

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21396A 140.1445.A.12X12CVP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37616191 thru I37616224

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

Johnson, Andrew

June 28,2019

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

						14-0-0					1	
						14-0-0						
Plate Off	sets (X,Y)	[2:0-0-15,0-4-5], [2:0-0-0	,0-0-12], [6:0-2	2-0,Edge], [10):Edge,0-0-1	2], [10:0-0-15,0-4-	5]					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	10	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	10	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 74 lb	FT = 20%
LUNBER	<-					BRACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

Max Horz 2=130(LC 11) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 13, 14, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 10, 12, 13, 14, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 7-0-0, Corner(3) 7-0-0 to 10-0-0, Exterior(2) 10-0-0 to 14-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 13, 14, 17, 16, 15.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 14-0-0.

E. ENGINEERING B

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Truss	Truss Type	Qty	Ply	140.1445.A.12X12CVP	
				1376161	92
AG	COMMON GIRDER	1	2		
			_	Job Reference (optional)	
Dunn, NC - 28334,			8.220 s No	v 16 2018 MiTek Industries, Inc. Fri Jun 28 12:40:15 2019 Page 2	
	Truss AG Dunn, NC - 28334,	Truss Type AG COMMON GIRDER Dunn, NC - 28334,	Truss Truss Type Qty AG COMMON GIRDER 1 Dunn, NC - 28334, 2	Truss Truss Type Qty Ply AG COMMON GIRDER 1 2 Dunn, NC - 28334, 8.220 s No	Truss Truss Type Qty Ply 140.1445.A.12X12CVP I376161 AG COMMON GIRDER 1 2 Job Reference (optional) I376161 Dunn, NC - 28334, 8.220 s Nov 16 2018 MITek Industries, Inc. Fri Jun 28 12:40:15 2019 Page 2 140.1445.A.12X12CVP I376161

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-KwzaOkkVdu1ggq3zoRmse9A_fi_?ckG99XTDGSz1IO_

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-2511(B) 9=-1841(B) 12=-1841(B) 13=-1841(B) 14=-1841(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			8-0-0						
Plate Offsets (X,Y)	[3:0-2-0,Edge], [4:0-2-0,Edge]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.19 BC 0.34 WB 0.00 Matrix-R	DEFL. Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	in (lo 20 21 20	loc) 6 6 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF 2x4 SF REACTIONS. (lb/siz Max H Max U	P No.2 P No.2 e) 2=278/6-1-6, 5=278/6-1-6 lorz 2=-14(LC 13) lplift 2=-28(LC 9), 5=-28(LC 8)		BRACING- TOP CHORD BOT CHORD	Str 2-0 Riç	ructura 0-0 oc gid cei	al wood : purlins (ling dire	sheathing dire (6-0-0 max.): 3 ctly applied or	ctly applied or 6-0-0 3-4. 10-0-0 oc bracing.	oc purlins, except
FORCES.(lb) - Max.TOP CHORD2-3=BOT CHORD2-5=	Comp./Max. Ten All forces 250 (lb) or -444/252, 3-4=-404/237, 4-5=-444/252 -193/404	less except when shown.							

8-0-0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-11 to 3-4-11, Interior(1) 3-4-11 to 4-0-0, Exterior(2) 4-0-0 to 7-0-11, Interior(1) 7-0-11 to 7-7-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	8-4-0	18-5-1	5	1	28-6-1		1	38	3-8-0	46-9-0)
	8-4-0	10-1-1	5		10-0-3		1	10	-1-15	8-1-0	
Plate Offsets (X,Y)	[2:0-4-8,0-1-11], [5:0	-3-8,0-2-0], [10:0-4	-8,0-1-11]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC201	2-0-0 IL 1.15 1.15 cr YES 5/TPI2014	CSI. TC BC WB Matrix	0.94 0.90 0.93 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.43 -0.87 0.18	(loc) 13-14 13-14 10	l/defl >999 >641 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 323 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SI 4-6,6-1 BOT CHORD 2x8 SI WEBS 2x4 SI 5-16,7	P No.2 *Except* 8: 2x6 SP No.2 P No.2 P No.3 *Except* -11: 2x4 SP No.1				BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structu 2-0-0 o Rigid c 1 Row 2 Rows	iral wood oc purlins eiling dire at midpt s at 1/3 pt	sheathing dir (2-2-0 max.): ectly applied c 7 s 5	ectly applied or 2-8-3 o 4-8. or 9-2-7 oc bracing. -14 -16, 7-11	oc purlins, except
REACTIONS. (Ib/siz Max H Max U	e) 10=1861/Mecha Horz 2=84(LC 16) Jplift 10=-209(LC 8), 2	nical, 2=1924/0-3-8 2=-214(LC 9)									
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9= BOT CHORD 2-16 WEBS 4-16 8-11	. Comp./Max. Ten A -3833/563, 3-4=-3634 -3580/497, 9-10=-374 =-470/3384, 14-16=-8 =-63/1152, 5-16=-254 =-62/1132	ll forces 250 (lb) or /506, 4-5=-3215/48 /5/551 /40/5528, 13-14=-8 /8/508, 5-14=0/397	less except 87, 5-7=-5528 14/5522, 11- 7-13=0/405	when shown. 8/881, 7-8=-3 -13=-814/5522 i, 7-11=-2591/	165/478, 2, 10-11=-451/328 ⁄513,	35					
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; \ MWFRS (envelope) Interior(1) 12-6-15 t	e loads have been co /ult=130mph (3-secor) gable end zone and o 38-8-0 Exterior(2) 3	nsidered for this de nd gust) Vasd=103r C-C Exterior(2) -0-' 8-8-0 to 42-10-15	sign. nph; TCDL= 10-8 to 2-1-8 Interior(1) 42	6.0psf; BCDL , Interior(1) 2- 2-10-15 to 46-	=6.0psf; h=30ft; (-1-8 to 8-4-0, Exte -8-4 zone: cantile:	Cat. II; E erior(2)	Exp B; E 8-4-0 to	inclosed; 12-6-15,	4.		

MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-4-0, Exterior(2) 8-4-0 to 12-6-1 Interior(1) 12-6-15 to 38-8-0, Exterior(2) 38-8-0 to 42-10-15, Interior(1) 42-10-15 to 46-8-4 zone; cantilever left and right expose end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=209, 2=214.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	5-9	9-4	11-0-0		23-6	-0		3	6-0-0			41-2-12		46-9-0	
I	5-9	9-4	5-2-12	1	12-6	-0	1	1	2-6-0		1	5-2-12	1	5-6-4	
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	f) 0 0 0 * 0	SPA Plate Lum Rep Code	I CING- ∋ Grip DOL Iber DOL Stress Incr e IRC2015/TP	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri:	0.65 0.89 0.74 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.28 -0.61 13 0.16	loc) 13 3-15 10	l/defl >999 >915 n/a	L/d 240 180 n/a	PLA MT2 Weig	TES 0 ght: 285 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS	 2x4 SP No.2 *Except* 4-6,6-8: 2x6 SP No.2 2x6 SP No.2 *Except* 12-14: 2x6 SP DSS 2x4 SP No.3 					BRACING- TOP CHOF BOT CHOF WEBS	D St 2- D Ri 1	tructura 0-0 oc igid cei Row a	al wood s purlins (iling dire t midpt	sheathing dii (3-4-9 max.): ctly applied o 5	rectly applie 4-8. or 9-10-15 c i-15, 7-11	d or 2-4-7 oc bracing.	oc purlins, exce	ot	
REACTIONS.	(Ib/size) Max Ho Max Up) 10=186 orz 2=105(olift 10=-16	51/Mechanical, (LC 16) 51(LC 8), 2=-16	, 2=1924/0-3-8 66(LC 9)											
FORCES. (Ib TOP CHORD BOT CHORD WEBS	9) - Max. C 2-3=-3 8-9=-3 2-15=- 3-15=-	Comp./Max 3683/552, 3 3329/467, 9 -445/3227, -299/228, 4	<. Ten All ford 3-4=-3361/474 9-10=-3619/54 13-15=-542/4 4-15=-50/1084	ces 250 (lb) or , 4-5=-2940/46 3 047, 11-13=-5 , 5-15=-1404/3	less except 6, 5-7=-414 12/4037, 10- 51, 5-13=0/	when shown 2/579, 7-8=-2 11=-430/315 320, 7-13=0/3	2911/459, 33 332,								

7-11=-1424/352, 8-11=-57/1070, 9-11=-251/233

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-0-0, Exterior(2) 11-0-0 to 15-2-15, Interior(1) 15-2-15 to 36-0-0, Exterior(2) 36-0-0 to 40-2-15, Interior(1) 40-2-15 to 46-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=161, 2=166.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		7-1-4	13-8-0	1	23-6-0	I	33	-4-0		39-10-	-12 46-	9-0
		7-1-4	6-6-12	1	9-10-0		9-1	10-0		6-6-1	2 6-1	0-4
Plate Offsets ()	X,Y) [[6:0-4-0,0-4-8]										
LOADING (psi TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) 0 0 * 0	SPACING- Plate Grip D Lumber DO Rep Stress Code IRC2	2-0-0 IOL 1.15 L 1.15 Incr YES 015/TPI2014	CSI. TC BC WB Matriz	0.93 1.00 0.73 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.65 0.16	(loc) 2-14 2-14 9	l/defl >999 >858 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 285 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP 5-6,6-7: 2x6 SP 2x4 SP (lb/size	No.2 *Except* 2x6 SP No.2, 7-9 No.2 No.3) 9=1861/Mecha	: 2x4 SP No.1 anical, 2=1924/0-3-8		BRACING- TOP CHOR BOT CHOR WEBS	D D	Structu 2-0-0 o Rigid cu 1 Row	ral wood s ic purlins (eiling dire at midpt	sheathing dire (3-7-5 max.): ctly applied o 6-	ectly applied, except 5-7. r 2-2-0 oc bracing. -14, 6-10		
FORCES. (Ib)	Max Horz 2=127(LC 16) Max Uplift 9=-135(LC 13), 2=-159(LC 12) (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.											
BOT CHORD WEBS	2-3=-3 8-9=-3 2-14=- 3-14=-	-426/3124, 12-14= -431/286, 5-14=-1	-343/3393, 10-12=-3 9/949, 6-14=-1002/25	5, 6-7=-271 43/3393, 9-1 9. 6-12=0/4	3/450, 7-8=-3 0=-416/3079 40. 6-10=-101	8/258.						
	7-10=	-26/942, 8-10=-40	1/292	-,,-	-,	,						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-8-0, Exterior(2) 13-8-0 to 17-10-15, Interior(1) 17-10-15 to 33-4-0, Exterior(2) 33-4-0 to 37-6-15, Interior(1) 37-6-15 to 46-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=135, 2=159.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L 5-	9-10 8-5-4	16-4-0	I	23-6-0	I	30-8-0		1	38-6-12	41-2-6 4	l6-9-0
5-	9-10 2-7-10	7-10-12	I	7-2-0		7-2-0		1	7-10-12	2-7-10 5	5-6-10
Plate Offsets (X,Y)	[2:0-4-8,0-1-11], [3:0-4-0	,Edge], [9:0-4-0	,Edge], [10:0	0-4-8,0-1-11],	[11:0-4-0,0-6-0]	, [12:0-1	-12,0-0-	0], [13:0-	4-12,0-6-0], [[13:0-0-0,0-3-10]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.96 0.87 0.36 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.60 0.11	(loc) 11-12 2-12 10	l/defl >999 >938 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 328 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF 1-3: 2x BOT CHORD 2x8 SF WEBS 2x4 SF REACTIONS. (Ib/siz Max H Max L	 No.2 *Except* K4 SP No.1, 9-10: 2x4 SP No.2 No.3 e) 2=1924/0-3-8, 10=18 horz 2=150(LC 16) Jplift 2=-186(LC 12), 10=- 	DSS 361/Mechanical 162(LC 13)			BRACING TOP CHO BOT CHO WEBS	RD RD	Structu 2-0-0 o Rigid c 1 Row	ral wood c purlins eiling dire at midpt	sheathing dir (4-4-10 max.) ectly applied c 4	rectly applied, except): 5-7. or 10-0-0 oc bracing. I-12, 8-11, 6-12, 6-11	
FORCES. (lb) - Max. TOP CHORD 2-4= 8-10. BOT CHORD 2-12. WEBS 4-12. 6-11: 6-11.	Comp./Max. Ten All foi -3570/552, 4-5=-2981/422 =-3513/551 =-422/3125, 11-12=-248/2 =-614/361, 5-12=-15/877, =-512/212	rces 250 (lb) or 2, 5-6=-2561/43 2783, 10-11=-41 7-11=-22/872,	less except 6, 6-7=-2547 14/3084 8-11=-586/3	when shown. 7/431, 7-8=-2 871, 6-12=-49	967/419, 5/212,						
NOTES- 1) Unbalanced roof liva 2) Wind: ASCE 7-10; \ MWFRS (envelope) Interior(1) 20-6-15 tr end vertical left and	e loads have been consid /ult=130mph (3-second g gable end zone and C-C o 30-8-0, Exterior(2) 30-8 right exposed;C-C for me	ered for this des ust) Vasd=103n Exterior(2) -0-1 -0 to 34-10-15, embers and forc	sign. nph; TCDL= 0-8 to 2-1-8 Interior(1) 34 es & MWFR	6.0psf; BCDL , Interior(1) 2- 4-10-15 to 46- S for reactior	=6.0psf; h=30ft; -1-8 to 16-4-0, E -8-4 zone; cantil is shown; Lumbo	Cat. II; E xterior(2 ever left er DOL=	Exp B; E) 16-4-0 and righ 1.60 pla	nclosed; to 20-6-1 t exposed te grip	15, d;		

- DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=186, 10=162.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	9-2-4	19-0-0	28-0-0	34-1-13	38-10-4	47-0-0
Plate Offsets (X	X,Y) [4:0-3-0,Edge], [7:0-3-0,Edge]	9-9-12	9-0-0	0-1-13	4-0-7	0-1-12
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) SPACING- 2-0-0 0 Plate Grip DOL 1.15 0 Lumber DOL 1.15 0 Kep Stress Incr YES 0 Code IRC2015/TPI2014	CSI. TC 0.96 BC 0.72 WB 0.73 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.23 Horz(CT) 0.05	i (loc) l/defl 2-15 >999 2-15 >999 10 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 312 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Except* 1-4: 2x4 SP No.1, 7-9: 2x4 SP DSS 2x6 SP No.2 *Except* 11-14: 2x8 SP No.2 2x4 SP No.3 *Except* 6-13: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins (Rigid ceiling dire 1 Row at midpt	sheathing directly a (4-9-13 max.): 5-6. ctly applied or 6-0- 3-13, 6-	pplied, except 0 oc bracing. 12
REACTIONS.	(Ib/size) 2=1533/0-3-8, 10=2276/0-3 Max Horz 2=171(LC 12) Max Uplift 2=-203(LC 12), 10=-230(LC	8 13)				
FORCES. (lb) TOP CHORD BOT CHORD) - Max. Comp./Max. Ten All forces 25 2-3=-2720/321, 3-5=-1814/256, 5-6=- 2-15=-336/2328, 13-15=-336/2330, 1	0 (lb) or less except when shown. 1505/287, 6-8=-1396/164, 8-9=-36 2-13=0/1126, 10-12=-490/406, 9-1	97/677 10=-490/404			

WEBS 3-15=0/403, 3-13=-904/301, 5-13=0/372, 6-12=-417/262, 8-12=-301/1722, 8-10=-2030/529, 6-13=-150/592

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 19-0-0, Exterior(2) 19-0-0 to 23-2-15, Interior(1) 23-2-15 to 28-0-0, Exterior(2) 28-0-0 to 32-2-15, Interior(1) 32-2-15 to 47-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=203.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

IN ATH CASE ORT CARO Mannannan 1 Summer Summer SEAL 45844 EN JOH June 28,2019

nent 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	12-9-4	19-0-0	26-4-4	28-0-0	34	-2-12		47-0-0	
I	12-9-4	6-2-12	7-4-4	1-7-12	6-	2-12	1	12-9-4	1
Plate Offsets (X,	Y) [4:0-3-0,Edge], [5:0-6-0,0-3-2], [6:0-6-0	,0-3-2], [7:0-3-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.95 BC 0.69 WB 0.94 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.45 0.02	(loc) 2-17 2-17 14	l/defl >999 >698 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 319 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD	2x6 SP No.2 *Except* 1-4,7-10: 2x4 SP No.1		BRACING TOP CHOI	RD	Structu except	ral wood	sheathing dire	ectly applied or 1-11-14	4 oc purlins,
WEBS 2	2x4 SP No.3		BOT CHO	RD	Rigid co 10-0-0	eiling dire oc bracin	ctly applied or g: 2-17.	6-0-0 oc bracing, Ex	cept:
REACTIONS.	(lb/size) 2=844/0-3-8, 14=2468/0-3-8, 9=54 Max Horz 2=163(LC 16) Max Uplift 2=-151(LC 12), 14=-133(LC 12), 9	7/0-3-8 =-153(LC 13)	WEBS		1 Row	at midpt	5-	14, 6-14, 6-13	

Max Grav 2=903(LC 23), 14=2468(LC 1), 9=632(LC 24) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1275/251, 3-5=-877/202, 5-6=0/735, 6-8=-278/275, 8-9=-682/256

- BOT CHORD 2-17=-273/1051, 15-17=-62/302, 14-15=-63/298, 13-14=-528/198, 11-13=-530/197, 9-11=-115/522
- WEBS 3-17=-566/338, 5-17=-139/820, 5-15=0/319, 5-14=-1355/202, 6-14=-1147/250, 6-11=-128/854, 8-11=-579/338

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 19-0-0, Exterior(2) 19-0-0 to 23-2-15, Interior(1) 23-2-15 to 28-0-0, Exterior(2) 28-0-0 to 32-2-15, Interior(1) 32-2-15 to 47-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=151.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 9. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-5-4 16-4-	21-4-2	26-4-4	30-8-0	38-6-12		47-0-0	
Plate Offsets (X,Y)	4:0-3-0.Edge]. [5:0-6-0.0-3-2]. [7:0-	2 <u>5-0-2</u> 5-0.0-3-2]. [8:0-3-0.Edae]. [1:	3:0-0-0.0-2-12]. [14	4-3-12	[14:0-1-12.0-0-0].	[17:0-2-4.0-0-0]	0-0-4	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.99 BC 0.37 WB 0.84 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 15-16 -0.13 15-16 0.02 15	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 3	GRIP 244/190 25 lb FT = 20%	6
LUMBER- TOP CHORD 2x6 SF 1-4,8-1 BOT CHORD 2x6 SF WEBS 2x4 SF 5-15: 2	P No.2 *Except* 1: 2x4 SP No.2 P No.2 No.3 *Except* x4 SP No.2		BRACING- TOP CHOR BOT CHOR WEBS	D Structur 2-0-0 oc D Rigid ce 1 Row a 2 Rows	ral wood sheathing c purlins (10-0-0 m eiling directly applie at midpt at 1/3 pts	g directly applied, ex hax.): 5-7. ed or 6-0-0 oc bracir 7-15 5-15	cept ng.	
REACTIONS. (Ib/size Max H Max U Max G	e) 2=854/0-3-8, 15=2452/0-3-8, 10 orz 2=141(LC 16) plift 2=-151(LC 12), 15=-81(LC 9), rrav 2=904(LC 23), 15=2510(LC 2),	=554/0-3-8 0=-150(LC 13) 10=618(LC 24)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-18- 10-12 10-12 WEBS 3-18- 7-15= 7-15-	Comp./Max. Ten All forces 250 (ll 1502/283, 3-5=-1206/245, 5-6=0/77 320/1293, 16-18=-43/541, 15-16= 2=-175/743 =-481/299, 5-18=-160/718, 5-16=0/4 1076/167, 7-14=0/259, 9-12=-505/) or less except when shown 5, 6-7=0/776, 7-9=-580/241, 9 45/533, 14-15=-310/163, 12- 77, 5-15=-1522/187, 6-15=-5 298, 7-12=-142/772	9-10=-884/278 14=-308/164, 16/246,					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 20-6-15 to end vertical left and DOL=1.60 3) Provide adequate di 4) This truss has been 5) * This truss has been will fit between the b 6) Provide mechanical 2=151.	a loads have been considered for thi 'ult=130mph (3-second gust) Vasd= gable end zone and C-C Exterior(2) o 30-8-0, Exterior(2) 30-8-0 to 34-10 right exposed;C-C for members and rainage to prevent water ponding. designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf pottom chord and any other member connection (by others) of truss to be	design. 03mph; TCDL=6.0psf; BCDI -0-10-8 to 2-1-8, Interior(1) 2 15, Interior(1) 34-10-15 to 47 forces & MWFRS for reaction d live load nonconcurrent with on the bottom chord in all are , with BCDL = 10.0psf. aring plate capable of withsta	L=6.0psf; h=30ft; C 2-1-8 to 16-4-0, Ext -10-8 zone; cantile ns shown; Lumber n any other live loa eas where a rectan anding 100 lb uplift	tat. II; Exp B; Er erior(2) 16-4-0 ever left and righ DOL=1.60 plate ds. gle 3-6-0 tall by at joint(s) excel	nclosed; to 20-6-15, nt exposed ; e grip v 2-0-0 wide pt (jt=lb)	Auto	ATH CAR SEAL	D/ 11 11

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 10. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		7-1-4	13-8-0	20-2-11	26-4-4		33-4-0)	39-10	0-12	47-0)-0
	1	7-1-4	6-6-12	6-6-11	6-1-9	·	6-11-1	2	6-6-	12	7-1	-4
Plate Offsets (X	(,Y) [6:0-4-0,0-4-8]										
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0)))) *	SPACING- Plate Grip D Lumber DOI Rep Stress	2-0-0 POL 1.15 L 1.15 Incr YES	CSI. TC 0.63 BC 0.81 WB 0.98 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.55 0.02	(loc) 11-13 11-13 11	l/defl >944 >451 n/a	L/d 240 180 n/a	PLA MT2	20	GRIP 244/190
0.0	,	0000 11(02)	010/11/2011	Matrix 0						1101	gritt. 200 lb	11 - 2070
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 5-6,6-8: 2x6 SP 2x4 SP	No.2 *Except* 2x6 SP No.2 No.2 No.3			BRACING- TOP CHOR BOT CHOR WEBS	D	Structu except 2-0-0 o Rigid c 6-0-0 o 1 Row	ral wood oc purlins eiling dire oc bracing at midpt	sheathing di (6-0-0 max.) ctly applied : 13-15.	irectly applie): 5-8. or 10-0-0 oc 6-15	ed or 4-2-11 c bracing, E	oc purlins, Except:
REACTIONS.	(Ib/size) Max Ho Max Up Max Gr) 2=911/0-3-8, 1 prz 2=120(LC 16) plift 2=-137(LC 12) av 2=942(LC 23),	5=2322/0-3-8, 11=62 , 15=-183(LC 9), 11= 15=2322(LC 1), 11=6	7/0-3-8 -143(LC 13) 575(LC 24)								
FORCES. (Ib) TOP CHORD	- Max. (2-3=-1 10-11:	Comp./Max. Ten 423/262, 3-5=-952 =-820/266	All forces 250 (lb) or 2/163, 5-6=-768/195,	less except when show 6-7=0/730, 8-10=-337/	/n. 132,							

- BOT CHORD
 2-17=-240/1201, 13-15=-730/218, 11-13=-140/665

 WEBS
 3-17=-494/289, 7-15=-1217/239, 7-13=-143/1158, 8-13=-302/132, 10-13=-514/287,
- VEBS 3-17=-494/289, 7-15=-1217/239, 7-13=-143/17 6-17=-49/777, 6-15=-1285/211

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-8-0, Exterior(2) 13-8-0 to 17-10-15, Interior(1) 17-10-15 to 33-4-0, Exterior(2) 33-4-0 to 37-6-15, Interior(1) 37-6-15 to 47-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=137.
 7) One PTTA LISP connectors recommended to connect truss to bearing walls due to LIPLIET at it(s) 15 and 11. This connection is for
 - 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 11. This connection is for uplift only and does not consider lateral forces.
 - 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ENGINEERING BY EREENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-	9-4	11-0-0	1	8-7-4		26-4-4		3	5-0-0		41-2-12	47-0-0
	5-	9-4	5-2-12	1	7-7-4	1	7-9-0		9.	7-12	I	5-2-12	5-9-4
Plate Offsets ((X,Y)	[6:0-3-0,Edg	ge]										
LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	sf)).0).0).0 *).0	SPA Plate Lumb Rep Code	CING- e Grip DOL ber DOL Stress Incr e IRC2015/TF	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.82 0.54 0.62 c-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.25 0.02	(loc) 2-17 2-17 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 285 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 6-8: 2x 2x6 SP 2x4 SP	9 No.2 *Exce 6 SP No.2 9 No.2 9 No.3	pt*		<u> </u>		BRACING- TOP CHOR BOT CHOR WEBS	RD RD	Structu 2-0-0 c Rigid c 1 Row	ral wood c purlins eiling dire at midpt	sheathing (3-7-0 max ectly applie	directly applied or 4-3-6 x.): 4-8. d or 6-0-0 oc bracing. 7-14	oc purlins, except
REACTIONS.	(lb/size Max H	e) 2=960/0 orz 2=98(L0	0-3-8, 14=221 C 16)	0/0-3-8, 10=69	0/0-3-8								

Max Uplift 2=-124(LC 12), 14=-256(LC 9), 10=-134(LC 13) Max Grav 2=975(LC 23), 14=2210(LC 1), 10=718(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1580/290, 3-4=-1217/208, 4-5=-1026/228, 5-7=-674/187, 7-8=-522/159, 8-9=-644/134, 9-10=-1012/239

8-9=-644/134, 9-10=-1012/23

 BOT CHORD
 2-17=-213/1352, 15-17=-99/660, 14-15=-628/179, 12-14=-628/179, 10-12=-132/846

 WEBS
 3-17=-368/231, 4-17=0/273, 5-17=-68/468, 7-15=-191/1492, 7-14=-2014/376, 7-12=-150/1236, 9-12=-378/226, 5-15=-722/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-0-0, Exterior(2) 11-0-0 to 15-2-15, Interior(1) 15-2-15 to 36-0-0, Exterior(2) 36-0-0 to 40-2-15, Interior(1) 40-2-15 to 47-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 10. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		8-4-0	17-4-2		26	6-4-4		32-6-2	1	38-8-0	47-0-0	1
1		8-4-0	9-0-2	1	g	9-0-2		6-1-14		6-1-14	8-4-0	
Plate Offsets (2	X,Y)	[7:0-3-8,0-2-0], [9:0-3	8-0,0-0-12], [17:0-3-	8,0-2-0]								
LOADING (ps	sf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	.0	Plate Grip DO	L 1.15	TC	0.50	Vert(LL)	-0.07	17-19	>999	240	MT20	244/190
TCDL 10.	.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.16	17-19	>999	180		
BCLL 0.	.0 *	Rep Stress Inc	or YES	WB	0.87	Horz(CT)	0.03	11	n/a	n/a		
BCDL 10.	.0	Code IRC201	5/TPI2014	Matri	x-S						Weight: 299 lb	FT = 20%
TOP CHORD BOT CHORD WEBS	2x4 SP 4-6,6-9 2x6 SP 2x4 SP	No.2 *Except* 2x6 SP No.2 No.2 No.3				BRACING- TOP CHOR BOT CHOR	D D	Structu 2-0-0 c Rigid c 6-0-0 c	ural wood oc purlins ceiling dire oc bracing at midot	sheathing direc (5-9-6 max.): 4- ectly applied or : 16-17. 8-10	tly applied or 4-4-0 c 9. 10-0-0 oc bracing, 1	oc purlins, except Except:
REACTIONS.	(Ib/size Max Ho Max Up Max G) 2=959/0-3-8, 16= brz 2=75(LC 12) blift 2=-105(LC 12), 1 rav 2=970(LC 23), 16	=2211/0-3-8, 11=68 6=-319(LC 9), 11=- 6=2211(LC 1), 11=7	9/0-3-8 •112(LC 13) 701(LC 24)	1			1100	armapt	0.1	-	
FORCES (It) - Max (Comp /Max Ten - Al	ll forces 250 (lb) or	less excent	when shown							

2-3=-1663/290, 3-4=-1424/227, 4-5=-1239/238, 5-7=-1100/232, 7-8=-68/872,

TOP CHORD

8-9=-284/116. 9-10=-806/150. 10-11=-1072/218

BOT CHORD	2-19=-197/1436, 17-19=-179/1100, 16-17=-872/197, 14-16=-8/281, 13-14=-10/668,
	11-13=-141/911
WEBS	4-19=0/341, 5-17=-671/246, 7-17=-327/2098, 7-16=-1313/332, 8-16=-1310/184,

WEBS 32, 8-16= 8-14=0/406, 9-14=-487/59, 9-13=0/379, 10-13=-265/167

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-4-0, Exterior(2) 8-4-0 to 12-6-15, Interior(1) 12-6-15 to 38-8-0, Exterior(2) 38-8-0 to 42-8-11, Interior(1) 42-8-11 to 47-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=105.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16 and 11. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Scale = 1:80.3

WEBO	3-19,11-13: 2x4 SP No.2
REACTIONS.	(lb/size) 12=2531/Mechanical, 2=2548/0-3-8 Max Horz 2=116(LC 11) Max Uplift 12=-891(LC 9), 2=-745(LC 9)
FORCES. (Ib TOP CHORD) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 2-3=-5136/1632, 3-4=-8407/2906, 4-5=-8406/2906, 5-7=-10680/3728, 7-8=-10680/3728, 8-10=-5599/1981 10-11=-5599/1981 11-12=-2403/921

BOT CHORD 2-20=-1526/4511, 19-20=-1531/4497, 17-19=-3711/10543, 16-17=-3711/10543,

 14-16=-3231/9126
 13-14=-3231/9126

 WEBS
 3-20=0/410, 3-19=-1548/4207, 4-19=-565/403, 5-19=-2300/837, 5-17=0/419,

7-16=-540/377, 8-16=-579/1672, 8-14=0/410, 8-13=-3797/1336, 10-13=-586/413, 11-13=-2062/5899

NOTES-

WEBS

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.

2v4 SP No 3 *Except*

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-6-0, Exterior(2) 5-6-0 to 9-8-15, Interior(1) 9-8-15 to 46-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=891, 2=745.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

COARUGASE (S)geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1445.A.12X12CVP	
						137616205
21396A	HG1	HALF HIP GIRDER	1	2		
				~	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.220 s No	v 16 2018 MiTek Industries, Inc. Fri Jun 28 12:40:33 2019	Page 2

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-oO3NAuyoNQI7qbRQrD44Nyw_lyB?qrrolKqAuPz1INi

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-11=-60, 2-12=-20

Concentrated Loads (lb)

Vert: 6=-41(B) 20=-17(B) 3=-41(B) 10=-41(B) 13=-17(B) 23=-38(B) 24=-41(B) 25=-41(B) 26=-41(B) 27=-41(B) 28=-41(B) 29=-41(B) 30=-41(B) 31=-41(B) 32=-41(B) 32=-41(B) 33=-41(B) 35=-41(B) 35

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1445.A.12X12CVP	
						137616206
21396A	HG2	HIP GIRDER	1	1		
					Job Reference (optional)	
84 Components (Dunn)	Dunn NC - 28334			3 220 s No	v 16 2018 MiTek Industries Inc. Eri Jun 28 12:40:36 2019	Page 2

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-CzIWow?ggLgih3A?WLen?bYYIABa1AKF_I3qVkz1INf

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-11=-60, 11-13=-60, 2-12=-20

Concentrated Loads (lb)

Vert: 3=-41(F) 7=-41(F) 11=-41(F) 21=-17(F) 16=-17(F) 9=-41(F) 14=-17(F) 24=-38(F) 25=-41(F) 26=-41(F) 27=-41(F) 28=-41(F) 29=-41(F) 30=-41(F) 31=-41(F) 32=-41(F) 32=-41(F) 33=-41(F) 33=-41(F) 35=-41(F) 35=-41(F) 36=-41(F) 37=-41(F) 38=-41(F) 39=-41(F) 49=-38(F) 43=-42(F) 44=-17(F) 45=-17(F) 46=-17(F) 46=-17(F) 48=-17(F) 49=-17(F) 50=-17(F) 51=-17(F) 51=-17(F) 53=-17(F) 54=-17(F) 55=-17(F) 56=-17(F) 58=-17(F) 58=-17(F) 59=-17(F) 50=-17(F) 50=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.01	2-4	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.02	2-4	>999	180		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-P						Weight: 15 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=101/Mechanical, 2=216/0-3-8, 4=37/Mechanical Max Horz 2=119(LC 12) Max Uplift 3=-85(LC 12), 2=-13(LC 12) Max Grav 3=113(LC 19), 2=216(LC 1), 4=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-10-8 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=98/Mechanical, 2=237/0-3-8, 5=62/Mechanical Max Horz 2=82(LC 12) Max Uplift 4=-45(LC 9), 2=-37(LC 12)

Max Grav 4=98(LC 1), 2=237(LC 1), 5=88(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (lb) Vert: 6=-25(F) 7=-17(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	2-5	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P						Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-0 oc purlins, except 2-0-0 oc purlins: 3-4.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=85/Mechanical, 2=202/0-3-8, 5=37/Mechanical Max Horz 2=73(LC 12) Max Uplift 4=-39(LC 12), 2=-35(LC 12) Max Grav 4=85(LC 1), 2=202(LC 1), 5=61(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-0-0, Exterior(2) 3-0-0 to 3-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

	0-1 <u>-8</u> 0-1-8	<u>6-0-0</u> 5-10-8		<u>11-10-8</u> 5-10-8	<u>12-</u> 0-0 0-1-8
Plate Offsets (X,Y)	[2:0-0-0,0-0-12], [2:0-0-15,0-4	-5], [4:Edge,0-0-12], [4:0-0-15,0-4-5]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YI Code IRC2015/TPI201	CSI. .15 TC 0.50 .15 BC 0.54 ES WB 0.11 4 Matrix-S	DEFL. ir Vert(LL) 0.07 Vert(CT) -0.06 Horz(CT) 0.01	i (loc) l/defl L/d 4-6 >999 240 2-6 >999 180 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 50 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.3, Righ	P No.2 P No.2 P No.3 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=530/0-3-0, 4=530/0-3-0 Max Horz 2=-113(LC 10) Max Uplift 2=-71(LC 12), 4=-71(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-562/402, 3-4=-562/402

BOT CHORD 2-6=-224/377, 4-6=-224/377

WEBS 3-6=-290/287

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 12-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0- <u>1-8</u> 0-1-8	4-6-0 4-4-8			7-6-0 3-0-0				<u>11-10-8</u> 4-4-8	12 0·	2-0-0 -1-8
Plate Offsets (X,Y)	[2:0-0-15,0-4-5], [2:0-0-0	,0-0-12], [3:0-3	3-7,Edge], [4:0	-4-0,0-1-9],	[5:0-0-0,0-0-12], [5:0-0-18	5,0-4-5]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.32 0.48 0.06 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 0.01	(loc) 2-8 2-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	SP No.2 SP No.2 SP No.3				BRACING- TOP CHOR BOT CHOR	D D	Structu 2-0-0 c Rigid c	iral wood oc purlins ciling dire	sheathing dir (6-0-0 max.): ectly applied c	ectly applied or 6-0-0 3-4. or 10-0-0 oc bracing.) oc purlins, except

WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=530/0-3-0, 5=530/0-3-0 Max Horz 2=87(LC 11) Max Uplift 2=-95(LC 9), 5=-95(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-607/472, 3-4=-426/426, 4-5=-607/472

BOT CHORD 2-8=-300/430, 7-8=-293/426, 5-7=-302/430

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-6-0, Exterior(2) 4-6-0 to 11-10-8, Interior(1) 11-10-8 to 12-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0- <u>1-8</u> 0-1-8	3-0-0		<u>9-0-0</u> 6-0-0				<u>11-10-8</u> 2-10-8	<u>12_T0</u> 0 0-1-8
Plate Offsets (X,Y)	[2:0-0-15,0-4-5], [2:0-0-0,0-1-0], [3:	:0-3-8,Edge], [4:0-4-0,0-1-9], [5	5:0-0-0,0-1-0], [5:0-0-	15,0-4-	5]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.35 WB 0.08 Matrix-S	DEFL. Vert(LL) 0 Vert(CT) -0 Horz(CT) 0	in (I .07 .08 .01	loc) l/de 7-8 >99 7-8 >99 7-8 >99 5 n	efl L/d 99 240 99 180 /a n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2 P No.2		BRACING- TOP CHORD	Sti 2-(ructural w	ood sheathing d	lirectly applied or 6-0-0	oc purlins, except

BOT CHORD

Rigid ceiling directly applied or 8-10-10 oc bracing.

WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3

2x4 SP No.3

REACTIONS. (lb/size) 2=530/0-3-0, 5=530/0-3-0 Max Horz 2=63(LC 11) Max Uplift 2=-137(LC 9), 5=-137(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-699/594, 3-4=-523/494, 4-5=-699/593 TOP CHORD

2-8=-414/530, 7-8=-400/523, 5-7=-413/530 BOT CHORD

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-0-0, Exterior(2) 3-0-0 to 7-2-15, Interior(1) 7-2-15 to 9-0-0, Exterior(2) 9-0-0 to 12-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

0- <u>1-8</u>	1-6-0 6	<u>3-0-0</u>		10-6-	-0	11-10-8	12 ₁ 0 ₁ 0
Plate Offsets (X,Y)	<u>1-4-8</u> [3:0-5-12,0-2-0], [5:0-5-12,0-2-0]	I-D-U		4-6-	0	1-4-8	0-1-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.30 BC 0.26 WB 0.25 Matrix-S	DEFL. in Vert(LL) 0.06 Vert(CT) -0.07 Horz(CT) 0.01	(loc)	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max H Max U	No.2 No.2 No.3 e) 2=557/0-3-0, 6=557/0-3-0 orz 2=40(LC 11) plift 2=-210(LC 9), 6=-210(LC 8)		BRACING- TOP CHORD BOT CHORD	Structural 2-0-0 oc p Rigid ceilir	wood sheathing dir urlins (5-0-9 max.): ng directly applied c	ectly applied or 6-0-0 3-5. or 10-0-0 oc bracing.	oc purlins, except
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-10= WEBS 3-9=-	Comp./Max. Ten All forces 250 (lb) or 795/645, 3-4=-1209/1016, 4-5=-1209/10 -464/607, 9-10=-487/628, 8-9=-477/628 494/604, 4-9=-292/148, 5-9=-494/604	less except when shown. 116, 5-6=-795/646 8, 6-8=-453/607					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) zone; porch left and DOL=1.60 3) Provide adequate dr 4) This truss has been will fit between the b 6) One RT7A USP con uplift only and does i 7) Graphical purlin repr 8) "NAILED" indicates 3 9) In the LOAD CASE(5)	e loads have been considered for this de ult=130mph (3-second gust) Vasd=103r gable end zone and C-C Exterior(2) -0- right exposed;C-C for members and for ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. nectors recommended to connect truss not consider lateral forces. resentation does not depict the size or th 3-10d (0.148"x3") or 3-12d (0.148"x3.25 S) section, loads applied to the face of th	sign. mph; TCDL=6.0psf; BCDL=6. 10-8 to 6-0-0, Interior(1) 6-0-0 ces & MWFRS for reactions s e load nonconcurrent with an he bottom chord in all areas to bearing walls due to UPLIF re orientation of the purlin alo ") toe-nails per NDS guidlines he truss are noted as front (F	Opsf; h=30ft; Cat. II;) to 10-6-0, Exterior(2 shown; Lumber DOL= y other live loads. where a rectangle 3-6 FT at jt(s) 2 and 6. Th ng the top and/or bot s.) or back (B).	Exp B; Encl) 10-6-0 to 1.60 plate g 3-0 tall by 2- is connection tom chord.	osed; 12-10-8 grip -0-0 wide on is for	Activitient of the	H CAROUN
LOAD CASE(S) Stand 1) Dead + Roof Live (b Uniform Loads (plf) Vert: 1-3=-6 Concentrated Loads Vert: 9=-1(F	dard alanced): Lumber Increase=1.15, Plate i0, 3-5=-60, 5-7=-60, 2-6=-20 (lb) i) 15=-25(F) 16=-1(F) 17=-1(F) 18=-25(F	Increase=1.15				THINNING THE PRESE	SEAL 45844 VGINEER W JOHNSON
WARNING - Verify	design parameters and READ NOTES ON THIS A	ND INCLUDED MITEK REFERENCE	PAGE MII-7473 rev. 10/03	2015 BEFORE	USE.	ENGIN	EERING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		1	2-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.12	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 2-4 >999 240 Vert(CT) -0.00 2-4 >999 180	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.00 2-4 9999 100 Horz(CT) -0.00 3 n/a n/a	Weight: 9 lb FT = 20%

BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=50/Mechanical, 4=21/Mechanical, 2=160/0-3-0 Max Horz 2=59(LC 12) Max Uplift 3=-35(LC 12), 4=-7(LC 8), 2=-31(LC 12) Max Grav 3=50(LC 1), 4=43(LC 3), 2=160(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD Structural wood sheathing dir BOT CHORD Rigid ceiling directly applied o

Structural wood sheathing directly applied or 2-4-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

			2-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 2-4 >999 240 Vert(CT) -0.00 2-4 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=50/Mechanical, 4=45/Mechanical, 2=190/0-3-0 Max Horz 2=59(LC 12) Max Uplift 3=-35(LC 12), 4=-23(LC 8), 2=-61(LC 12) Max Grav 3=50(LC 1), 4=50(LC 3), 2=190(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-60, 2-4=-20
 - Concentrated Loads (lb)
 - Vert: 5=-53(B)

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[3:0-2-0,0-2-3]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCU 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YFS	CSI. TC 0.24 BC 0.10 WB 0.00	DEFL. in (loc) 1// Vert(LL) -0.00 2-5 >5 Vert(CT) -0.00 2-5 >5 Horz(CT) 0.00 2-5 >5	defl L/d 999 240 999 180 p/a p/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP	P No.2 P No.2	-	BRACING- TOP CHORD Structural 2-0-0 oc p	wood sheathing dire urlins: 3-4.	ctly applied or 2-0-0 oc purlins, except

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.2

REACTIONS. 5=67/Mechanical, 2=145/0-3-0 (lb/size) Max Horz 2=34(LC 12) Max Uplift 5=-42(LC 8), 2=-34(LC 12) Max Grav 5=73(LC 24), 2=145(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8	-1-12 19-	0	27-6-0	33-9-13	38-10-4	47-0-0	
Plate Offse	ets (X,Y)	[2:0-4-8,0-1-11], [5:0-2-2,0-2-0], [6:0	. <u>.</u> 3-0,0-2-7], [7:0-3-6,0-3-0], [8	8:0-2-2,0-1-8], [11:0	-4-8,0-1-11], [16:0-2-	4,0-2-0]	0-1-12	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2012/TPI2007	CSI. TC 0.90 BC 0.79 WB 0.85 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL) Attic	in (loc) l/defl -0.47 16-18 >988 -1.11 16-18 >420 0.05 13 n/a -0.24 15-16 410	L/d 240 180 n/a 360	PLATES MT20 Weight: 359 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOP BOT CHOP WEBS OTHERS	RD 2x4 SP 6-7: 2xi RD 2x8 SP 15-16: 2x4 SP 8-21,8- 2x4 SP	No.2 *Except* 6 SP No.2 DSS *Except* 2x4 SP No.2 No.3 *Except* 13,5-21,5-18: 2x4 SP No.2 No.3		BRACING- TOP CHORI BOT CHORI WEBS JOINTS	 Structural woo 2-0-0 oc purlin Rigid ceiling di 1 Row at midp 2 Rows at 1/3 1 Brace at Jt(s 	d sheathing dired s (5-8-12 max.): rectly applied or t 19- pts 8-1): 19, 20	ctly applied or 2-2-0 o 6-7. 5-8-6 oc bracing. -20, 5-16 I3	oc purlins, except
REACTION	NS. (Ib/size Max H Max U Max G	e) 2=1602/0-3-8, 13=2441/0-3-8 orz 2=-170(LC 17) plift 2=-162(LC 12), 13=-191(LC 13) rav 2=1720(LC 2), 13=2618(LC 2)						
FORCES. TOP CHOP BOT CHOP WEBS	(lb) - Max. RD 2-3=- 8-10= RD 2-18= 16-19 3-18= 5-16=	Comp./Max. Ten All forces 250 (lb 3416/240, 3-5=-3402/391, 5-6=-1410 428/851, 10-11=-563/885 269/2979, 16-18=-94/2217, 15-16= 9=0/406, 5-19=-775/91, 19-20=-768/9 440/264, 10-13=-466/269, 8-15=-13 568/249	or less except when shown 127, 6-7=-1202/138, 7-8=-1 /1970, 13-15=0/1279, 11-13 I, 8-20=-770/91, 6-19=0/42 I/1236, 8-13=-2816/529, 5-	1380/109, 3=-699/603 1, 7-20=-49/313, 18=-264/1182,				
NOTES- 1) Unbalan 2) Wind: A: Enclose to 26-1- exposec grip DOI 3) Provide 4) This trus 5) * This trus 5) * This trus 6) Ceiling of 7) Bottom (8) One RT uplift on 9) Graphic 10) ATTIC	aced roof live SCE 7-10; V d; MWFRS (12, Interior(1 4; end vertic L=1.60 adequate dr ss has been uss has been uss has been tween the b dead load (5, chord live loa 7A USP con ly and does i al purlin repr SPACE SHO	e loads have been considered for this ult=130mph (3-second gust) V(IRC2 envelope) gable end zone and C-C I) 26-1-12 to 27-6-0, Exterior(2) 27-6 al left and right exposed;C-C for mer ainage to prevent water ponding. designed for a 10.0 psf bottom chorg n designed for a live load of 20.0psf ottom chord and any other members 0 psf) on member(s). 5-19, 19-20, 8 ad (40.0 psf) and additional bottom c nectors recommended to connect tru- not consider lateral forces. resentation does not depict the size of DWN IS DESIGNED AS UNINHABIT	design. 12)=103mph; TCDL=6.0psi xterior(2) -0-10-8 to 3-9-14, 0 to 34-1-12, Interior(1) 34-1 bers and forces & MWFRS live load nonconcurrent with n the bottom chord in all are with BCDL = 10.0psf. 20 ord dead load (0.0 psf) app is to bearing walls due to UI the orientation of the purlin ABLE.	f; BCDL=6.0psf; h=: Interior(1) 3-9-14 to I-12 to 47-10-8 zone for reactions showr h any other live load eas where a rectang lied only to room. 1: PLIFT at jt(s) 2 and h along the top and/	30ft; Cat. II; Exp B; o 19-6-0, Exterior(2) 1 e; cantilever left and r b; Lumber DOL=1.60 ls. gle 3-6-0 tall by 2-0-0 5-16 13. This connection i or bottom chord.	9-6-0 ight plate wide s for	Anno RTH	SEAL 45844 GINEER. SOLUTION W JOHNSTITUTION 10 28,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

14 31

8x8 =

15

5x9 =

5x9 =

32

13

4x6 =

L	8-	-1-12		19-6-0			26-4-4	27-6-	-Q		38-10-4	Ļ	47-0-0	
1	8-	-1-12	1	11-4-4		1	6-10-4	1-1-1	2		11-4-4		8-1-12	1
Plate Offsets (X	K,Y) [[2:0-4-8,0-1-	11], [5:0-2-2	2,0-2-0], [6:0-3-6	,0-3-0], [7:0	-3-6,0-3-0], [8:0-2-2,0-2-	0], [11:0)-4-8,0	-1-11],	[15:0-1-8,	0-2-4], [17:0·	-1-8,0-2-4]	
LOADING (psf	f)	SPAC	CING-	2-0-0	CSI.		DEF	L.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	0	Plate	Grip DOL	1.15	TC	0.87	Vert	(LL)	-0.42	17-19	>741	240	MT20	244/190
TCDL 10.0	0	Lumb	er DOL	1.15	BC	0.98	Vert	(TL)	-0.98	17-19	>320	180		
BCLL 0.0	0 *	Rep S	Stress Incr	YES	WB	0.74	Horz	:(TL)	0.08	11	n/a	n/a		
BCDL 10.0	0	Code	IRC2012/T	PI2007	Matri	x-S	Attic		-0.34	16-17	494	360	Weight: 358 lb	FT = 20%
LUMBER-	2x4 SP	No.2 *Excer	ot*				BRA TOP	CING-	D	Structu	iral wood	sheathing di	rectly applied, except	
	6-7: 2x6	6 SP No.2								2-0-0 c	c purlins	(5-11-14 ma	x.): 6-7.	
BOT CHORD	2x8 SP	No.2 *Excer	ot*				BOT	CHORI	D	Rigid c	eilina dire	ctly applied	or 2-2-0 oc bracing.	
	15-17:2	2x4 SP No 2	14-18 [.] 2x8	SP DSS			WEB	S	_	1 Row	at midpt		5-17 8-15 20-21	
WEBS	2x4 SP	No.3 *Excer	, <u>.</u>				JOIN	TS		1 Brac	e at Jt(s):	20. 21	,,	
	8-22,5-2	22: 2x4 SP N	No.2									,		
REACTIONS.	(Ib/size) Max Ho Max Up Max Gr	e) 2=1571/ orz 2=170(L olift 2=-219(l rav 2=1695(0-3-8, 11=1 C 12) LC 12), 11= LC 26), 11=	447/0-3-8, 16=1 -62(LC 12), 16= 1502(LC 2), 16	020/0-3-8 -183(LC 13) =1287(LC 23	7)								
FORCES. (lb) TOP CHORD) - Max. (2-3=-3 8-10=	Comp./Max. 3343/356, 3- 2749/422, 1	Ten All fo 5=-3332/51 10-11=-2752	orces 250 (lb) or 0, 5-6=-1289/19 2/296	less except 0, 6-7=-109	when showr 1/207, 7-8=-	n. 1224/202,							
BOT CHORD	2-19≕ 11-13:	-373/2914, 1 =-129/2388	17-19=-212/	2179, 16-17=-9	3/2016, 15-1	6=-85/2007,	, 13-15=-84/	1923,						
WEBS	3-19= 8-15= 8-21=	-450/270, 5- -387/279, 8- -914/168, 6-	19=-242/11 13=-255/85 20=-20/323	18, 5-17=-425/2 7, 10-13=-466/2	05, 17-20=- 69, 5-20=-9	66/290, 15-2 17/168, 20-2	21=-285/115 21=-911/168	,						
NOTES- 1) Unbalanced	roof live	loads have	been consid	dered for this de	sign.						_			annun.

Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-9-14, Interior(1) 3-9-14 to 19-6-0, Exterior(2) 19-6-0 to 26-1-12, Interior(1) 26-1-12 to 27-6-0, Exterior(2) 27-6-0 to 34-1-12, Interior(1) 34-1-12 to 47-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

18 30

8x8 =

17

5x9 =

5x9 = 5x9 =

29

19

4x6 =

5x9 =

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Ceiling dead load (5.0 psf) on member(s). 5-20, 20-21, 8-21

7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 16-17, 15-16

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, and 16. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5x9

Max Horz 1=106(LC 9) Max Uplift 1=-4(LC 13), 5=-26(LC 13), 6=-86(LC 12) Max Grav 1=145(LC 20), 5=160(LC 24), 6=359(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-261/143

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-7-14, Exterior(2) 5-7-14 to 8-4-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

			7-0-6			
			7-0-6		1	
Plate Offsets (X,Y)	[3:0-2-0,Edge], [4:0-1-3,0-1-12], [5:0-0-0),0-1-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.11 BC 0.10 WB 0.04 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 b 5 n/a n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP	P No.2 P No.2 P No.3 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (lb/size) 1=123/7-0-0, 5=137/7-0-0, 6=252/7-0-0 Max Horz 1=69(LC 9) Max Uplift 1=-19(LC 13), 5=-32(LC 13), 6=-63(LC 12) Max Grav 1=126(LC 20), 5=151(LC 24), 6=275(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-6-3, Interior(1) 3-6-3 to 4-1-14, Exterior(2) 4-1-14 to 6-10-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0-6		5-3-6					
Plate Offsets (X,Y)	[2:0-2-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code. IRC2015/TPI2014	CSI. TC 0.08 BC 0.24 WB 0.00 Matrix-P	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) a - a - 0 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF	2 No.2		BRACING- TOP CHORD	Structu	ral wood	sheathing di	rectly applied or 5-3-1	2 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=174/5-3-0, 3=174/5-3-0 Max Horz 1=-36(LC 8) Max Uplift 1=-19(LC 12), 3=-19(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-3-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-4-14, Exterior(2) 5-4-14 to 8-4-14, Interior(1) 8-4-14 to 10-4-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

REACTIONS. (lb/size) 1=148/7-9-0, 3=148/7-9-0, 4=252/7-9-0 Max Horz 1=-56(LC 8) Max Uplift 1=-33(LC 12), 3=-40(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 3-10-14, Exterior(2) 3-10-14 to 6-10-14, Interior(1) 6-10-14 to 7-4-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 💋

2x4 📎

Structural wood sheathing directly applied or 4-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		4-9-12									
late Offsets (X,Y)	[2:0-2-0,Edge]				100						
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	n/a	-	n/a	999		
CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
3CDL 10.0	Code IRC2015/T	PI2014	Matrix	<-P						Weight: 14 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=154/4-9-0, 3=154/4-9-0 Max Horz 1=32(LC 11) Max Uplift 1=-17(LC 12), 3=-17(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

