	3-12]
	, [17:0-2-0,0-2-8], [18:0	-1-12,0-2-0]						

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.67	Vert(LL) 0.34 18-20 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.86	Vert(CT) -0.56 18-20 >837 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.82	Horz(CT) 0.06 11 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS		Weight: 382 lb FT = 20%

JOINTS

1 Brace at Jt(s): 21, 22

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2 *Except*	TOP CHORD	Structural wood sheath	ning directly applied or 2-11-6 oc purlins,
	6-7,7-9: 2x6 SP No.2		except	
BOT CHORD	2x8 SP No.2 *Except*		2-0-0 oc purlins (5-0-6	max.): 6-7, 9-10.
	17-18: 2x6 SP No.2	BOT CHORD	Rigid ceiling directly ar	oplied or 10-0-0 oc bracing, Except:
WEBS	2x4 SP No.3		6-3-1 oc bracing: 2-20	
			7-0-1 oc bracing: 18-2	0.
		WEBS	1 Row at midpt	5-18, 8-17, 21-22

REACTIONS. (lb/size) 2=1675/0-3-8, 15=1575/0-3-8, 11=692/0-3-0

Max Horz 2=170(LC 16)

Max Uplift 2=-398(LC 9), 15=-460(LC 8), 11=-173(LC 9) Max Grav 2=1675(LC 1), 15=1661(LC 24), 11=692(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3133/1993, 3-5=-2874/1951, 5-6=-1924/1355, 6-7=-1647/1254, 7-8=-1960/1285,

8-9=-1018/529, 9-10=-1026/594, 10-11=-1144/619

BOT CHORD 2-20=-1665/2741, 18-20=-1251/2201, 17-18=-810/1621, 15-17=-376/944, 14-15=-453/1039, 13-14=-455/1026, 11-13=-449/1005

3-20=-343/240, 5-20=-561/719, 5-18=-840/628, 18-21=-462/539, 6-21=-444/516,

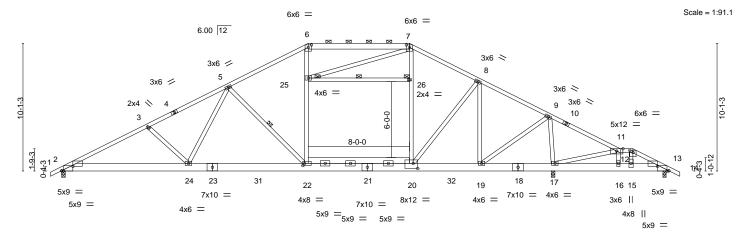
17-22=-238/364, 7-22=-240/366, 8-17=-448/903, 8-15=-1451/875, 10-13=-130/385

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 15, and 11. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-bC?b6ujRa2PSbfw8efC1VyqOIrorBfXQ?oWSIQyv7iT 45-2-0 48-0-0 48-10-8 1-0-0 2-10-0 0-10-8 -0-10-8 0-10-8

		10-0-4		19-6-0	27-6-0	33-0-11	38-10-4	1 44-2-0 45-2-0 4	17-9-8 _{II}
		10-0-4	1	9-5-12	8-0-0	5-6-11	5-9-9	5-3-12 1-0-0	2-7-8 0-2-8
Plate Offs	ets (X,Y)	[2:0-10-11,0-4-4], [2:0-1-1	1,Edge], [6:0-	3-0,0-2-7], [7:0-3-0	,0-2-7], [12:0-3-0,0-2-0],	[13:0-10-11,0-4	-4], [13:0-1-11,Edge	e], [20:0-4-4,0-4-12], [22:	:0-1-12
		,0-2-0]							
LOADING	i (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defI L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.60	Vert(LL)	0.34 22-24	>999 240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.93	Vert(CT)	-0.63 22-24	>734 180		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.97	Horz(CT)	0.06 13	n/a n/a		
BCDL	10.0	Code IRC2015/TP	2014	Matrix-MS	Attic	-0.15 20-22	659 360	Weight: 383 lb	FT = 20%

I UMRER-TOP CHORD 2x4 SP No.2 *Except*

6-7: 2x6 SP No.2 2x8 SP DSS *Except*

BOT CHORD 21-23: 2x8 SP No.2, 20-22: 2x6 SP No.2

WEBS 2x4 SP No.3 BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-9-2 oc purlins, except

2-0-0 oc purlins (4-3-14 max.): 6-7, 11-12.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. **WEBS** 1 Row at midpt 5-22, 25-26

JOINTS 1 Brace at Jt(s): 25, 26

This truss requires both edges of the bottom chord be sheathed in

the room area.

REACTIONS. (lb/size) 2=1766/0-3-8, 17=1916/0-3-8, 13=564/0-3-0

Max Horz 2=-170(LC 13)

Max Uplift 2=-228(LC 9), 17=-262(LC 8), 13=-116(LC 9) Max Grav 2=1848(LC 2), 17=2039(LC 27), 13=564(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3622/1732, 3-5=-3409/1691, 5-6=-2464/1091, 6-7=-2133/1027, 7-8=-2401/1071,

8-9=-1868/837, 9-11=-785/261, 11-12=-885/496, 12-13=-948/511

BOT CHORD 2-24=-1430/3186, 22-24=-1016/2674, 20-22=-575/2114, 19-20=-472/1611, 17-19=-130/761, 16-17=-397/846, 15-16=-414/885, 13-15=-389/841

WEBS 3-24=-338/237, 5-24=-565/734, 5-22=-849/629, 22-25=-401/744, 6-25=-294/746,

20-26=-336/634, 7-26=-250/679, 8-20=-152/812, 8-19=-1112/389, 9-19=-425/1279,

9-17=-1638/698, 11-17=-404/324, 11-16=-368/161, 12-15=-233/402

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Ceiling dead load (5.0 psf) on member(s). 25-26; Wall dead load (5.0 psf) on member(s).22-25, 20-26
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 20-22
- 8) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 9) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 17. This connection is for uplift only and does not consider lateral forces.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

48-0-0

818 Soundside Road Edenton, NC 27932

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with release controlled in the controlle Job Truss Truss Type 23 MASON POINTE - ROOF 137903348 Т7 21572-21572A **ROOF TRUSS** Job Reference (optional) 84 Components (Dunn), Dunn, NC - 28334, 8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:37 2019 Page 1

19-6-0

6-3-13

6-3-13

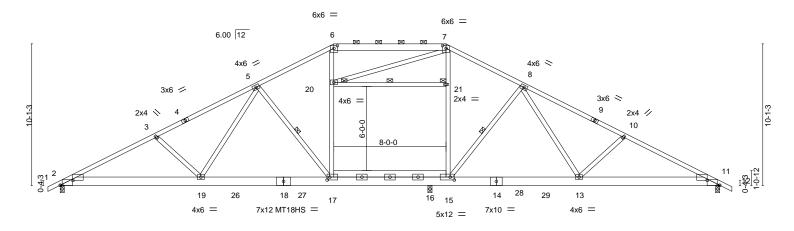
ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-4OZzKEk4LMXJCpVKBNjG29MXtF7EwBlaESF?Hsyv7iS 27-6-0 33-9-13 40-1-11 47-0-0 8-0-0 6-3-13 6-3-13 6-10-5 0-10-8

Structural wood sheathing directly applied or 2-8-6 oc purlins, except

This truss requires both edges of the bottom chord be sheathed in

5-17, 8-15, 20-21

2-0-0 oc purlins (4-11-11 max.): 6-7.


1 Row at midpt

the room area.

1 Brace at Jt(s): 20, 21

Rigid ceiling directly applied or 2-2-0 oc bracing.

Scale = 1:82.1

	10-0-4	19-	6-0	26-4-4	27-6-0		36-11-12		47-0-0	
	10-0-4	9-5	-12	6-10-4	1-1-12		9-5-12		10-0-4	'
Plate Offsets (X,Y)	[2:0-10-11,0-4-4], [2:0-	1-11,Edge], [6:0-	3-0,0-2-7], [7:0-3	-0,0-2-7], [11:0-10	0-11,0-4-4], [1	1:0-1-11,	Edge], [15	:0-3-8,0-2-8], [17:0-2-4,0-2-8]	
LOADING (psf)	SPACING-	2-0-0	CSI.	DI	EFL.	in (loc)	I/defI	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.6	57 Ve	ert(LL) -0.3	37 17-19	>853	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.9	98 Ve	ert(CT) -0.	71 17-19	>440	180	MT18HS	244/190
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.6	68 H	orz(CŤ) 0.0	06 11	n/a	n/a		
BCDL 10.0	Code IRC2015	/TPI2014	Matrix-MS	S At	tic -0.3	31 16-17	538	360	Weight: 362 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

JOINTS

LUMBER-

-0₇10₇8 0-10-8

6-10-5

TOP CHORD 2x4 SP No.2 *Except*

6-7: 2x6 SP No.2 2x8 SP No.2 *Except*

BOT CHORD 14-18: 2x8 SP DSS, 15-17: 2x6 SP No.2

WEBS 2x4 SP No.3 *Except*

6-17,7-15,20-21: 2x4 SP No.2

REACTIONS. (lb/size) 2=1496/0-3-8, 11=1337/0-3-8, 16=1330/0-3-8

Max Horz 2=-170(LC 13)

Max Uplift 2=-169(LC 12), 11=-39(LC 13), 16=-99(LC 13) Max Grav 2=1583(LC 26), 11=1352(LC 2), 16=1557(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3062/463, 3-5=-2837/418, 5-6=-1794/275, 6-7=-1573/293, 7-8=-1671/266,

8-10=-2181/354, 10-11=-2402/400

BOT CHORD 2-19=-338/2689, 17-19=-133/2038, 16-17=0/1542, 15-16=0/1570, 13-15=-26/1688,

11-13=-251/2117

WEBS 3-19=-380/262, 5-19=-127/866, 5-17=-863/333, 17-20=-64/508, 6-20=0/489, 15-21=-187/340, 7-21=-81/385, 8-15=-638/297, 8-13=-106/505, 10-13=-404/265

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 5x9 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Ceiling dead load (5.0 psf) on member(s). 20-21; Wall dead load (5.0 psf) on member(s).17-20, 15-21
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-17, 15-16
- 10) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, and 16. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss Truss Type Qty 23 MASON POINTE - ROOF 137903349 21572-21572A T7A **ROOF TRUSS** Job Reference (optional)
8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:38 2019 Page 1 84 Components (Dunn), Dunn, NC - 28334,

8-0-0

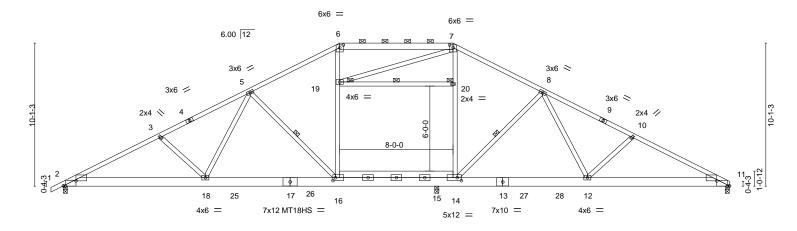
ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-Yb7MXZli6ffAqz4XI4EVaNvkMfTWfeijS6?ZpIyv7iR 33-9-13 40-1-11 47-0-0 6-3-13 6-3-13 6-10-5

Structural wood sheathing directly applied or 3-1-1 oc purlins, except

This truss requires both edges of the bottom chord be sheathed in

5-16, 8-14, 19-20

2-0-0 oc purlins (5-0-7 max.): 6-7.


1 Row at midpt

the room area.

1 Brace at Jt(s): 19, 20

Rigid ceiling directly applied or 2-2-0 oc bracing.

Scale = 1:81.3

	10-0-4	19	9-6-0	26-4-4	2/-6-0	36	-11-12	1	47-0-0	
I	10-0-4	9-	5-12	6-10-4	1-1-12	9	-5-12	,	10-0-4	
Plate Offsets (X,Y) [2:0-10-11,0-4-4], [2:0-1	-11,Edge], [6:0-	3-0,0-2-7], [7:0-3-0	,0-2-7], [11:0-10-11,	0-4-4], [11:0	-1-11,Edg	e], [14:0-3-	8,0-2-8], [16:0-2-4,0-2-8]	
OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc) I/	defl L	/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC 0.56	Vert(L	L) -0.36	16-18 >	866 24	10	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC 0.98	Vert(C	T) -0.71	16-18 >	444 18	30	MT18HS	244/190
3CLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(C	O.06	11	n/a n/	/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix-MS	Attic	-0.31	15-16	538 36	60	Weight: 359 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

WEBS

JOINTS

LUMBER-

-0₁10₁8 0-10-8

6-10-5

6-3-13

6-3-13

TOP CHORD 2x4 SP No.2 *Except*

6-7: 2x6 SP No.2 **BOT CHORD** 2x8 SP No.2 *Except*

14-16: 2x6 SP No.2, 13-17: 2x8 SP DSS

WEBS 2x4 SP No.3 *Except*

6-16,7-14: 2x4 SP No.2

REACTIONS. (lb/size) 2=1500/0-3-8, 11=1279/0-3-8, 15=1323/0-3-8

Max Horz 2=178(LC 12)

Max Uplift 2=-170(LC 12), 11=-15(LC 13), 15=-103(LC 13) Max Grav 2=1580(LC 26), 11=1299(LC 2), 15=1546(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3047/453, 3-5=-2833/412, 5-6=-1793/264, 6-7=-1570/294, 7-8=-1671/256,

8-10=-2184/354, 10-11=-2407/396

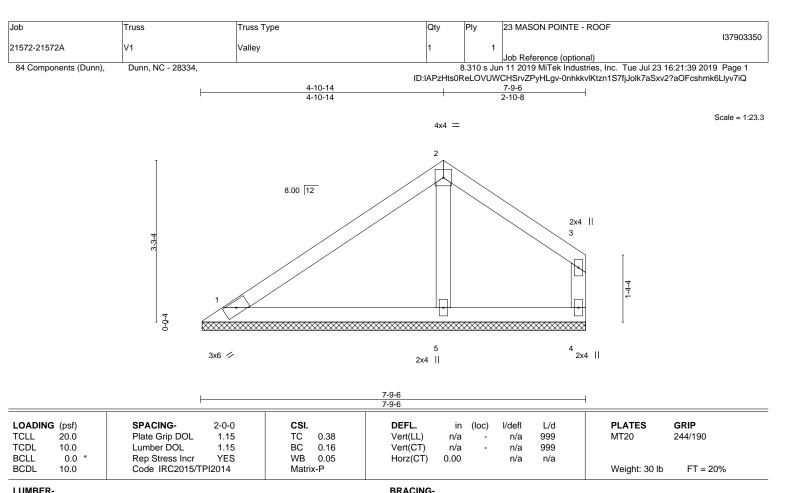
BOT CHORD 2-18=-338/2671, 16-18=-164/2118, 15-16=0/1536, 14-15=0/1551, 12-14=-68/1733,

11-12=-263/2107

WEBS 3-18=-340/235, 5-18=-106/816, 5-16=-894/333, 16-19=-44/471, 6-19=0/466, 14-20=-215/337, 7-20=-110/382, 8-14=-661/296, 8-12=-90/470, 10-12=-367/239

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 5x9 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Ceiling dead load (5.0 psf) on member(s). 19-20; Wall dead load (5.0 psf) on member(s).16-19, 14-20
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-16, 14-15
- 10) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, and 15. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with release controlled in the controlle

Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 **WEBS OTHERS** 2x4 SP No.3

REACTIONS. (lb/size) 1=169/7-9-0, 4=95/7-9-0, 5=308/7-9-0

Max Horz 1=74(LC 12)

Max Uplift 1=-26(LC 12), 4=-52(LC 13), 5=-14(LC 12) Max Grav 1=169(LC 1), 4=102(LC 20), 5=310(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

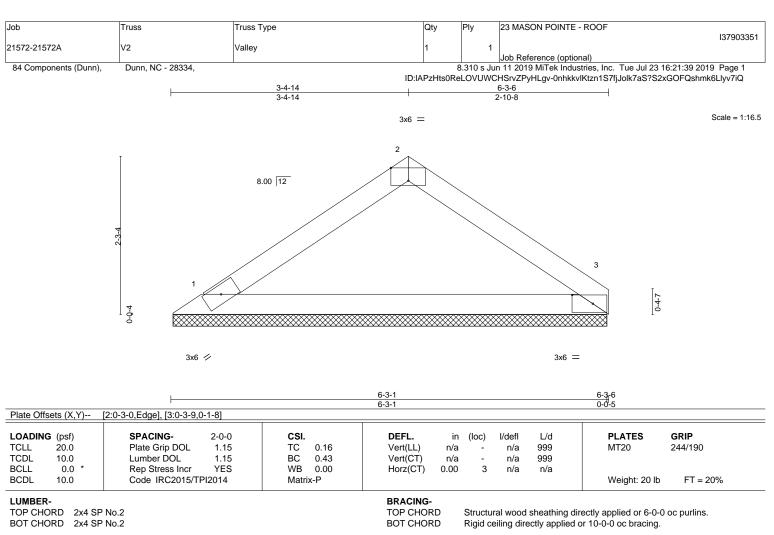
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a

8) n/a

Structural wood sheathing directly applied or 7-9-6 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 1=231/6-2-11, 3=231/6-2-11

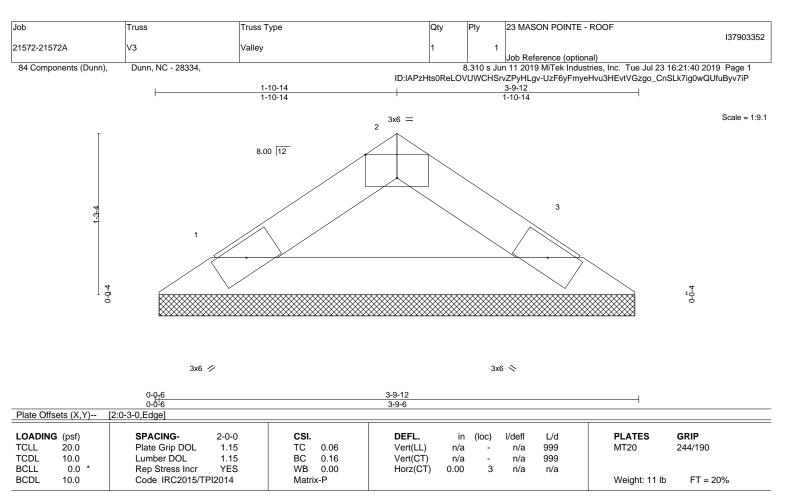
Max Horz 1=48(LC 9)

Max Uplift 1=-25(LC 12), 3=-24(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a
- 8) n/a



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 **BRACING-**

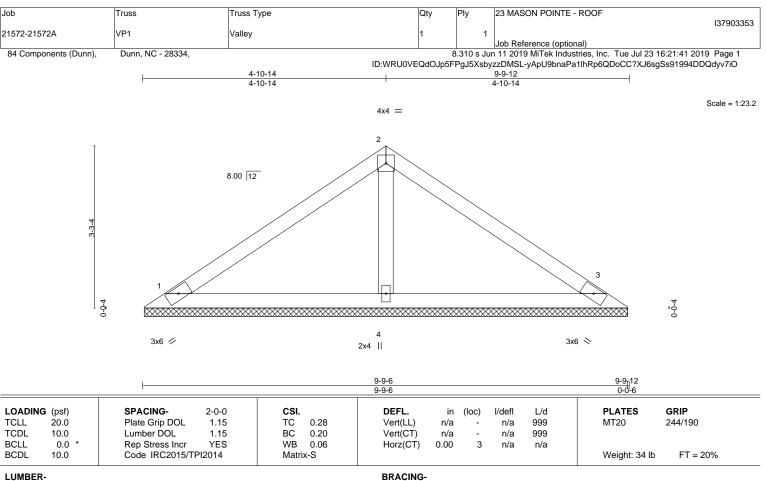
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=114/3-9-0, 3=114/3-9-0

Max Horz 1=-23(LC 8)

Max Uplift 1=-12(LC 12), 3=-12(LC 13)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.3 **OTHERS**

REACTIONS. 1=174/9-9-0, 3=174/9-9-0, 4=359/9-9-0 (lb/size) Max Horz 1=-73(LC 8)

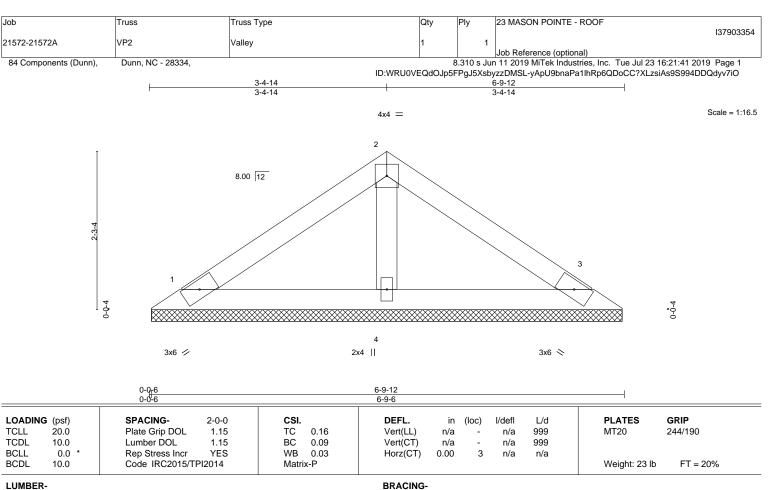
Max Uplift 1=-32(LC 12), 3=-42(LC 13), 4=-12(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a
- 8) n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.3 **OTHERS**

REACTIONS. 1=126/6-9-0, 3=126/6-9-0, 4=215/6-9-0 (lb/size)

Max Hórz 1=48(LC 9)

Max Uplift 1=-28(LC 12), 3=-34(LC 13)

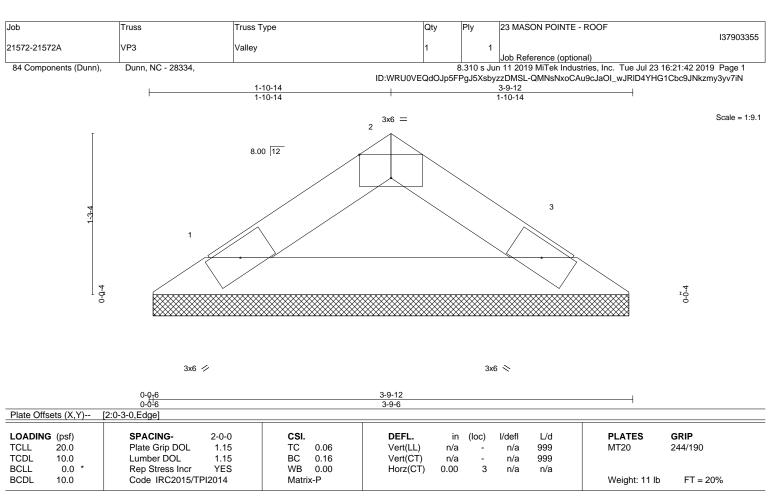
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=114/3-9-0, 3=114/3-9-0 Max Horz 1=23(LC 11)

Max Uplift 1=-12(LC 12), 3=-12(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

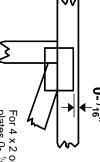
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Symbols

PLATE LOCATION AND ORIENTATION

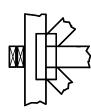
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

PLATE SIZE

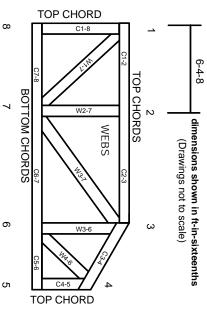

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. Indicated by symbol shown and/or

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

National Design Specification for Metal

DSB-89: ANSI/TPI1:

Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing. Connected Wood Trusses. Installing & Bracing of Metal Plate Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Ņ Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For bracing should be considered may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building
- Cut members to bear tightly against each other

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted

15. Connections not shown are the responsibility of others.

- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.