

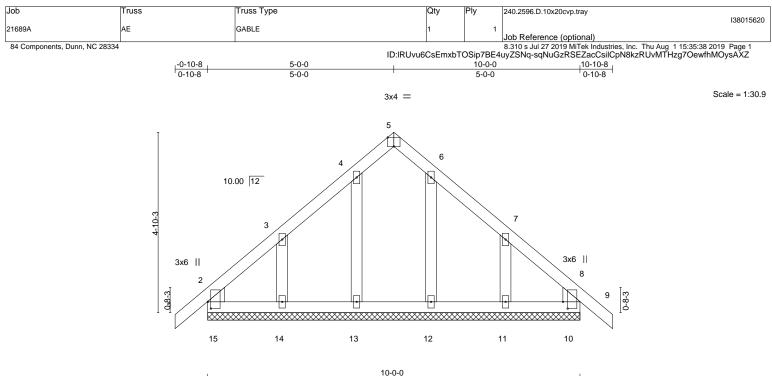
Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21689A 240.2596.D.10x20cvp.tray

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I38015620 thru I38015662

My license renewal date for the state of North Carolina is December 31, 2019.


North Carolina COA: C-0844

August 2,2019

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	Г	10-0-0
Plate Offsets (X,Y)	[2:0-2-2,0-1-0], [2:0-2-5,0-2	-12], [5:0-2-0,Edge], [8:0-2-2,0-1-8], [8:0-2-5,0-2-12], [10:0-0-0,0-2-12], [15:0-0-0,0-2-12]

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.06 WB 0.05 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	9	/defi L/d n/r 120 n/r 120 n/a n/a	PLATES GRIP MT20 244/190 Weight: 56 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD	Structural end vertic		rectly applied or 6-0-0 oc purlins, except

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-0-0.

2x6 SP No.2

2x4 SP No.3

(lb) - Max Horz 15=121(LC 11)

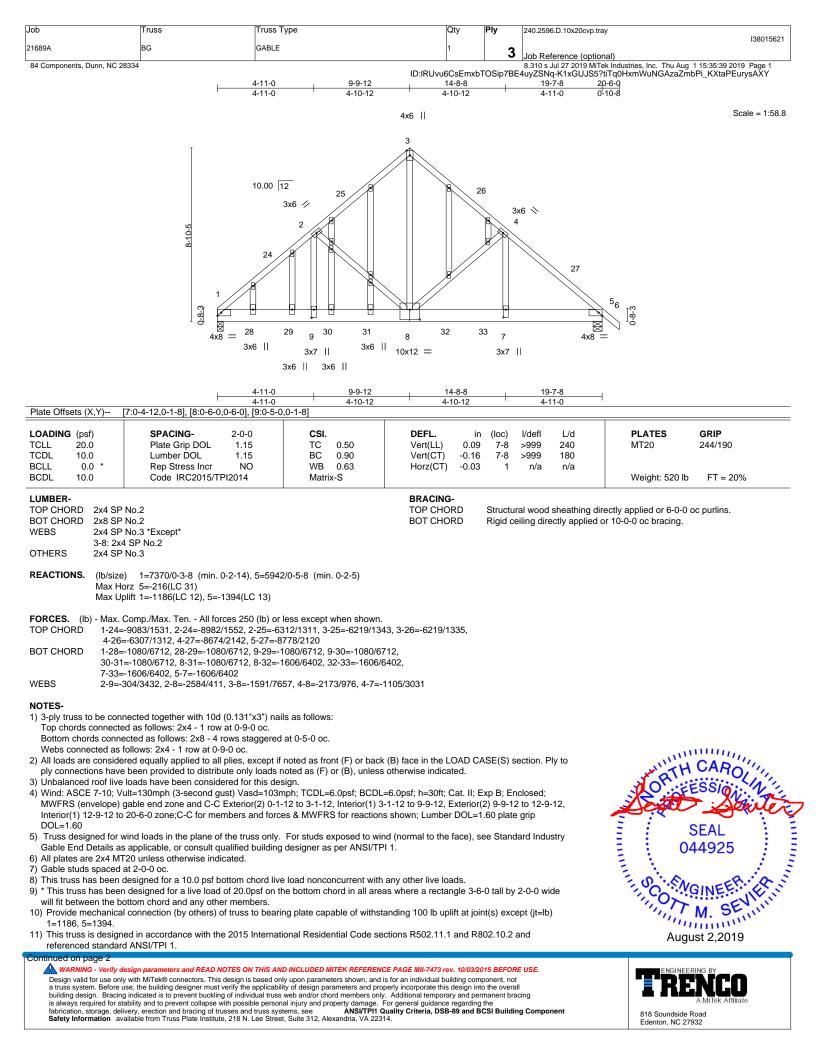
Max Uplift All uplift 100 lb or less at joint(s) 15, 12 except 10=-125(LC 12), 14=-111(LC 12), 11=-127(LC 13) Max Grav All reactions 250 lb or less at joint(s) 10, 15, 14, 13, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

OTHERS


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 5-0-0, Corner(3) 5-0-0 to 8-0-0, Exterior(2) 8-0-0 to 10-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 12 except (jt=lb) 10=125, 14=111, 11=127.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ŀ	lob	Truss	Truss Type	Qty	Ply	240.2596.D.10x20cvp.tray		
	21689A	BG	GABLE	1		138015621		
ľ	1009A	66	GABLE	'	3	Job Reference (optional)		
	84 Components, Dunn, NC 28334 8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:35:39 2019 Page 2							
ID:IRUvu6CsEmxbTOSip7BE4uyZSNq-K1xGUJS5?tiTq0HxmWuNGAzaZmbPi_KXtaPEurys/								

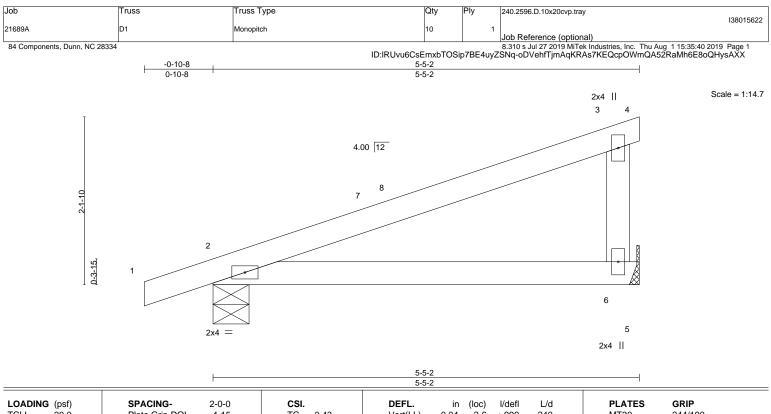
NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1419 lb down and 188 lb up at 1-7-8, 1419 lb down and 188 lb up at 3-7-8, 1419 lb down and 188 lb up at 5-7-8, 1419 lb down and 189 lb up at 7-7-8, 1419 lb down and 182 lb up at 9-7-8, and 1419 lb down and 156 lb up at 11-7-8, and 3190 lb down and 1379 lb up at 13-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-1419(B) 28=-1419(B) 29=-1419(B) 30=-1419(B) 31=-1419(B) 32=-1419(B) 33=-3190(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.43 BC 0.30 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.04 2-6 >999 240 Vert(CT) -0.07 2-6 >841 180 Horz(CT) 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 20 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-5-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

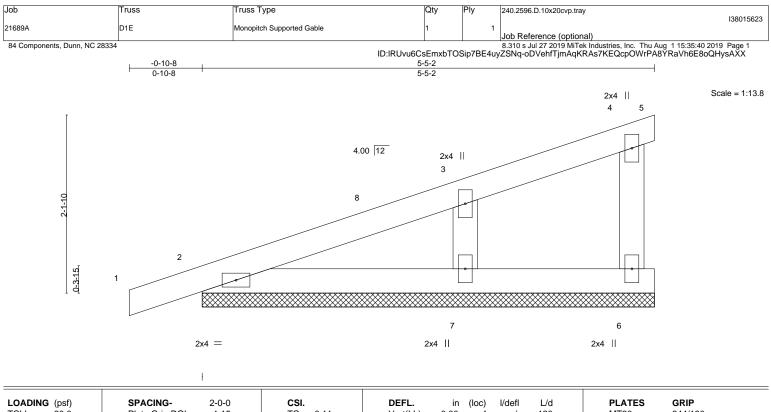
REACTIONS. (lb/size) 6=201/Mechanical, 2=271/0-5-8 (min. 0-1-8) Max Horz 2=84(LC 8) Max Uplift 6=-49(LC 12), 2=-72(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-5-2 zone;C-C for members and forces
- & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.11 BC 0.08 WB 0.06	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00) 1 n/r 120	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 22 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF			BRACING- TOP CHORD		ectly applied or 5-5-2 oc purlins, except
BOT CHORD 2x4 SF WEBS 2x4 SF			BOT CHORD	end verticals. Rigid ceiling directly applied of	or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. All bearings 5-5-2.

Max Horz 2=85(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 6, 2, 7

Max Grav All reactions 250 lb or less at joint(s) 5, 6, 2 except 7=254(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

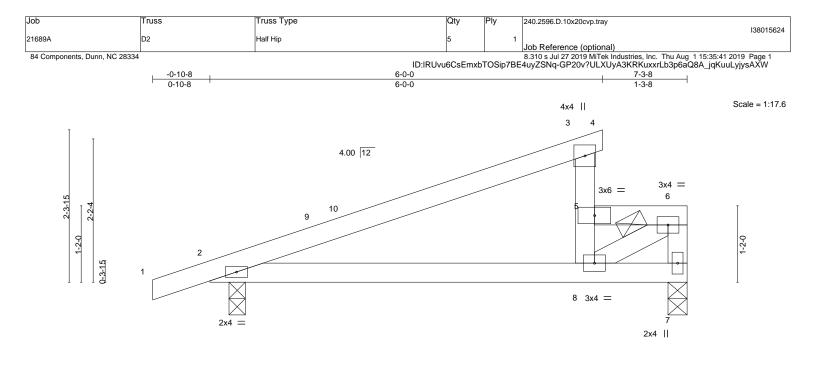
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-5-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

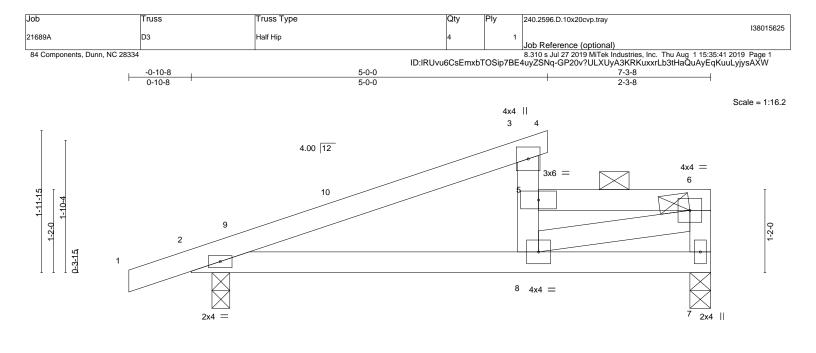
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 2, 7.


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

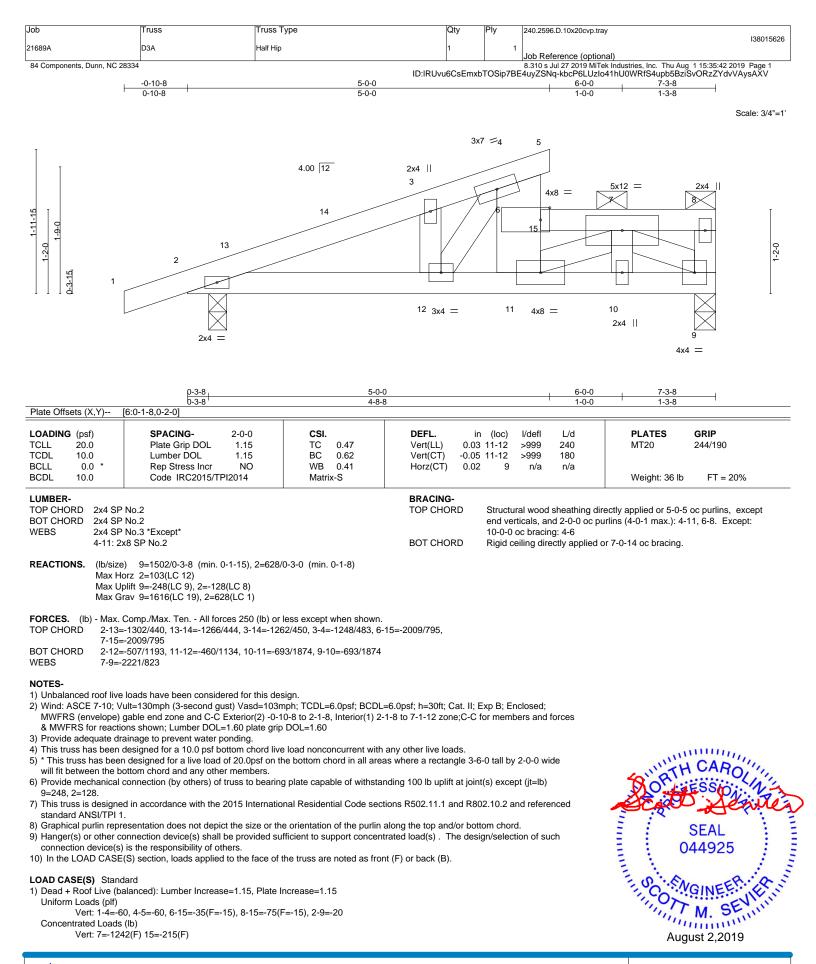
```
LOAD CASE(S) Standard
```


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

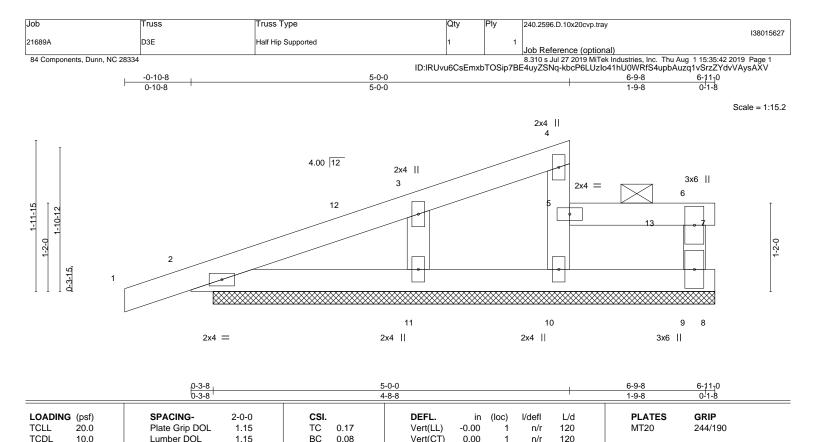
	0-3-8 0-3-8		6-0-0 5-8-8			7-3-8 1-3-8	1
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.94 BC 0.37 WB 0.25	DEFL. ir Vert(LL) -0.03 Vert(CT) -0.08 Horz(CT) 0.00	2-8 >999 2-8 >999	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	()			Weight: 29 lb	FT = 20%
Max Ho	No.2	3-0 (min. 0-1-8)	BRACING- TOP CHORD BOT CHORD	end verticals, a 6-0-0 oc bracir	ind 2-0-0 oc pเ g: 3-5	rectly applied or 6-0-0 urlins (6-0-0 max.): 3- or 10-0-0 oc bracing.	
TOP CHORD 2-9=-4 BOT CHORD 2-8=-1 WEBS 6-8=-2 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vt MWFRS (envelope) (Comp./Max. Ten All forces 250 (lb) or 463/74, 9-10=-424/75, 3-10=-416/89, 5- 179/394 244/604 loads have been considered for this de ult=130mph (3-second gust) Vasd=103i gable end zone and C-C Exterior(2) -0-	6=-558/228, 6-7=-447/174 sign. nph; TCDL=6.0psf; BCDL= 10-8 to 2-1-8, Interior(1) 2-	=6.0psf; h=30ft; Cat. II;				
 Provide adequate dra A) This truss has been will fit between the bo b) Provide mechanical of This truss is designer standard ANSI/TPI 1. 		e load nonconcurrent with he bottom chord in all area g plate capable of withstar nal Residential Code sect	as where a rectangle 3-6 nding 100 lb uplift at join ions R502.11.1 and R86	t(s) 7, 2. 02.10.2 and refer			
 Hanger(s) or other co connection device(s) 	esentation does not depict the size or the onnection device(s) shall be provided su is the responsibility of others. (S) section, loads applied to the face of	ifficient to support concent	rated load(s). The des		uch	(Jost	Ession
Uniform Loads (plf)	alanced): Lumber Increase=1.15, Plate 0, 3-4=-20, 5-6=-75(F=-15), 2-7=-20 (lb)	ncrease=1.15				0	SEAL 944925


Vert: 5=-190(F)

August 2,2019


Ô

	0-3-8 0-3-8	5-0-1 4-8-1				7-3-8 2-3-8	———			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.33 WB 0.34 Matrix-S	DEFL. ir Vert(LL) 0.03 Vert(CT) -0.06 Horz(CT) 0.00	2-8 >999 2-8 >999	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%			
			BRACING- TOP CHORD BOT CHORD	end verticals, a 10-0-0 oc braci	nd 2-0-0 oc pu ng: 3-5	ectly applied or 6-0-0 Irlins (6-0-0 max.): 3- or 10-0-0 oc bracing.				
Max H Max U	REACTIONS. (Ib/size) 7=451/0-3-8 (min. 0-1-8), 2=427/0-3-0 (min. 0-1-8) Max Horz 2=106(LC 12) Max Uplift 7=-50(LC 9), 2=-92(LC 8) Max Grav 7=458(LC 2), 2=427(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-9=-660/177, 9-10=-624/182, 3-10=-579/192, 5-6=-859/346, 6-7=-422/171 BOT CHORD 2-8=-256/589 WEBS 6-8=-337/833										
 2) Wind: ASCE 7-10; V MWFRS (envelope) & MWFRS for reactives 3) Provide adequate dr 4) This truss has been will fit between the b 6) Provide mechanical 7) This truss is designe standard ANSI/TPI 1 8) Graphical purlin repr 9) Hanger(s) or other c connection device(s) 10) In the LOAD CASE LOAD CASE(S) Stand 1) Dead + Roof Live (b Uniform Loads (plf) 	resentation does not depict the size or the onnection device(s) shall be provided su) is the responsibility of others. :(S) section, loads applied to the face of dard alanced): Lumber Increase=1.15, Plate :00, 3-4=-20, 5-6=-75(F=-15), 2-7=-20 : (lb)	mph; TCDL=6.0psf; BCDL- 10-8 to 2-1-8, Interior(1) 2- b DOL=1.60 e load nonconcurrent with he bottom chord in all area g plate capable of withstar onal Residential Code sect he orientation of the purlin lifficient to support concent the truss are noted as fror	1-8 to 7-1-12 zone;C-C any other live loads. as where a rectangle 3-6 nding 100 lb uplift at join tions R502.11.1 and R80 along the top and/or bot trated load(s). The desi	for members and 6-0 tall by 2-0-0 w t(s) 7, 2. D2.10.2 and refer tom chord.	ide enced uch		CARO ESSION SEAL 44925 GINEER M. SENTITUTION Ust 2,2019			


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY ANITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

-0.00

n/a

n/a

Weight: 27 lb

FT = 20%

Horz(CT)

BRACING-

TOP CHORD BOT CHORD		TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 5-10, 5-7.
WEBS	2x4 SP No.3 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS REACTIONS.	2x4 SP No.3 All bearings 6-7-8.		

WB

Matrix-P

0.13

(lb) - Max Horz 2=106(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 10, 2, 8, 11, 9 except 7=-287(LC 19)

NO

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 11 except 10=292(LC 19), 9=690(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 5-10=-265/223

WEBS 6-9=-646/435

0.0

10.0

NOTES

BCLL

BCDL

LUMBER-

1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

Code IRC2015/TPI2014

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 6-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2, 8, 11, 9
- except (jt=lb) 7=287.
- 9) Non Standard bearing condition. Review required.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

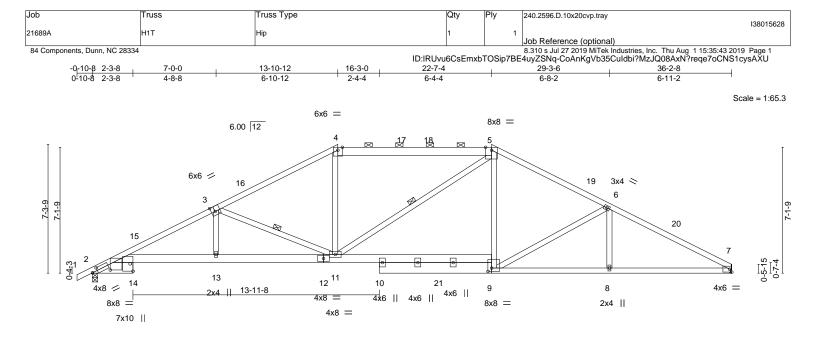
Vert: 1-4=-60, 5-7=-75(F=-15), 2-8=-20

ued on page

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	240.2596.D.10x20cvp.tray
					138015627
21689A	D3E	Half Hip Supported	1	1	
					Job Reference (optional)
04 Ocean contra Duran NIO 00004			0.040 - Jul 07.0040 MiT-ly la duatria a Juan Thu Aven 4.45-05-40.0040, Dana 0		

84 Components, Dunn, NC 28334

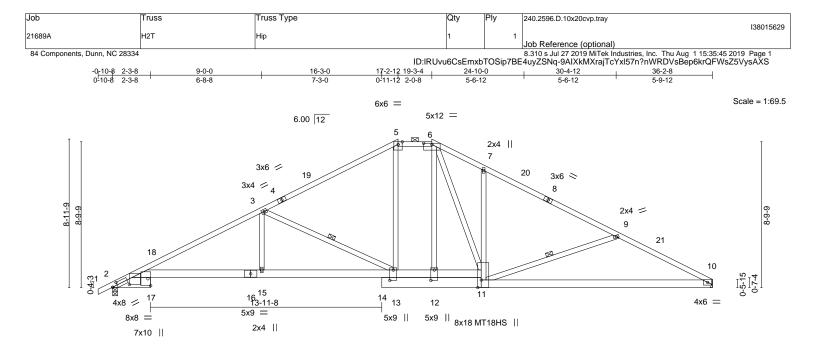

8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:35:42 2019 Page 2 ID:IRUvu6CsEmxbTOSip7BE4uyZSNq-kbcP6LUzIo41hU0WRfS4upbAuzq1vSrzZYdvVAysAXV

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-125(F) 13=-263(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ł	2-3-8	7-0-0	<u>13-10-</u> 6-10-1		16-3-0	22-7-4		+	29-3		36-2-8	
Plate Offsets (X	<u>2-3-8</u> ,Y) [2	<u>4-8-8</u> :0-3-10,0-2-0], [2:1-0-1			<u>2-4-4</u>)-4-2,Edge],	• • •			6-8-	2	6-11-2	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.79 0.81 0.48 <-S	Vert(CT)	-0.16	(loc) 9-11 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 *Except* 4-5: 2x6 SP No.2, 5-7: 2x4 SP No.1 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-10-5 max.): 4-5. BOT CHORD 2x8 SP No.2 *Except* 9-12: 2x6 SP No.2, 7-9: 2x4 SP No.2, 2-12: 2x6 SP DSS BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.3 2x4 SP No.3 3-11, 5-11												
	REACTIONS. (lb/size) 7=1439/Mechanical, 2=1502/0-3-8 (min. 0-1-12) Max Horz 2=129(LC 16) Max Uplift 7=-136(LC 13), 2=-160(LC 12)											
TOP CHORD	2-15=-3 17-18=- 7-20=-2	omp./Max. Ten All for 3385/457, 3-15=-3305/4 -2015/409, 5-18=-2015, 2654/359	179, 3-16=-2349 /409, 5-19=-211	/363, 4-16=- 9/383, 6-19=	-2252/396, 4 =-2214/352,	-17=-2015/409, 6-20=-2571/382,						
BOT CHORD	10-21=·	374/2936, 13-14=-370/2 -155/1911, 9-21=-157/1	908, 8-9=-274/2	2297, 7-8=-2	272/2289		,					
WEBS	3-13=0/	/487, 3-11=-1031/269, 4	4-11=0/586, 5-1	1=-99/295, 5	5-9=-10/490,	0-9=-448/211						
 2) Wind: ASCE MWFRS (env 19-0-3, Interio MWFRS for r 3) Provide adeq 4) This truss has 	7-10; Vul velope) ga or(1) 19-0 reactions juate drain s been de	bads have been consident t=130mph (3-second gradient table end zone and C-C 0-3 to 22-7-4, Exterior(2 shown; Lumber DOL=1 nage to prevent water p resigned for a live load	ust) Vasd=103m Exterior(2) -0-1 22-7-4 to 27-8 .60 plate grip D bonding. ottom chord live	DPh; TCDL=6 0-8 to 2-8-15 -11, Interior(OL=1.60	5, Interior(1) (1) 27-8-11 to ncurrent with	2-8-15 to 13-10-12, 5 36-1-12 zone;C-C 6 any other live loads	Exteric for me	or(2) 13- embers a	-10-12 to and force	s &	ORTH ORTH	CAROL


- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=136, 2=160.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	-2	2-3-8	6-8-8		7-3-0		3-0-4		8-4-2			8-7-2	
Plate Offsets ((X,Y)	[2:0-3-1	10,0-2-0], [2:1-0-1	,0-1-15], [6:0-6-	0,0-0-15], [1	1:0-5-8,Edge	e], [12:0-7-8,0-	·2-8], [1	13:0-7-8,0-2	-8]			
LOADING (ps TCLL 20. TCDL 10. BCLL 0 BCDL 10.	.0 .0 .0 *		SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matriz	0.90 0.90 0.50 x-S	DEFL. Vert(L Vert(C Horz(C	L) - T) -	in (loc) 0.22 10-11 0.49 10-11 0.15 10	l/defl >999 >885 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 244 lb	GRIP 244/190 244/190 FT = 20%
									0	lirectly applied, except			
BOT CHORD 2x8 SP No.2 *Except* 2-16.10-11: 2x6 SP DSS. 11-16: 2x6 SP No.2					2-0-0 oc purlins (4-2-15 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 8-8-13 oc bracing: 2-15.					Except:			
WEBS	2x4 SP			. 2/10 01 11012			WEBS			at midpt	5	3-13, 9-11	
REACTIONS.	(lb/size Max He	,	1502/0-3-8 (min. 158(LC 16)	0-1-12), 10=143	39/Mechanic	al							

19-3-4

27-7-6

Max Uplift 2=-186(LC 12), 10=-162(LC 13)

FORCES. (lb) - Max Comp /Max Ten - All forces 250 (lb) or less except when shown

9-0-0

2-3-8

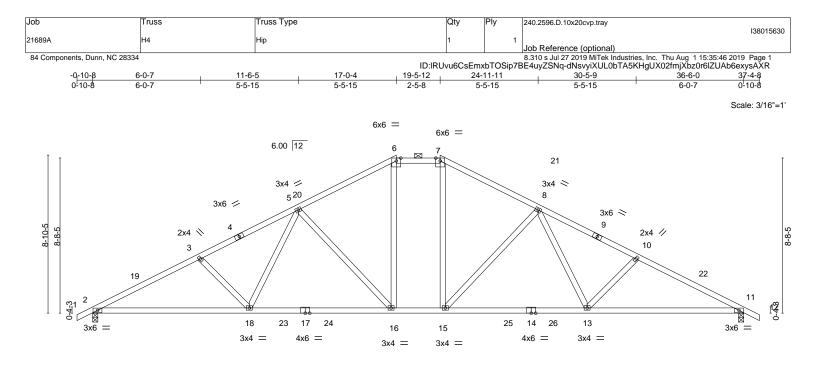
TOP CHORD	2-18=-3120/358, 3-18=-3012/391, 3-4=-1986/297, 4-19=-1902/309, 5-19=-1859/336,
	5-6=-1661/352, 6-7=-2187/413, 7-20=-2049/308, 8-20=-2131/287, 8-9=-2247/286,
	9-21=-2641/451, 10-21=-2765/433
BOT CHORD	2-17=-362/2664, 16-17=-350/2699, 15-16=-350/2699, 14-15=-350/2699, 13-14=-352/2604,
	12-13=-71/1661, 11-12=-79/1669, 10-11=-333/2420
WEBS	3-15=0/558, 3-13=-1154/326, 6-12=-262/456, 6-11=-232/896, 9-11=-541/340,
	5-13=-12/517 7-11=-390/260

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-8-15, Interior(1) 2-8-15 to 17-2-12, Exterior(2) 17-2-12 to 24-4-11 , Interior(1) 24-4-11 to 36-1-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

16-3-0


- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=186, 10=162.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

36-2-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Coulity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. **Base Context Street Street**

L	8-9-6	17-0-4	19-5-12	27-8-10	36-6-0
	8-9-6	8-2-14	2-5-8	8-2-14	8-9-6
L OADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.64	DEFL.	in (loc) l/defl L/c -0.30 13-15 >999 240	
CDL 20.0	Lumber DOL 1.15	BC 0.97	Vert(LL) Vert(CT)	-0.51 13-15 >857 180	
CLL 0.0 *	Rep Stress Incr YES	WB 0.77	Horz(CT)	0.13 11 n/a n/a	-
CDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 195 lb FT = 20%
UMBER-		÷	BRACING-		
OP CHORD 2x4 SF			TOP CHOR		thing directly applied or 2-7-14 oc purlins, except
OT CHORD 2x4 SF				2-0-0 oc purlins (4-7-1	,
EBS 2x4 SF	P No.3		BOT CHOR	D Rigid ceiling directly a	applied or 2-2-0 oc bracing.
Max H	e) 2=1510/0-3-8 (min. 0-1-12), 11=15 lorz 2=-148(LC 13) Jplift 2=-184(LC 12), 11=-184(LC 13)	510/0-3-8 (min. 0-1-12)			
ORCES. (Ib) - Max.	Comp./Max. Ten All forces 250 (lb) o	r less except when shown.			
	=-2719/338, 3-19=-2662/356, 3-4=-2490	, , ,	,		
	=-1806/350, 6-7=-1551/340, 7-21=-1806	, , ,	9=-2354/346,		
	=-2490/319, 10-22=-2662/356, 11-22=-2			_	
	=-348/2366, 18-23=-197/1965, 17-23=-1	,	,		
	6=-42/1551, 15-25=-162/1965, 14-25=-1	62/1965, 14-26=-162/196	5, 13-26=-162/196	5,	
	3=-243/2366 =-301/190, 5-18=-46/498, 5-16=-645/24	0 6 16 - 56/576 7 15 - 56	1676		
	645/240 8-1347/498 10-13301/1		<i>1</i> 570,		

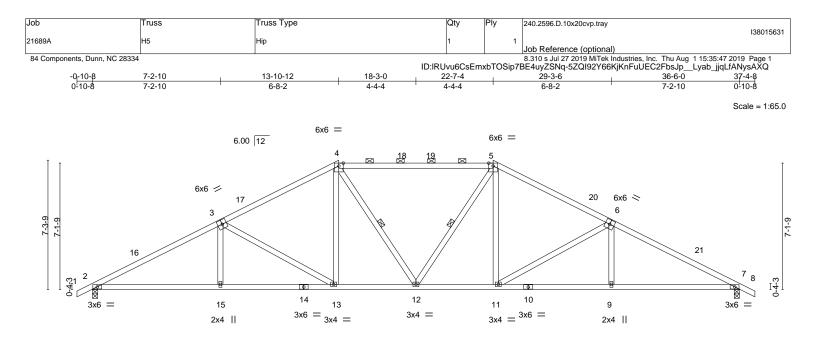
8-15=-645/240, 8-13=-47/498, 10-13=-301/190

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-9-5, Interior(1) 2-9-5 to 17-0-4, Exterior(2) 17-0-4 to 24-7-11, Interior(1) 24-7-11 to 37-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=184, 11=184.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

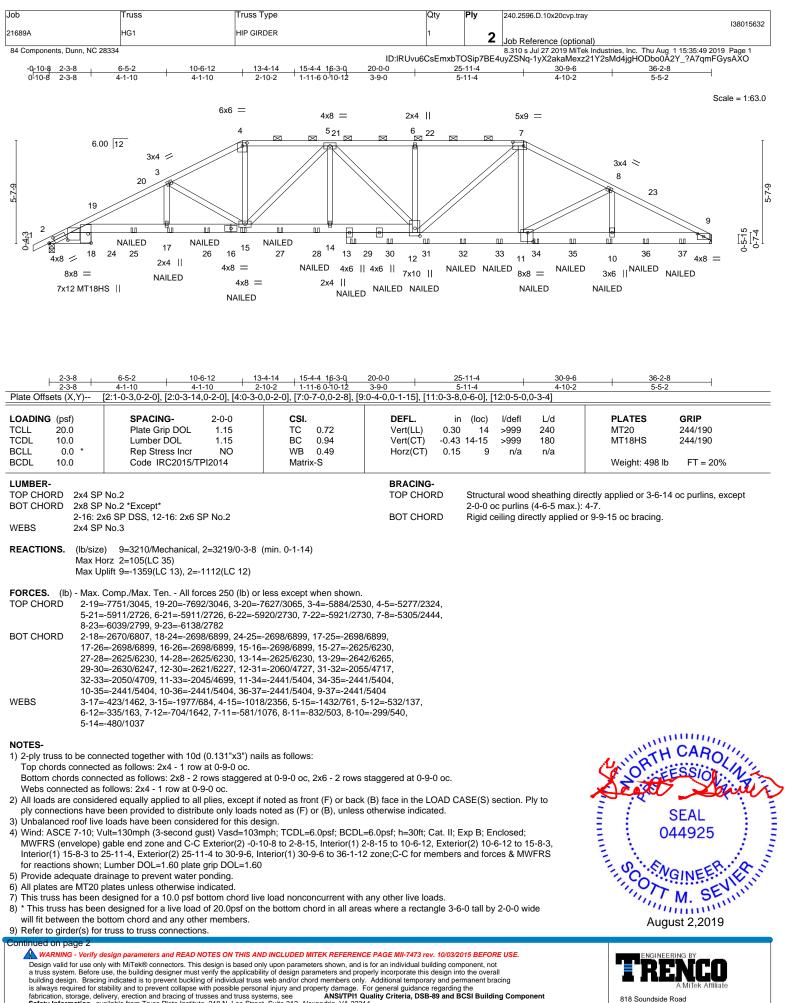
LOAD CASE(S) Standard

0 1111111111111111 SEAL 044925 S Μ. humm August 2,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	7-2-10	13-10-1	2	-	22-7-4		_	29-		36-6-0	
·	7-2-10	6-8-2		-	8-8-8		1	6-8	-2	7-2-10	1
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.98 0.86 0.65 S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.29 0.13	`1Ź	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%
	No.2 *Except* 4 SP DSS				BRACING- TOP CHOR				sheathing dire (2-2-0 max.):	ectly applied, except 4-5.	
BOT CHORD 2x4 SP WEBS 2x4 SP	No.2				BOT CHOF WEBS	D	Rigid c		ctly applied o	r 10-0-0 oc bracing. 12, 5-12	
Max Ho Max Up	 2=1510/0-3-8 (min. 2=-122(LC 17) plift 2=-160(LC 12), 7=-1 Comp./Max. Ten All fo 	60(LC 13)	X	,							
TOP CHORD 2-16= 18-19	-2728/363, 3-16=-2642/3 =-1840/363, 5-19=-1840	388, 3-17=-2122/3	348, 4-17=-	2029/380, 4	-18=-1840/363,						
BOT CHORD 2-15=	-264/2348, 14-15=-265/2 =-268/2346, 9-10=-268/2	,	,	13=-137/181	4, 11-12=-140/181	4,					
WEBS 3-15=	0/306, 3-13=-607/213, 4	-13=-36/441, 5-11	I=-36/441,	6-11=-607/2	14, 6-9=0/306						
 Wind: ASCE 7-10; Vi MWFRS (envelope) , Interior(1) 19-0-11 t 	loads have been consid ult=130mph (3-second g gable end zone and C-C o 22-7-4, Exterior(2) 22- Lumber DOL=1.60 plate	ust) Vasd=103mp Exterior(2) -0-10- 7-4 to 27-9-3, Inte	h; TCDL=€ -8 to 2-9-5,	Interior(1) 2	-9-5 to 13-10-12, E	xterior	(2) 13-1	0-12 to 19			

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=160, 7=160.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ENGINEERING BY AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

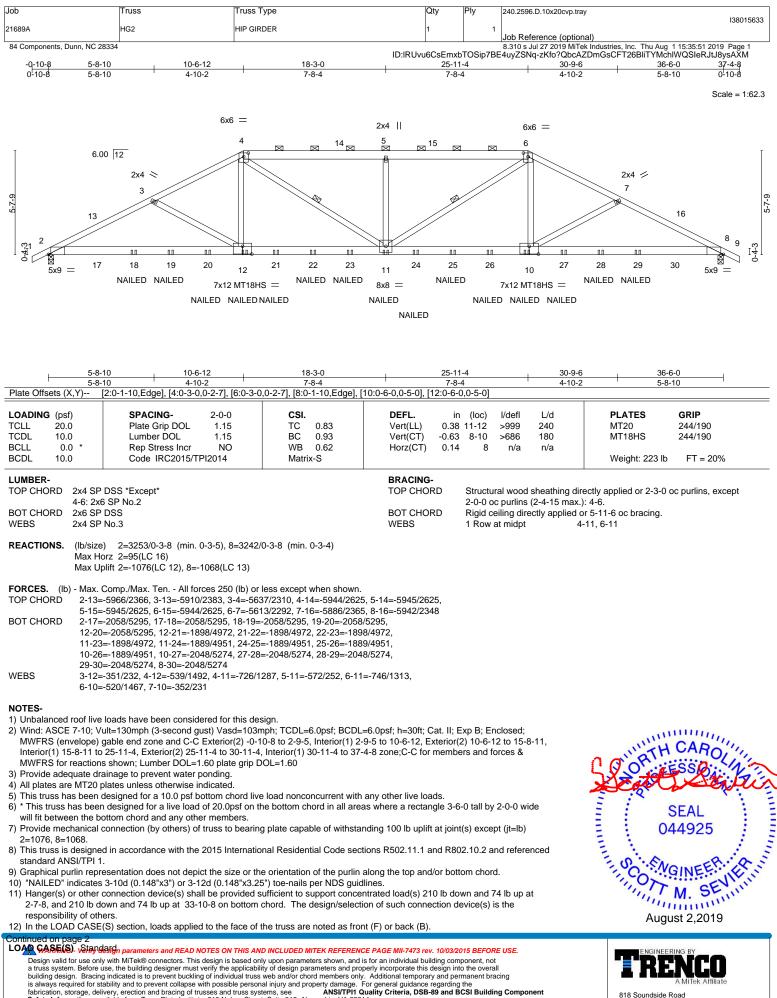
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

ŀ	lob	Truss	Truss Type	Qty	Ply	240.2596.D.10x20cvp.tray
						138015632
- 1	1689A	HG1	HIP GIRDER	1	2	
					Z	Job Reference (optional)
	84 Components, Dunn, NC 28334					8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:35:50 2019 Page 2
			ID:IRUvu	6CsEmxb7	OSip7BE	4uyZSNq-V85Qo4b_PF5veid2vKbyDVxOLCMPn?E9PnaKniysAXN

NOTES-


- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=1359, 2=1112.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 229 lb down and 106 lb up at 2-7-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

- LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)
 - Vert: 1-4=-60, 4-7=-60, 7-9=-60, 2-9=-20 Concentrated Loads (lb)

Vert: 17=-207(B) 15=-206(B) 10=-202(B) 24=-229(B) 25=-206(B) 26=-207(B) 27=-206(B) 28=-206(B) 29=-202(B) 30=-202(B) 31=-202(B) 32=-202(B) 33=-202(B) 32=-202(B) 32=-2 34=-202(B) 35=-202(B) 36=-202(B) 37=-202(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

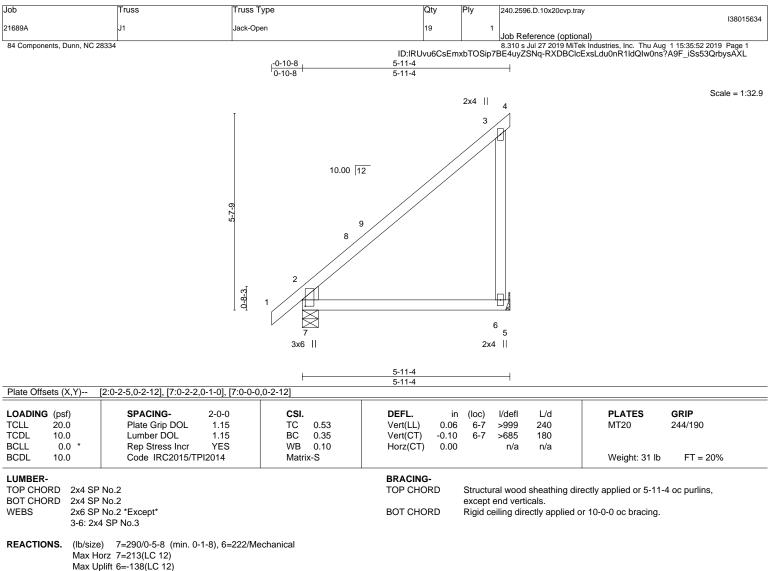
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.2596.D.10x20cvp.tray
					138015633
21689A	HG2	HIP GIRDER	1	1	
					Job Reference (optional)
84 Components, Dunn, NC 28334					8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:35:51 2019 Page 2

8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:35:51 2019 Page 2 ID:IRUvu6CsEmxbTOSip7BE4uyZSNq-zKfo?QbcAZDmGsCFT26BITYMchIWQSIeRJtJ8ysAXM

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 6-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 12=-202(F) 11=-202(F) 10=-202(F) 17=-210(F) 18=-206(F) 19=-206(F) 20=-206(F) 21=-202(F) 22=-202(F) 23=-202(F) 24=-202(F) 25=-202(F) 26=-202(F) 27=-206(F) 29=-206(F) 29=-206(F) 30=-210(F) 20=-206(F) 20=-206(F) 20=-206(F) 20=-202(F) 20=-2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

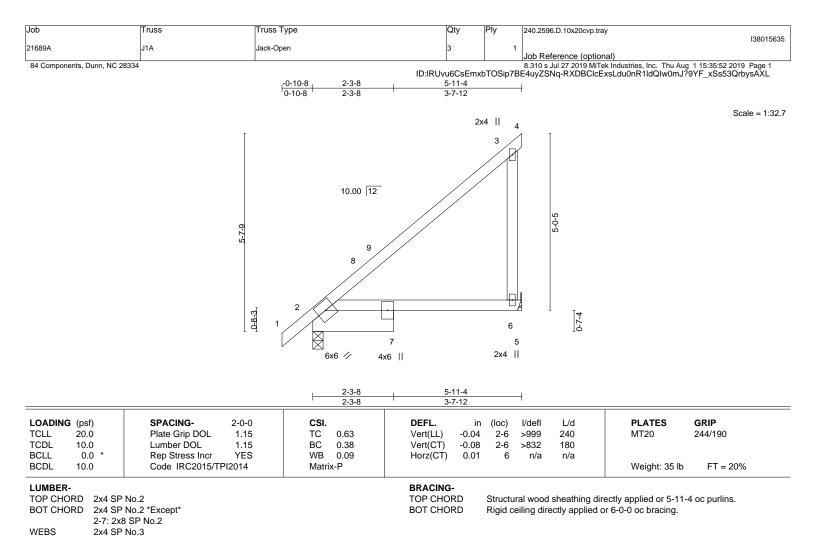
Max Grav 7=290(LC 1), 6=251(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=138.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 2=287/0-3-8 (min. 0-1-8), 6=226/Mechanical Max Horz 2=215(LC 12) Max Uplift 6=-131(LC 12)

Max Grav 2=287(LC 1), 6=253(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

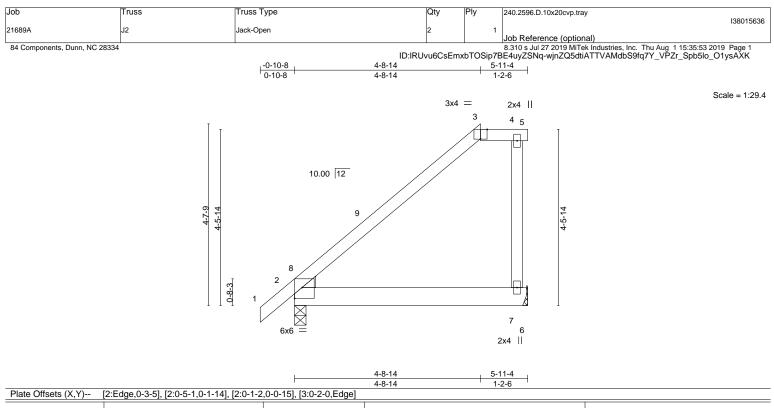
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; C-C for members and forces

& MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=131.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.41 BC 0.19 WB 0.05 Matrix-S	DEFL. Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) 0.0	3 2-7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	' No.2		BRACING- TOP CHORD	Struct	ural wood	sheathing di	irectly applied or 5-11-4 oc purlins, except

 BOT CHORD
 2x6 SP No.2
 2-0-0 oc purlins: 3-5.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 WEDGE
 Left: 2x4 SP No.3
 Left: 2x4 SP No.3

REACTIONS. (Ib/size) 2=287/0-3-8 (min. 0-1-8), 7=226/Mechanical Max Horz 2=175(LC 12) Max Uplift 2=-4(LC 12), 7=-81(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-8-14, Exterior(2) 4-8-14 to 5-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

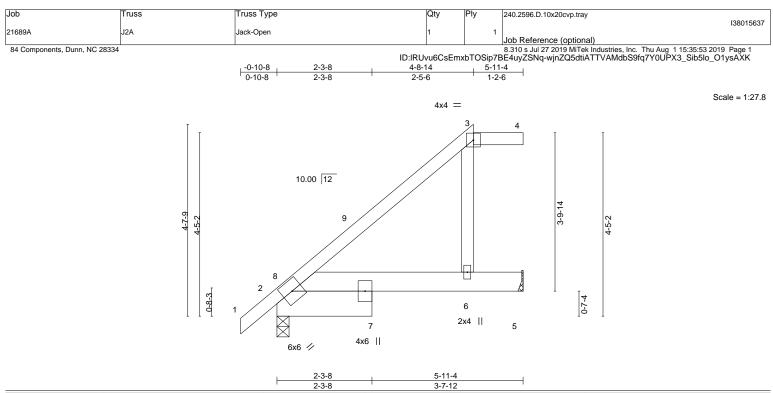
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		2-3-8	3-7-12		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	i) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) 0.03 2-6	6 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.30	Vert(CT) -0.04 2-6	6 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.01 5	5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 38 lb FT = 20%
			BRACING-		

TOP CHORD

2x4 SP No.2 BOT CHORD 2x8 SP No.2 *Except* 2-5: 2x6 SP No.2 WEBS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-11-4 oc purlins, except 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

(Ib/size) 2=296/0-3-8 (min. 0-1-8), 5=227/Mechanical REACTIONS. Max Horz 2=173(LC 12) Max Uplift 2=-9(LC 12), 5=-71(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-8-14, Exterior(2) 4-8-14 to 5-11-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

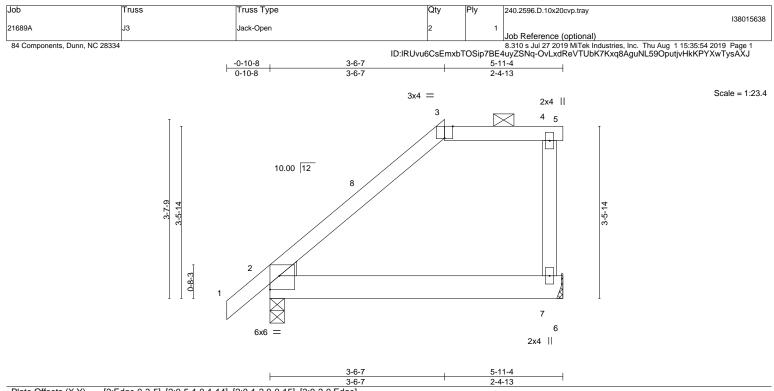
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE MILETATES. INVALUE DELIGIE ODE Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dranage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.40	Vert(LL) 0.02	2-7 >999	240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.20	Vert(CT) -0.03	2-7 >999	180	
CLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00	n/a	n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 31 lb FT = 20%

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 3-5.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=287/0-3-8 (min. 0-1-8), 7=226/Mechanical Max Horz 2=136(LC 12) Max Uplift 2=-24(LC 12), 7=-44(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-6-7, Exterior(2) 3-6-7 to 5-11-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

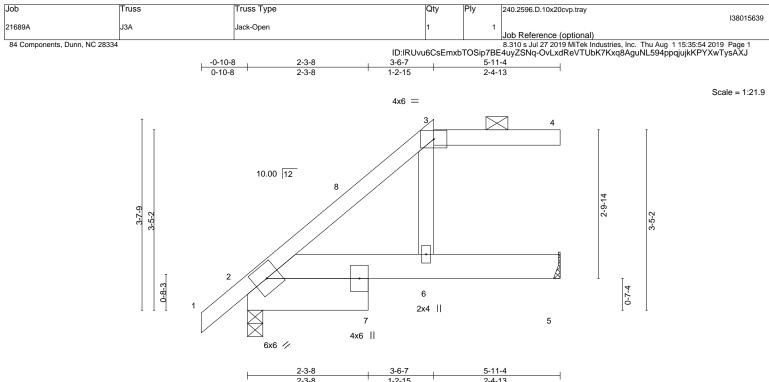
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



Structural wood sheathing directly applied or 5-11-4 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		2-3-8	1-2-15	2-4-13	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.42 BC 0.52	DEFL. Vert(LL) Vert(CT)	in (loc) l/defl L/d 0.05 6 >999 240 -0.07 6 >978 180	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.07 Matrix-P	Horz(CT)	0.01 5 n/a n/a	Weight: 36 lb FT = 20%

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x8 SP No.2 *Except*

 2-5: 2x6 SP No.2

 WEBS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-11-4 oc purlins, except 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

- REACTIONS. (lb/size) 2=296/0-3-8 (min. 0-1-8), 5=227/Mechanical Max Horz 2=135(LC 12) Max Uplift 2=-25(LC 12), 5=-66(LC 9)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. WEBS 3-6=-318/242

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-6-7, Exterior(2) 3-6-7 to 5-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

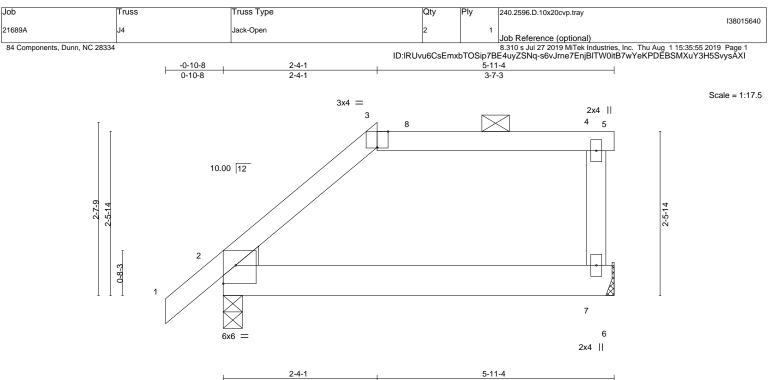
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.01	2-7	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.03	2-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matrix	k-S	. ,					Weight: 29 lb	FT = 20%

BOT CHORD

2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

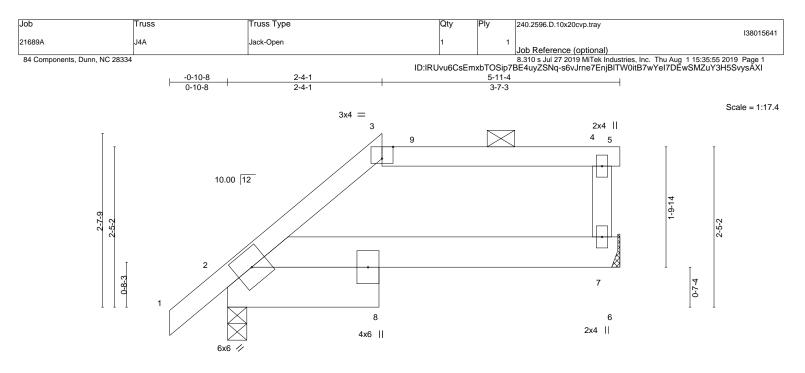
 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=287/0-3-8 (min. 0-1-8), 7=226/Mechanical Max Horz 2=98(LC 12) Max Uplift 2=-32(LC 12), 7=-44(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BIB Soundside Road Edenton, NC 27932

			2-3-8 2-3-8	+	
Plate Offsets (X,Y)	[3:0-2-0,Edge]				
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.52	DEFL. in (loc) l/defl L/d PLATES GRII Vert(LL) -0.01 2-7 >999 240 MT20 244/	

Vert(CT)

Horz(CT)

-0.02

0.01

2-7

7

>999

n/a

180

n/a

Malaka 04.0

BCDL	10.0	Code IRC2015/TPI2014	Matrix-S			Vveight: 34 lb	FI = 20%		
LUMB				BRACING-	• • • • • • • • •				
TOP CHORD 2x4 SP No.2				TOP CHORD	Structural wood sheathing directly applied or 5-11-4 oc purlins, except				
BOT C	HORD 2	k8 SP No.2 *Except*			2-0-0 oc purlins: 3-5.				
	2.	6: 2x6 SP No.2		BOT CHORD	Rigid ceiling directly applied c	or 6-0-0 oc bracing.			
WEBS	2	x4 SP No.3							

REACTIONS. (lb/size) 2=287/0-3-8 (min. 0-1-8), 7=226/Mechanical Max Horz 2=95(LC 12) Max Uplift 2=-34(LC 12), 7=-42(LC 9)

Lumber DOL

Rep Stress Incr

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

TCDL

BCLL

10.0

0.0

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC

WB

0.21

0.03

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15

YES

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BIB Soundside Road Edenton, NC 27932

	<u>1-1-10</u> 1-1-10		<u>5-11-4</u> 4-9-10	
Plate Offsets (X,Y)	[2:Edge,0-3-5], [2:0-5-1,0-1-14], [2:0-1-2	,0-0-15], [3:0-2-0,0-1-13]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.20 WB 0.03 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 2-7 >999 240 Vert(CT) -0.03 2-7 >999 180 Horz(CT) 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%

LUMBER-			BRACING-		
TOP CHORD	2x4 SP N	lo.2	TOP CHORD	Structural wood sheathing dire	ectly applied or 5-11-4 oc purlins, except
BOT CHORD	2x6 SP N	lo.2		2-0-0 oc purlins: 3-5.	
WEBS	2x4 SP N	lo.3	BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.
WEDGE					-

Left: 2x4 SP No.3

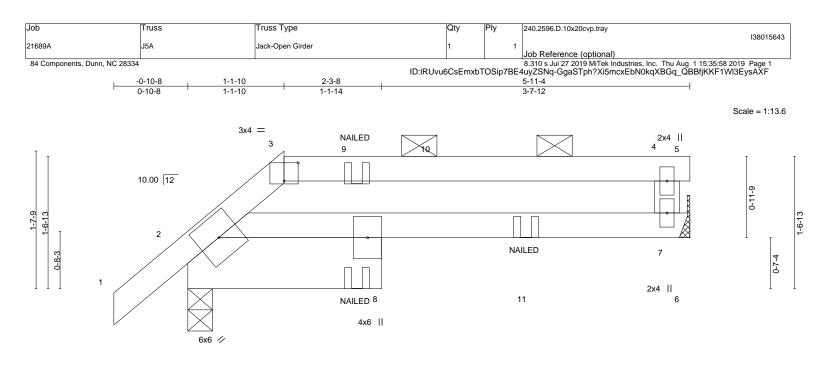
REACTIONS. (lb/size) 2=291/0-3-8 (min. 0-1-8), 7=230/Mechanical Max Horz 2=64(LC 35) Max Uplift 2=-53(LC 12), 7=-54(LC 9) Max Grav 2=291(LC 1), 7=230(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-20, 2-6=-20 Concentrated Loads (lb)

Vert: 11=-4(B) 12=-4(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>1-1-10</u> <u>1-1-10</u>	<u>2-3-8</u> 1-1-14	<u>5-11-4</u> 3-7-12	
Plate Offsets (X,Y)	[3:0-2-0,0-2-9]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.49 BC 0.50	Vert(LL) 0.05 2-7 >999 240 Vert(CT) -0.08 2-7 >786 180	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.03 Matrix-S	Horz(CT) 0.02 7 n/a n/a	Weight: 27 lb FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 5-11-4 oc purlins, except
BOT CHORD	2x4 SP No.2 *Except*		2-0-0 oc purlins: 3-5.
	2-8: 2x8 SP No.2	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	2x4 SP No.3		

REACTIONS. (Ib/size) 2=299/0-3-8 (min. 0-1-8), 7=249/Mechanical Max Horz 2=61(LC 35)

Max Uplift 2=-63(LC 12), 7=-86(LC 9) Max Grav 2=299(LC 1), 7=249(LC 24)

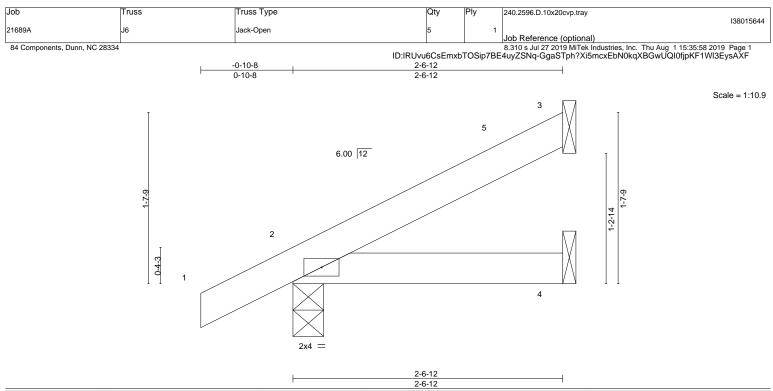
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-60, 4-5=-20, 2-6=-20 Concentrated Loads (lb) Vert: 8=-4(F) 11=-30(F)

Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTIGATION AND fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				2-0-12	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 2-4 >999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.06	Vert(CT) -0.00 2-4 >999 180	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 10 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (lb/size) 3=57/Mechanical, 2=169/0-3-8 (min. 0-1-8), 4=24/Mechanical Max Horz 2=63(LC 12) Max Uplift 3=-39(LC 12), 2=-31(LC 12) Max Grav 3=57(LC 1), 2=169(LC 1), 4=47(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-6-0 zone;C-C for members and forces

& MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

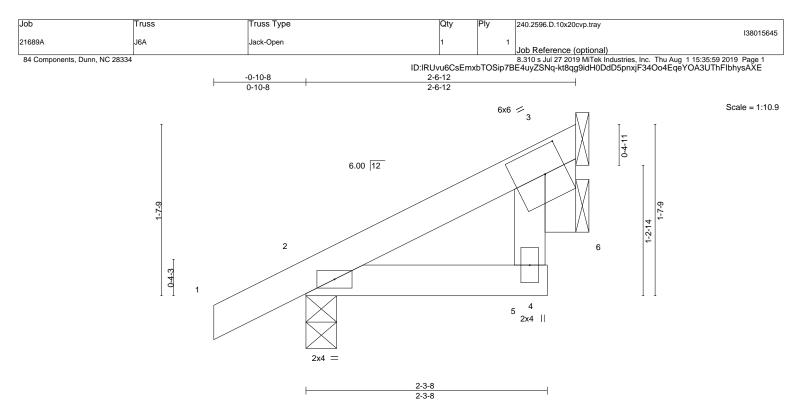
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Structural wood sheathing directly applied or 2-6-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Off	sets (X,Y)	[3:0-2-7,0-3-0]				-						
LOADIN TCLL	G (psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.07	DEFL. Vert(LL)	in -0.00	(loc)	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.00	2-5	>999	180	M120	244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TF	YES	WB Matrix	0.00	Horz(CT)	-0.00	3	n/a	n/a	Weight: 12 lb	FT = 20%
BCDL	10.0	Code IRC2013/11	12014	Iviaui							weight. 12 b	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2 *Except*

 3-5: 2x4 SP No.3

3-5: 2x4 SP No.3 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 3=45/Mechanical, 2=159/0-3-8 (min. 0-1-8), 6=28/Mechanical Max Horz 2=59(LC 12) Max Uplift 3=-47(LC 12), 2=-33(LC 12) Max Grav 3=45(LC 1), 2=159(LC 1), 6=48(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

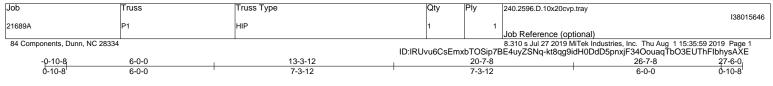
4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

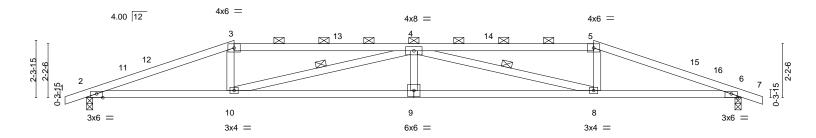
6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOAD CASE(S) Standard

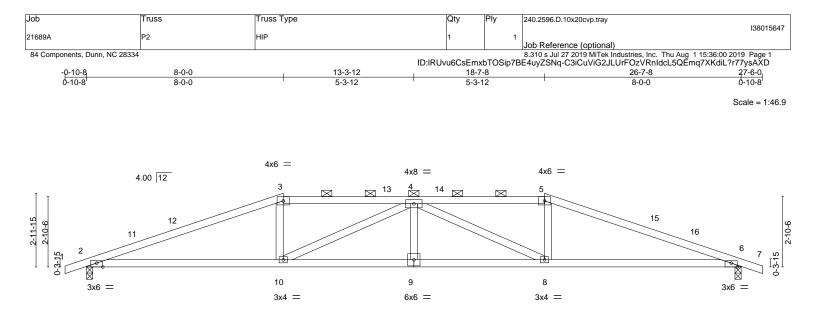


Structural wood sheathing directly applied or 2-6-12 oc purlins.


Rigid ceiling directly applied or 6-0-0 oc bracing.

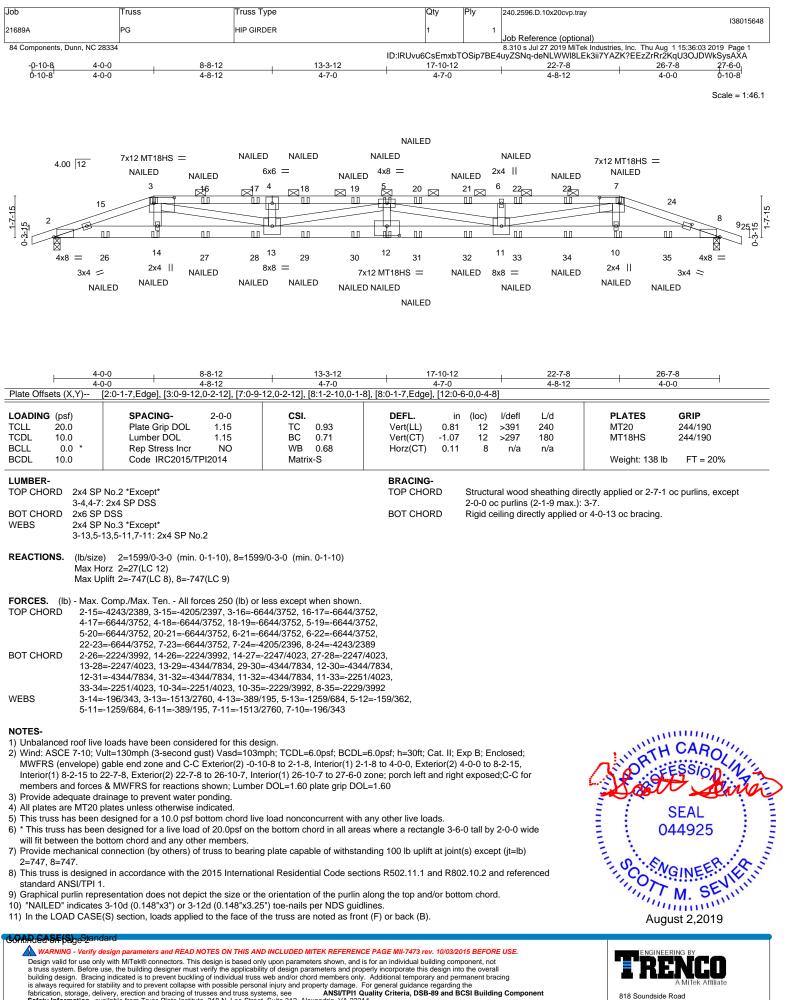
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:46.9



1	6-0-0	13-3-12		20-7-8	26-7-8	
	6-0-0	7-3-12		7-3-12	6-0-0	1
Plate Offsets (X,Y)	[2:0-3-0,Edge], [6:0-3-0,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.88 BC 0.74 WB 0.50 Matrix-S	DEFL. ii Vert(LL) 0.4' Vert(CT) -0.58 Horz(CT) 0.12	8 8-9 >543 180	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (2-2-0 ma Rigid ceiling directly appli 1 Row at midpt		oc purlins, except
Max Ho	e) 2=1115/0-3-0 (min. 0-1-8), 6=111: orz 2=37(LC 12) plift 2=-467(LC 8), 6=-467(LC 9)	5/0-3-0 (min. 0-1-8)				
TOP CHORD 2-11= 4-13=	Comp./Max. Ten All forces 250 (lb) c 2736/1802, 11-12=-2698/1804, 3-12= 2509/1724, 4-14=-2509/1724, 5-14=- 2698/1804, 6-16=-2736/1802	-2682/1818, 3-13=-2507/1	724,			
	1671/2544, 9-10=-2441/3800, 8-9=-2 429/533, 4-10=-1460/860, 4-9=-215/2		29/533			
 2) Wind: ASCE 7-10; V/ MWFRS (envelope); Interior(1) 10-2-15 to members and forces 3) Provide adequate dra 4) This truss has been 5) * This truss has been 6) Provide mechanical 2=467, 6=467. 7) This truss is designe standard ANSI/TPI 1 	loads have been considered for this d ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0 20-7-8, Exterior(2) 20-7-8 to 24-10-7, & MWFRS for reactions shown; Lumb ainage to prevent water ponding. designed for a 10.0 psf bottom chord li n designed for a 10.0 psf bottom chord li n designed for a 10.0 psf bottom chord li n designed for a 10 of the size of the size of the size of the connection (by others) of truss to bear i.	imph; TCDL=6.0psf; BCDL 10-8 to 2-1-8, Interior(1) 2 Interior(1) 24-10-7 to 27-6- er DOL=1.60 plate grip DC ve load nonconcurrent with the bottom chord in all are ng plate capable of withsta ional Residential Code sec	1-8 to 6-0-0, Exterior(2) 0 zone; porch left and ri L=1.60 any other live loads. as where a rectangle 3- nding 100 lb uplift at joir tions R502.11.1 and R8	6-0-0 to 10-2-15, ght exposed;C-C for 6-0 tall by 2-0-0 wide ht(s) except (jt=lb) 02.10.2 and referenced		CARO SSION SEAL 44925
LOAD CASE(S) Stand	lard					SINFER &

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



L	8-0-0	13-3-12	18-7-8	26-7-8	
Plate Offsets (X,Y)	8-0-0 [2:0-3-0,Edge], [6:0-3-0,Edge]	5-3-12	5-3-12	8-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.75 BC 0.93	DEFL. in (loc) I/defl Vert(LL) 0.28 6-8 >999 Vert(CT) -0.36 9 >876	240 MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.45 Matrix-S	Horz(CT) 0.11 6 n/a		1 lb FT = 20%
			2-0-0 oc purlir	od sheathing directly applied or 2- ns (3-7-4 max.): 3-5. lirectly applied or 2-2-0 oc bracing	
Max H	e) 2=1115/0-3-0 (min. 0-1-8), 6=1115/ lorz 2=48(LC 12) plift 2=-460(LC 8), 6=-460(LC 9)	0-3-0 (min. 0-1-8)			
TOP CHORD 2-11= 4-13=	Comp./Max. Ten All forces 250 (lb) or =-2508/1636, 11-12=-2439/1643, 3-12=-2 =-2290/1593, 4-14=-2290/1593, 5-14=-2 5=-2439/1643, 6-16=-2508/1636	2435/1659, 3-13=-2288/159			
BOT CHORD 2-10=	=-1509/2309, 9-10=-1744/2730, 8-9=-174 =-372/460, 4-10=-644/323, 4-8=-644/323				
 Wind: ASCE 7-10; W MWFRS (envelope) Interior(1) 12-2-15 tt members and forces Provide adequate dr This truss has been * This truss has been * This truss has been Provide mechanical 2=460, 6=460. This truss is designe standard ANSI/TP1 1 	a loads have been considered for this de fult=130mph (3-second gust) Vasd=1037 gable end zone and C-C Exterior(2) -0-1 o 18-7-8, Exterior(2) 18-7-8 to 22-10-7, Ir s & MWFRS for reactions shown; Lumbe rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a 10.0 psf bottom chord liv n designed for a a live load of 20.0psf on t bottom chord and any other members. connection (by others) of truss to bearin ed in accordance with the 2015 Internation 1. resentation does not depict the size or the	nph; TCDL=6.0psf; BCDL= 0-8 to 2-1-8, Interior(1) 2-1 tterior(1) 22-10-7 to 27-6-0 r DOL=1.60 plate grip DOL e load nonconcurrent with a he bottom chord in all areas g plate capable of withstan- onal Residential Code section	-8 to 8-0-0, Exterior(2) 8-0-0 to 12-2-1 zone; porch left and right exposed;C-0 =1.60 iny other live loads. s where a rectangle 3-6-0 tall by 2-0-0 ding 100 lb uplift at joint(s) except (jt=lt ons R502.11.1 and R802.10.2 and refe	5, C for wide o) erenced	H CARO
LOAD CASE(S) Stan	dard			·····	MaureRid

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

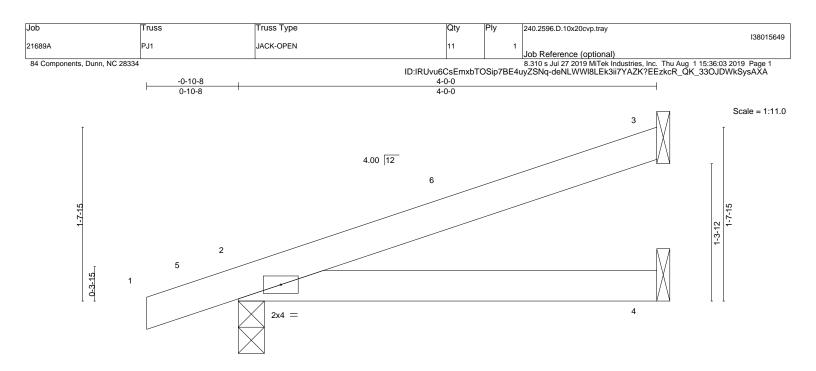
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.2596.D.10x20cvp.tray
					138015648
21689A	PG	HIP GIRDER	1	1	
					Job Reference (optional)
84 Components, Dunn, NC 28334					8.310 s Jul 27 2019 MiTek Industries, Inc. Thu Aug 1 15:36:03 2019 Page 2

ID:IRUvu6CsEmxbTOSip7BE4uyZSNq-deNLWWI8LEk3ii7YAZK?EEzZrRr2KqU3OJDWkSysAXA

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-7=-60, 7-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 3=-47(B) 7=-47(B) 14=-18(B) 5=-47(B) 12=-18(B) 10=-18(B) 16=-47(B) 17=-47(B) 18=-47(B) 19=-47(B) 20=-47(B) 21=-47(B) 22=-47(B) 23=-47(B) 26=-128(B) 27=-18(B) 28=-18(B) 29=-18(B) 30=-18(B) 31=-18(B) 32=-18(B) 33=-18(B) 33=-18(B) 35=-128(B) 35=-128(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		4-0-0 4-0-0										
L OADING (p	osf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	0.02	2-4	>999	240	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	2-4	>999	180		
BCLL (0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10	0.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 14 lb	FT = 20%

BRACING-

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=107/Mechanical, 2=220/0-3-0 (min. 0-1-8), 4=38/Mechanical

Max Horz 2=65(LC 8) Max Uplift 3=-57(LC 12), 2=-99(LC 8), 4=-12(LC 8)

Max Grav 3=107(LC 1), 2=220(LC 1), 4=72(LC 3)Max Grav 3=107(LC 1), 2=220(LC 1), 4=76(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

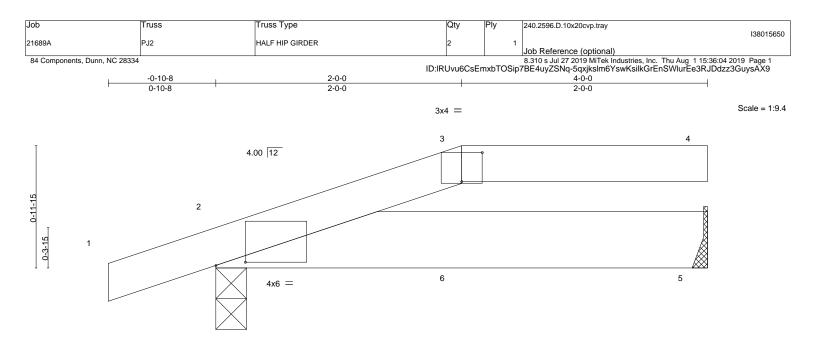
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; porch left and right

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.


6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	2-0-0	4-0-0	
	2-0-0	2-0-0	1
Plate Offsets (X,Y) [2:0-2-14,0-0-5], [3:0-2-	0,0-2-13]		

	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.84 BC 0.49 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 2-5 >999 240 Vert(CT) -0.03 2-5 >999 180 Horz(CT) 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 17 lb FT = 20%
--	--	--	--	---	---

LUMBER-

TOP CHORD 2x4 SP No.1 *Except* 3-4: 2x4 SP No.2 BOT CHORD

2x6 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except 2-0-0 oc purlins: 3-4.

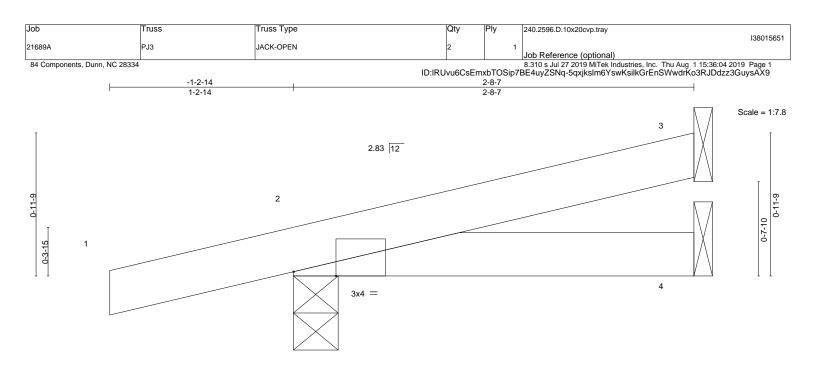
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=220/0-3-0 (min. 0-1-8), 5=148/Mechanical Max Horz 2=42(LC 8) Max Uplift 2=-108(LC 8), 5=-82(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2 = 108.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 24 lb down and 110 lb up at 2-0-0 on top chord, and 16 lb down and 41 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-60, 3-4=-60, 2-5=-20

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					2-8-7			
			I		2-8-7			1
Plate Offsets (X,Y)	[2:0-3-7,Edge]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.01	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	0.01	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-P						Weight: 10 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-8-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=51/Mechanical, 2=206/0-3-10 (min. 0-1-8), 4=25/Mechanical Max Horz 2=39(LC 8)

Max Uplift 3=-28(LC 12), 2=-109(LC 8), 4=-8(LC 8)

Max Grav 3=51(LC 1), 2=206(LC 1), 4=50(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

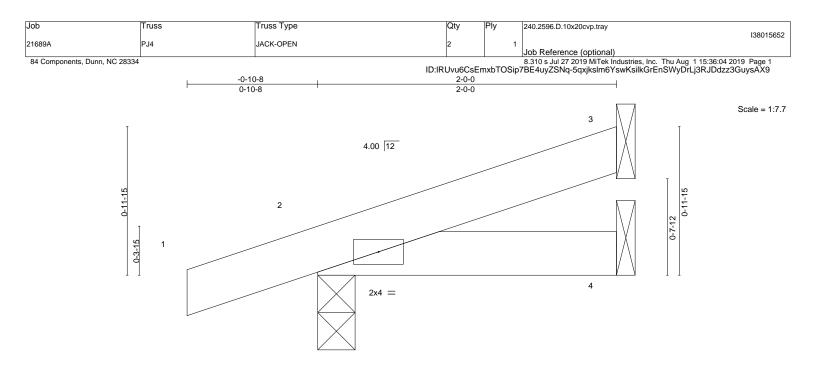
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=109.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			<u>2-0-0</u> 2-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00 2 >999 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 2-4 >999 180	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 8 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

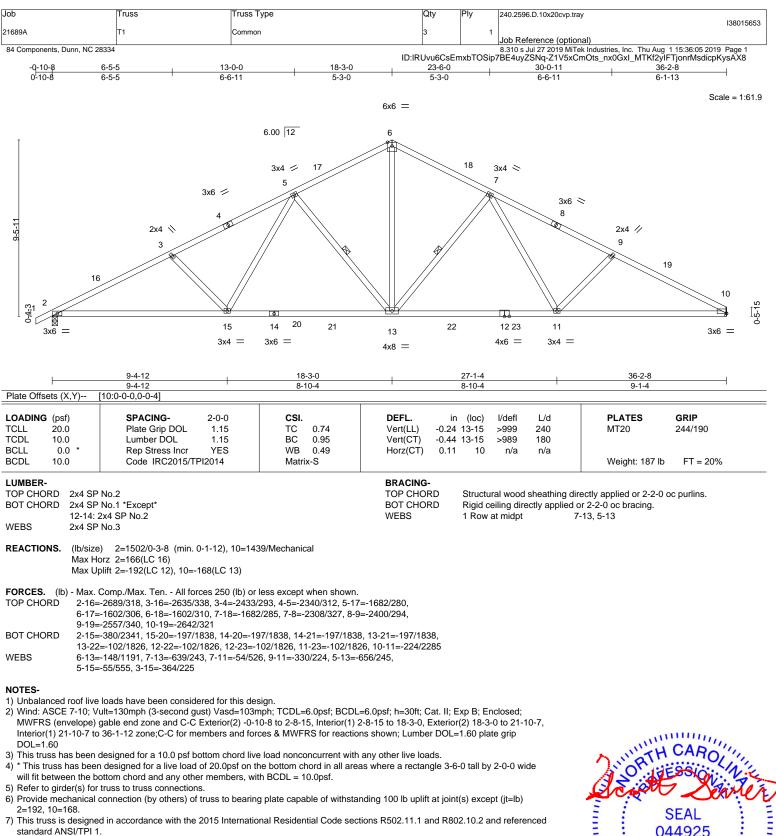
REACTIONS. (Ib/size) 3=46/Mechanical, 2=145/0-3-0 (min. 0-1-8), 4=20/Mechanical Max Horz 2=40(LC 8) Max Uplift 3=-26(LC 12), 2=-72(LC 8), 4=-6(LC 8)

Max Grav 3=46(LC 1), 2=145(LC 1), 4=39(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

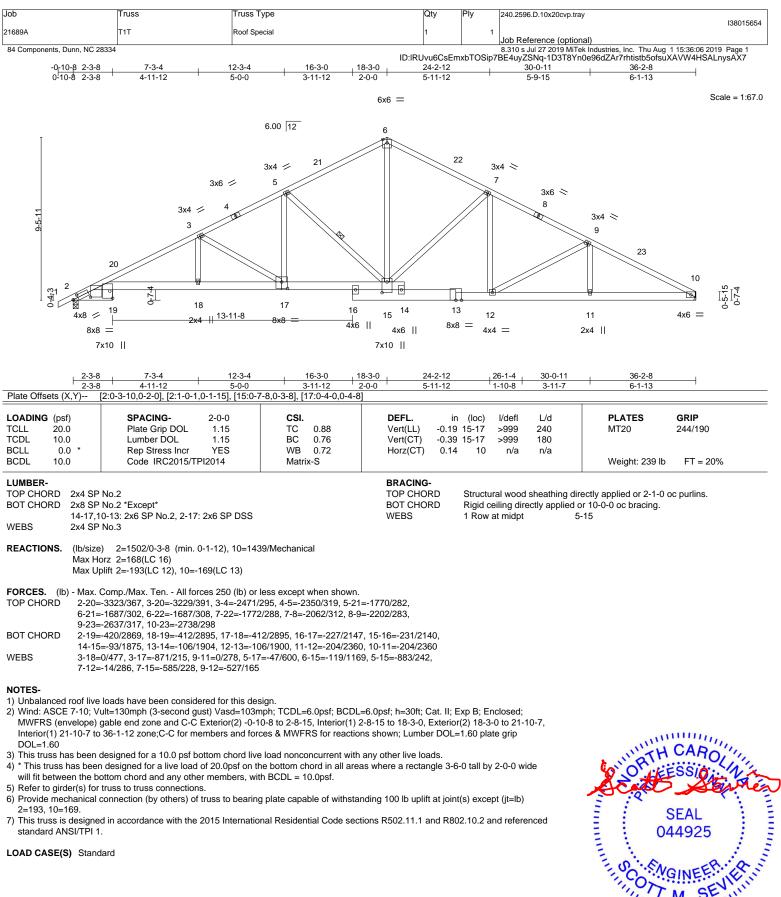
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

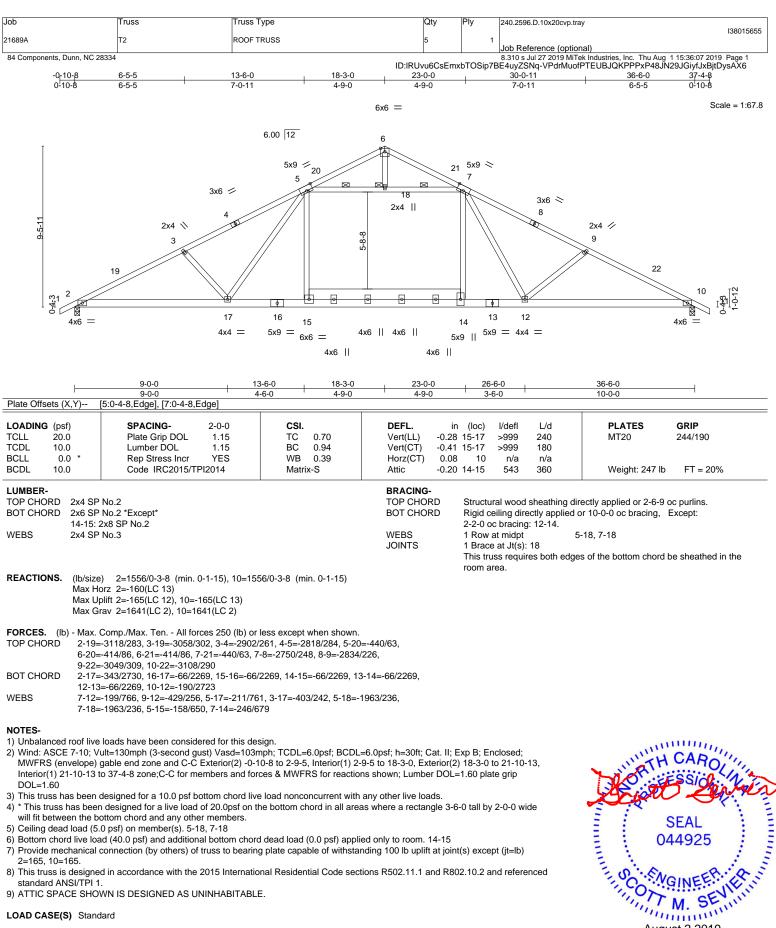
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANS/TPHI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilial A MiTek Affilial 818 Soundside Road Edenton, NC 27932

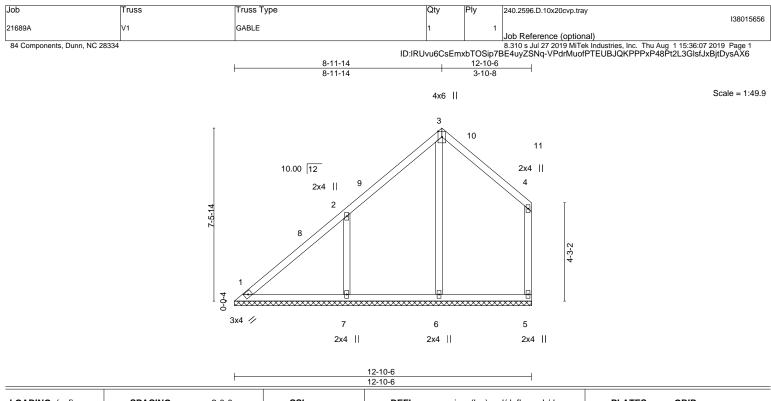

LOAD CASE(S) Standard

Μ. (IIIIIIII) August 2,2019

S

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


LOAD CASE(S) Standard

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

August 2,2019

BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	BRACING-			Weight: 65 lb FT = 20%
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl	L/d	PLATES GRIP MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) n/a	- n/a	999	
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) n/a	- n/a	999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.20	Horz(CT) 0.00	5 n/a	n/a	

BOT CHORD

end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

REACTIONS. All bearings 12-10-6.

(lb) - Max Horz 1=208(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 7=-220(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=431(LC 19), 7=503(LC 19)

```
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 2-7=-361/266
```

NOTES-

1) Unbalanced roof live loads have been considered for this design.

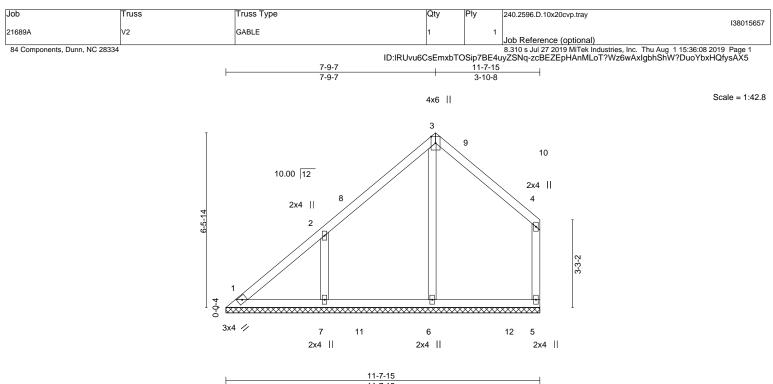
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 8-11-14, Exterior(2) 8-11-14 to 11-11-14, Interior(1) 11-11-14 to 12-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 7=220.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				-		11-7-15				I		
OADING (psf)	f)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Ó	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	0	Lumber DOL	1.15	BC	0.18	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0	0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	5	n/a	n/a		
3CDL 10.0	0	Code IRC2015/TF	912014	Matrix	-S						Weight: 56 lb	FT = 20%

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-7-15.

(lb) - Max Horz 1=170(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 7=-189(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=431(LC 19), 7=401(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-7=-312/231

NOTES-

1) Unbalanced roof live loads have been considered for this design.

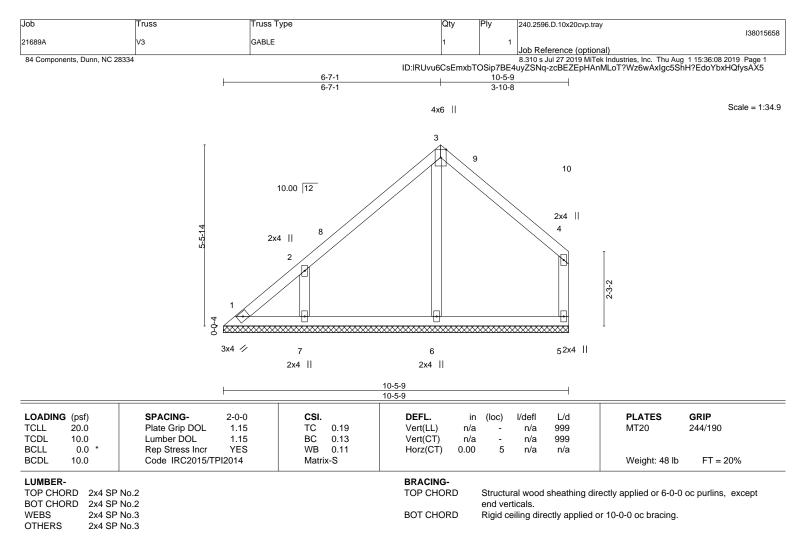
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-7-15, Interior(1) 3-7-15 to 7-9-7, Exterior(2) 7-9-7 to 10-9-7,
- Interior(1) 10-9-7 to 11-6-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb)

7=189.


7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICALIA AND fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 10-5-9.

(lb) - Max Horz 1=131(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 7=-170(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=307(LC 19), 7=334(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-7=-284/212

NOTES-

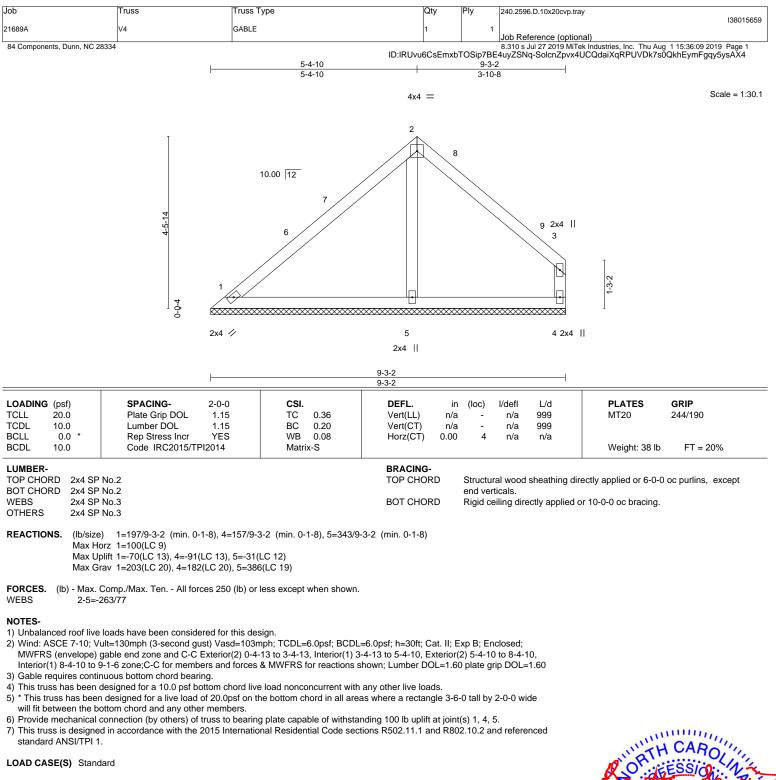
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-7-1, Exterior(2) 6-7-1 to 9-7-1,
- Interior(1) 9-7-1 to 10-3-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

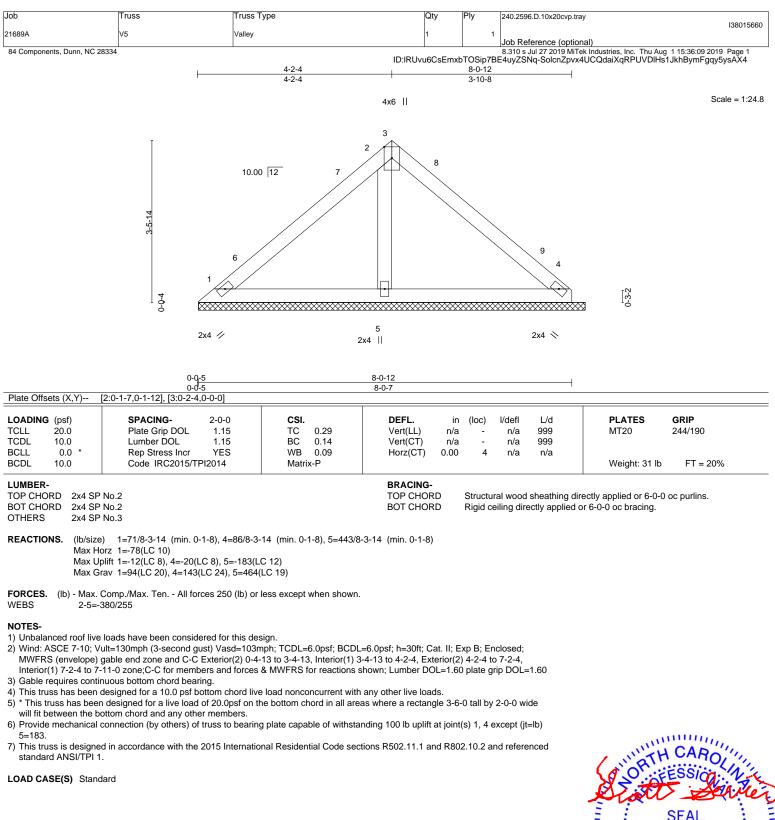
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 7=170.

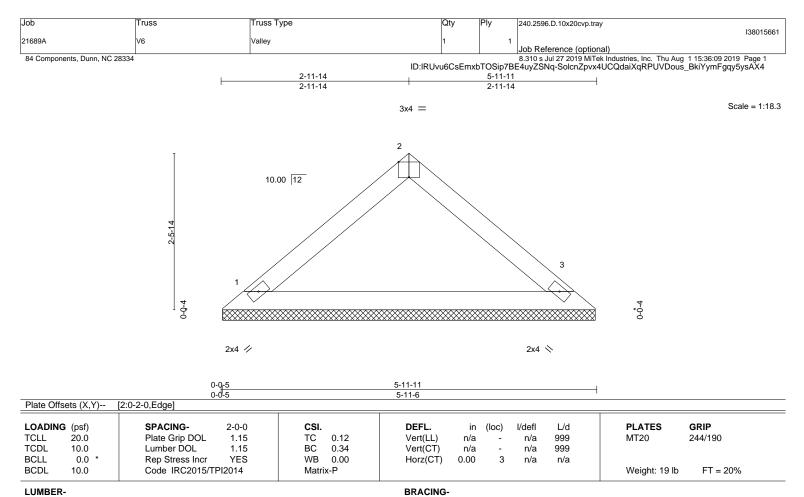

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TRENCIO AMITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 1=207/5-11-2 (min. 0-1-8), 3=207/5-11-2 (min. 0-1-8) Max Horz 1=-53(LC 8) Max Uplift 1=-20(LC 12), 3=-20(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

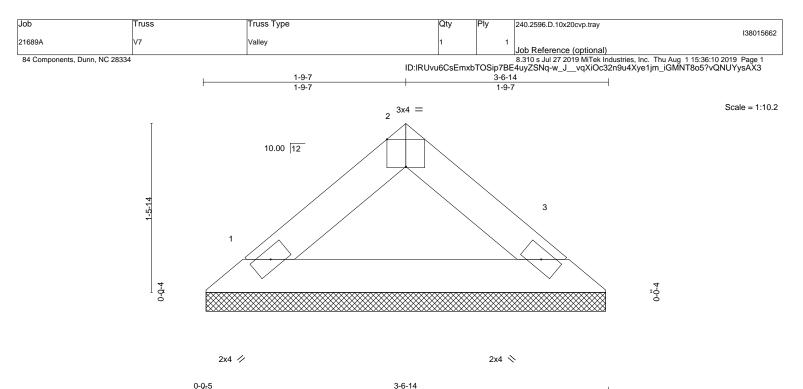
MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Structural wood sheathing directly applied or 5-11-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CEPTERNCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0-5 3-6-10 Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl L/d PLATES GRIP in (loc) Plate Grip DOL тс 244/190 TCLL 20.0 1 15 0.05 Vert(LL) 999 MT20 n/a n/a TCDL BC 10.0 Lumber DOL 0.15 Vert(CT) 999 1.15 n/a n/a Rep Stress Incr BCLL 0.0 YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 11 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3

REACTIONS. (lb/size) 1=111/3-6-5 (min. 0-1-8), 3=111/3-6-5 (min. 0-1-8) Max Horz 1=29(LC 11) Max Uplift 1=-10(LC 12), 3=-10(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Structural wood sheathing directly applied or 3-6-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

