

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20904A 240.3174 21 x 12 CVP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37149320 thru I37149321

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

May 21,2019

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

0-0-4	7-3-4		13-8-12					20-11-12	21-0-0
0-0-4	7-3-0	1	6-5-8			1		7-3-0	0-0-4
Plate Offsets (X	,Y) [2:0-3-2,Edge], [6:0-3-2,Edge]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.55	Vert(LL)	0.19	6-8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.67	Vert(CT)	-0.22	2-10	>999	180		
BCLL 0.0	* Rep Stress Incr YES	WB 0.23	Horz(CT)	0.05	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 88 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 (Ib/size) 2=890/0-3-8, 6=890/0-3-8 Max Horz 2=-63(LC 17) Max Uplift 2=-348(LC 8), 6=-348(LC 9)		BRACING- TOP CHOR BOT CHOR	D D	Structu Rigid c	ral wood eiling dire	sheathing c ectly appliec	lirectly applied or 3-8-6 l or 4-11-12 oc bracing.	oc purlins.
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-1955/1287, 3-4=-1713/1249, 4-5=-1713 2-10=-1169/1803, 8-10=-766/1216, 6-8=-113 4-8=-468/547, 5-8=-348/182, 4-10=-468/547	r less except when shown. 3/1249, 5-6=-1955/1287 76/1803 , 3-10=-348/182							
NOTES- 1) Unbalanced I 2) Wind: ASCE	roof live loads have been considered for this d 7-10; Vult=130mph (3-second gust) Vasd=103	esign. mph; TCDL=6.0psf; BCDL	=6.0psf; h=25ft; C	at. II; E	Exp B; E	inclosed;			

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-6-0, Exterior(2) 10-6-0 to 13-6-0, Interior(1) 13-6-0 to 21-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=348.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0	-2					21-0-0						
0-0	-2					20-11-14						1
LOADING (TCLL 2 TCDL 2 BCLL BCDL 2	psf) 20.0 10.0 0.0 * 10.0	SPACING- 22 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2/	2-0-0 1.15 1.15 YES 014	CSI . TC BC WB Matrix	0.23 0.15 0.05 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.02 0.00	(loc) 11 11 10	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI OTHERS	D 2x4 SP D 2x4 SP 2x4 SP 2x4 SP	No.2 No.2 No.3				BRACING- TOP CHOR BOT CHOR	D D	Structur Rigid ce	ral wood s eiling dire	sheathing dire	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins.
REACTION: (It	S. All bea b) - Max Ho Max Up Max Gr	arings 20-11-8. orz 2=-63(LC 13) plift All uplift 100 lb or less rav All reactions 250 lb or 24)	at joint(s) 2, less at joint(s	16, 17, 18, s) 2, 15, 16,	14, 13, 12, 10 17, 14, 13, 1()) except 18=361(_C 23),	12=361	(LC			
FORCES. WEBS	(lb) - Max. (3-18=	Comp./Max. Ten All force: -257/163, 9-12=-257/163	s 250 (lb) or l	ess except	when shown.							
NOTES- 1) Unbalance 2) Wind: AS MWFRS Exterior(2 Lumber D 3) Truss des	ed roof live CE 7-10; Vi (envelope) (2) 13-6-0 to OCL=1.60 pl signed for w	loads have been considere ult=130mph (3-second gust gable end zone and C-C Co 21-10-8 zone; porch left and late grip DOL=1.60 ind loads in the plane of the	d for this des) Vasd=103n orner(3) -0-10 d right expos e truss only.	ign. nph; TCDL= I-8 to 2-1-8, ed;C-C for r For studs e	6.0psf; BCDL Exterior(2) 2- nembers and xposed to win	=6.0psf; h=25ft; C .1-8 to 10-6-0, Co forces & MWFRS d (normal to the f	cat. II; E rner(3) 6 for rea ace), se	Exp B; E 10-6-0 t actions s ee Stanc	nclosed; o 13-6-0, hown; lard Indus	strv		

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 17, 18, 14,

9) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

Trenco 818 Soundside Rd Edenton, NC 27932

Re: LOT47MP 240.3174 C 20x10CP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I36109305 thru I36109340

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

February 12,2019

Johnson, Andrew

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

Plate Offsets (X,Y)--[2:0-0-5,0-0-8], [2:0-0-11,0-4-8], [8:0-0-5,0-0-8], [8:0-0-11,0-4-8] SPACING-LOADING (psf) 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 ΤС 0.05 Vert(LL) -0.00 8 120 MT20 244/190 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) -0.00 9 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 8 n/a n/a Code IRC2015/TPI2014 FT = 20% BCDL 10.0 Weight: 58 lb Matrix-S BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

Max Horz 2=108(LC 11) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-8-0, Corner(3) 5-8-0 to 8-8-0, Exterior(2) 8-8-0 to 12-2-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 14, 11, 10.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 11-4-0.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174 C 20x10CP	
					136	6109306
LOT47MP	AG	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
84 Components, Dunn,	NC - 28334,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Feb 11 11:28:19 2019 Pa	ige 2

ID:B_Q7f7Biu7XlherXjarx6dzmHHa-dbt1jYurb?6badnJvFqiXnN9jdw5_hb4x6DxcLzmDnA

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 10=-2533(B) 11=-1626(B) 12=-1626(B) 13=-1631(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174 C 20x10CP	
LOT47MP	BE	COMMON STRUCTURAL GA	1	1		136109307
					Job Reference (optional)	
84 Components, Dunn	, NC - 28334,		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Mon Feb 11 11:28:20 2019	Page 2
		ID:B Q7	7f7Biu7Xlh	erXjarx6dz	zmHHa-5oRPwuvUMIESCnLVSzLx3 wF61EgjA6D9myU8r	າzmDn9

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 2-7=-20, 3-15=-10(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174 C 20x10CP	
					13	6109308
LOT47MP	BG	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
84 Components, Dun	n, NC - 28334,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Feb 11 11:28:22 2019 Pa	age 2

ID:B Q7f7Biu7XlherXjarx6dzmHHa-1AYALZwktwU9R4VuaONP8P?XMr0jB3gWd3RbDgzmDn7

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 9=-1626(B) 10=-1626(B) 11=-1626(B) 12=-1626(B) 13=-1626(B) 14=-1626(B) 15=-1626(B) 16=-2533(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	5-11-5 11-2-13	20-10-0		30-5-3	35-8-	11 41	-4-8
	5-11-5 5-3-8	9-7-3	1	9-7-3	5-3-6	8 5-7	7-13
Plate Offsets (X,Y)	[5:0-4-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.94 BC 1.00 WB 0.52 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.32 12 >999 -0.72 12-14 >683 0.20 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 4-5,5-6 BOT CHORD 2x4 SP 11-13: WEBS 2x4 SP	P No.2 *Except* 5: 2x6 SP No.2 P No.2 *Except* 2x4 SP No.1 P No.3		BRACING- TOP CHORI BOT CHORI	 Structural wood 2-0-0 oc purlins Rigid ceiling dire 	sheathing direc (2-8-12 max.): 4 ectly applied or 1	tly applied, except I-6. I-4-12 oc bracing.	
REACTIONS. (Ib/size Max H Max U	e) 8=1646/Mechanical, 2=1709/0-3-8 lorz 2=88(LC 12) plift 8=-179(LC 9), 2=-208(LC 8)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=-	Comp./Max. Ten All forces 250 (lb) or -3678/564, 3-4=-3234/517, 4-5=-3933/64 -3583/549	less except when shown. 3, 5-6=-3933/643, 6-7=-32	200/507,				
BOT CHORD 2-15= 8-9=-	-476/3318, 14-15=-476/3318, 12-14=-3 -454/3227	52/2941, 10-12=-336/2910), 9-10=-454/3227	3			
WEBS 3-14= 7-10=	=-415/180, 4-14=0/437, 4-12=-226/1235, =-353/179, 5-12=-757/317	6-12=-229/1266, 6-10=0/	415,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 17-1-0 to for reactions shown; 3) Provide adequate dr 4) This truss has been will fit between the b 6) Refer to girder(s) for	a loads have been considered for this de- fult=130mph (3-second gust) Vasd=1037 gable end zone and C-C Exterior(2) -0-1 30-5-3, Exterior(2) 30-5-3 to 36-3-7, Inte ; Lumber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti vottom chord and any other members. r truss to truss connections.	sign. nph; TCDL=6.0psf; BCDL 0-8 to 3-3-2, Interior(1) 3- rior(1) 36-3-7 to 41-3-12 z e load nonconcurrent with he bottom chord in all area	=6.0psf; h=25ft; C 3-2 to 11-2-13, Ex cone;C-C for memi any other live load as where a rectang	at. II; Exp B; Enclosed; terior(2) 11-2-13 to 17- bers and forces & MWF ds. gle 3-6-0 tall by 2-0-0 w	1-0, RS ide	Atal	A CAROLINI

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=179, 2=208.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	7-6-8 14-5-3 7-6-8 6-10-11	20-10-0	27-2-13	34-1-8	41-4-8
Plate Offsets (X,Y)	[3:0-3-0,0-3-4], [7:0-3-0,0-3-4], [8:0-0-0,	0-0-6]	0-4-10	0-10-11	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.92 BC 0.77 WB 0.77 Matrix-S	DEFL. in (loc) Vert(LL) -0.25 12 Vert(CT) -0.52 12-14 Horz(CT) 0.18 8	l/defi L/d >999 240 >944 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 209 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP 1-3: 2x BOT CHORD 2x4 SP 11-13: 1 WEBS 2x4 SP	No.2 *Except* 4 SP No.1, 7-8: 2x4 SP DSS No.1 *Except* 2x4 SP No.2 No.3		BRACING- TOP CHORD Structu 2-0-0 c BOT CHORD Rigid c	ural wood sheathing directl oc purlins (2-2-0 max.): 4-6 ceiling directly applied or 9-	y applied, except .5-9 oc bracing.
REACTIONS. (Ib/size Max H Max U	e) 2=1709/0-3-8, 8=1646/Mechanical orz 2=111(LC 12) plift 2=-171(LC 8), 8=-145(LC 13)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- BOT CHORD 2-15= 8-9=- WEBS 3-15= 6-12=	Comp./Max. Ten All forces 250 (lb) or 3621/532, 3-4=-2900/487, 4-5=-2918/52 3544/521 437/3257, 14-15=-437/3256, 12-14=-2 418/3191 -0/308, 3-14=-729/228, 4-14=-19/486, 4 100/609, 6-10=-18/468, 7-10=-677/228	less except when shown. ?7, 5-6=-2918/527, 6-7=-2 88/2594, 10-12=-273/2578 -12=-99/590, 5-12=-489/20 5, 7-9=0/304	382/480, 3, 9-10=-419/3190,)2,		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 20-3-7 to 2 for reactions shown; 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) Refer to girder(s) for 7) Provide mechanical 2=171, 8=145.	e loads have been considered for this de fult=130mph (3-second gust) Vasd=1030 gable end zone and C-C Exterior(2) -0- 27-2-13, Exterior(2) 27-2-13 to 33-1-0, I Lumber DOL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on to ottom chord and any other members, wi truss to truss connections. connection (by others) of truss to bearin	sign. mph; TCDL=6.0psf; BCDL 10-8 to 3-3-2, Interior(1) 3- nterior(1) 33-1-0 to 41-3-1:) e load nonconcurrent with he bottom chord in all area th BCDL = 10.0psf. g plate capable of withsta	=6.0psf; h=25ft; Cat. II; Exp B; E 3-2 to 14-5-3, Exterior(2) 14-5-3 2 zone;C-C for members and for any other live loads. as where a rectangle 3-6-0 tall b nding 100 lb uplift at joint(s) exce	Enclosed; 8 to 20-3-7, rces & MWFRS ry 2-0-0 wide ept (jt=lb)	SEAL

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 \sim annun fritti 45844 TNO EW EW JOHN JOY February 12,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate B18 Soundside Road Edenton, NC 27932

I	9-1-11	17-7-10 8-5-14	24-0-6	32-6-5	41-4-8	
Plate Offsets (X,Y)	[11:0-0-0,0-0-6]		0110		0.000	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC2015/TPI2014	0 CSI. 5 TC 0.89 5 BC 0.82 S WB 0.71 Matrix-S	DEFL. Vert(LL) -0.: Vert(CT) -0.: Horz(CT) 0.	in (loc) l/defl L/d 24 14-15 >999 240 50 15-17 >985 180 17 11 n/a n/a	PLATES MT20 Weight: 213 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 6-7,9-1 BOT CHORD 2x4 SP 13-16: : WEBS 2x4 SP	No.2 *Except* 1: 2x4 SP No.1 No.1 *Except* 2x4 SP No.2 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir 2-0-0 oc purlins (3-0-14 max. Rigid ceiling directly applied o 1 Row at midpt 7	ectly applied, except): 6-7. or 9-6-8 oc bracing. -15	
REACTIONS. (Ib/size Max He Max U	e) 2=1709/0-3-8, 11=1646/Me orz 2=133(LC 16) olift 2=-199(LC 12), 11=-175(LC	echanical C 13)				
FORCES. (lb) - Max. TOP CHORD 2-3= 8-10= BOT CHORD 2-17= WEBS 3-17= 8-14=	Comp./Max. Ten All forces 25 3616/508, 3-5=-3340/478, 5-6=- -3289/469, 10-11=-3541/511 -423/3275, 15-17=-336/2784, 1 -346/202, 5-17=-25/526, 5-15=- -637/218, 8-12=-23/492, 10-12=	50 (lb) or less except when shown. -2548/457, 6-7=-2289/459, 7-8=-2 4-15=-203/2282, 12-14=-322/275 -661/220, 6-15=-24/582, 7-14=-61 =-301/200	540/451, 7, 11-12=-402/3190 /588,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 23-5-13 to for reactions shown; 3) Provide adequate dr 4) This truss has been will fit between the b Bafer to girdpr(c) for	loads have been considered fo ult=130mph (3-second gust) Va gable end zone and C-C Exterior :24-0-6, Exterior(2) 24-0-6 to 25 Lumber DOL=1.60 plate grip Dr ainage to prevent water ponding designed for a 10.0 psf bottom c n designed for a live load of 20.0 ottom chord and any other mem	or this design. Isd=103mph; TCDL=6.0psf; BCDL or(2) -0-10-8 to 3-3-2, Interior(1) 3 J-8-5, Interior(1) 29-8-5 to 41-3-12 OL=1.60 g. chord live load nonconcurrent with 0psf on the bottom chord in all are nbers, with BCDL = 10.0psf.	L=6.0psf; h=25ft; Cat. I -3-2 to 17-7-10, Exteri 2 zone;C-C for membe n any other live loads. nas where a rectangle	I; Exp B; Enclosed; or(2) 17-7-10 to 23-5-13, rs and forces & MWFRS 3-6-0 tall by 2-0-0 wide	A UNORTH	CAROLIN

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=199, 11=175.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MITek Affiliate A MITek Affiliate 818 Soundside Road Edenton, NC 27932

	9-1-11	15-4-0 17-7-10	24-0-6 26-4-0	32-6-5	41-4-8
Plate Offsets (X,Y)	[11:0-1-5,0-0-3]	0-2-5 2-5-10	0-4-13 2-5-10	0-2-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.79 BC 0.93 WB 0.50 Matrix-S	DEFL. in (loc) Vert(LL) -0.47 17-19 Vert(CT) -0.68 17-19 Horz(CT) 0.11 11	l/defl L/d >999 240 >729 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 266 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP 6-7: 2x6 BOT CHORD 2x6 SP 13-18: 1 WEBS 2x4 SP	No.2 *Except* 6 SP No.2 No.2 *Except* 2x6 SP DSS, 15-16: 2x8 SP No.2 No.3		BRACING- TOP CHORD Structura 2-0-0 oc BOT CHORD Rigid ce 2-2-0 oc	al wood sheathing dir purlins (4-5-13 max.) iling directly applied c bracing: 17-19.	ectly applied or 2-2-0 oc purlins, except): 6-7. or 10-0-0 oc bracing, Except:
REACTIONS. (Ib/size Max Ho Max Up	e) 2=1709/0-3-8, 11=1646/Mechani orz 2=134(LC 16) plift 2=-199(LC 12), 11=-175(LC 13)	cal			
FORCES. (lb) - Max. TOP CHORD 2-3= 8-10= BOT CHORD 2-19= WEBS 3-19= 10-12	Comp./Max. Ten All forces 250 (lb) 3695/527, 3-5=-3388/494, 5-6=-2757 3332/484, 10-11=-3616/520 446/3347, 17-19=-333/2831, 14-17= 369/196, 5-19=-111/620, 5-17=-724 (=-324/197, 6-17=-27/734, 7-14=-29/	or less except when shown. (479, 6-7=-2293/466, 7-8=-27 226/2293, 12-14=-319/2806 (274, 8-14=-688/270, 8-12=-1 '26	753/486, 6, 11-12=-423/3261 108/569,		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 23-5-13 to for reactions shown; 3) Provide adequate dr: 4) All plates are 4x6 MT 5) This truss has been 6) * This truss has been will fit between the bo 7) Refer to girder(s) for 8) Provide mechanical 2-109.11-175	loads have been considered for this ult=130mph (3-second gust) Vasd=11 gable end zone and C-C Exterior(2) - 24-0-6, Exterior(2) 24-0-6 to 29-8-5, Lumber DOL=1.60 plate grip DOL=1 ainage to prevent water ponding. IZ0 unless otherwise indicated. designed for a 10.0 psf bottom chord n designed for a live load of 20.0psf co ottom chord and any other members, truss to truss connections. connection (by others) of truss to bea	design.)3mph; TCDL=6.0psf; BCDL= 0-10-8 to 3-3-2, Interior(1) 3- Interior(1) 29-8-5 to 41-3-12 60 live load nonconcurrent with n the bottom chord in all area with BCDL = 10.0psf. ring plate capable of withstar	=6.0psf; h=25ft; Cat. II; Exp B; En 3-2 to 17-7-10, Exterior(2) 17-7-1 zone;C-C for members and force any other live loads. as where a rectangle 3-6-0 tall by nding 100 lb uplift at joint(s) excep	closed; 0 to 23-5-13, s & MWFRS 2-0-0 wide ot (jt=lb)	ALTON SEAL

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

J anin mur annun in the 45844 PEW JOY EW JOHN February 12,2019

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174 C 20x10CP	
LOT47MP	HG	HALF HIP GIRDER	2	2		136109313
				2	Job Reference (optional)	
84 Components, Dunn	, NC - 28334,		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Mon Feb 11 11:28:34 2019	Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Mon Feb 11 11:28:34 2019 Page 2 ID:B Q7f7Biu7XIherXjarx6dzmHHa-hUHisg3G3c?StwQCHvbDexVcSg29?XPHNxLEdzzmDmx

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-10=-60, 2-11=-20

Concentrated Loads (lb)

Vert: 4=-66(F) 16=-24(F) 17=-24(F) 6=-66(F) 14=-24(F) 8=-66(F) 19=-60(F) 20=-57(F) 21=-57(F) 22=-66(F) 23=-66(F) 24=-66(F) 25=-66(F) 26=-66(F) 27=-66(F) 28=-66(F) 30=-66(F) 30=-66(F) 31=-66(F) 32=-66(F) 34=-66(F) 35=-66(F) 36=-33(F) 37=-33(F) 38=-34(F) 39=-24(F) 40=-24(F) 41=-24(F) 42=-24(F) 42=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTeki® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.35 BC 0.24 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 2-4 >999 240 Vert(CT) -0.05 2-4 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 18 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-7-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=126/Mechanical, 2=246/0-3-8, 4=44/Mechanical Max Horz 2=139(LC 12) Max Uplift 3=-104(LC 12), 2=-9(LC 12) Max Grav 3=140(LC 19), 2=246(LC 1), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 3=104.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.21 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.04	n (loc) 2 2-5 4 2-5 4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD	Structu	ural wood	l sheathing d	irectly applied or 4-7-1	2 oc purlins,

 DUMBER BRACING

 TOP CHORD 2x4 SP No.2
 TOP CHORD 2x4 SP No.2

 BOT CHORD 2x4 SP No.2
 TOP CHORD 2x4 SP No.2

 WEDGE
 2-0-0 oc purlins: 3-4.

 Left: 2x4 SP No.3
 BOT CHORD 8OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=117/Mechanical, 2=246/0-3-8, 5=54/Mechanical Max Horz 2=104(LC 12) Max Uplift 4=-50(LC 12), 2=-29(LC 12) Max Grav 4=117(LC 1), 2=246(LC 1), 5=84(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-4-12, Exterior(2) 3-4-12 to 4-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 4=117/Mechanical, 2=246/0-3-8, 5=53/Mechanical Max Horz 2=72(LC 12) Max Uplift 4=-47(LC 9), 2=-35(LC 12) Max Grav 4=117(LC 1), 2=246(LC 1), 5=83(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1	2-2-10	1	4-7-12	1	
	Γ	2-2-10	I	2-5-2	1	
Plate Offsets (X,Y)	[2:0-4-8,0-0-11], [2:0-0-8,0-0-5], [3:0-2-	0,0-2-3]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.23 WB 0.00 Matrix-P	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.03	n (loc) l/defl L/d 2 2-5 >999 240 2-5 >999 180 3 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 17 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEDGE Left: 2x4 SP No.3	2 No.2 2 No.2		BRACING- TOP CHORD	Structural wood sheathing dire except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or	ctly applied or 4-7-12 oc purlins, 10-0-0 oc bracing.	

Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=119/Mechanical, 2=246/0-3-8, 5=52/Mechanical Max Horz 2=45(LC 8)

Max Uplift 4=-50(LC 5), 2=-34(LC 8) Max Grav 4=120(LC 20), 2=246(LC 1), 5=83(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (lb) Vert: 7=-0(B)

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-0-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.00 Matrix-P	DEFL. in (loc) l/defl Vert(LL) -0.00 2 >999 Vert(CT) -0.00 2-4 >999 Horz(CT) -0.00 3 n/a	L/d PLATES GRIP 240 MT20 244/190 180 n/a Weight: 8 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=38/Mechanical, 2=151/0-3-8, 4=18/Mechanical Max Horz 2=44(LC 12) Max Uplift 3=-25(LC 12), 2=-37(LC 8) Max Grav 3=38(LC 1), 2=151(LC 1), 4=36(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 2-0-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.11 BC 0.03 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 2 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD	Structu	ıral wood	sheathing dire	ectly applied or 2-0-0	oc purlins, except

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 2-0-0 oc purlins, except
BOT CHORD	2x4 SP No.2		2-0-0 oc purlins: 3-5.
SLIDER	Left 2x4 SP No.3 1-3-7	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=69/Mechanical, 2=196/0-3-8, 6=23/Mechanical Max Horz 2=73(LC 12) Max Uplift 5=-32(LC 9), 2=-35(LC 12)

Max Grav 5=69(LC 1), 2=196(LC 1), 6=36(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

			200
Plate Offsets (X,Y)	[5:0-4-4,0-1-8]		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.08	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 5 >999 240 MT20 244/190
CDL 10.0 CLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.04 WB 0.00 Matrix B	Vert(CT) -0.00 5 >999 180 Horz(CT) 0.00 3 n/a n/a
UMBER-	2 No 2	Manx-ix	BRACING- TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins

LOWDER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 2-0-0
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x6 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=157/0-3-8, 3=38/Mechanical, 4=12/Mechanical Max Horz 5=70(LC 12) Max Uplift 5=-14(LC 12), 3=-35(LC 12)

Max Grav 5=157(LC 1), 3=44(LC 19), 4=30(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5-10-0 5-10-0 LOADING (psf) SPACING-2-0-0 DEFL. PLATES GRIP CSI. in (loc) l/defl L/d TCLL 20.0 Plate Grip DOL Vert(LL) -0.05 >999 240 MT20 244/190 1.15 ΤС 0.54 2-6 TCDL 10.0 Lumber DOL 1.15 BC 0.37 Vert(CT) -0.10 2-6 >633 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 22 lb FT = 20% LUMBER-BRACING-

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-10-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 6=222/Mechanical, 2=283/0-3-8 Max Horz 2=89(LC 8) Max Uplift 6=-54(LC 12), 2=-70(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-10-0 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[3:0-2-0,0-2-13]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.40 BC 0.31 WB 0.00	DEFL. in (loc) l/defi L/d Vert(LL) -0.03 2-7 >999 240 MT20 244/190 Vert(CT) -0.06 2-7 >999 180 MT20 244/190 Horz(CT) 0.00 7 p/a p/a p/a p/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R	Weight: 21 lb FT = 20%
			RPACING_

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 7=223/Mechanical, 2=283/0-3-0 Max Horz 2=79(LC 8)

Max Uplift 7=-44(LC 8), 2=-73(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-0-0, Exterior(2) 5-0-0 to 5-10-0

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-10-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

		F		2-4-0				1-4-0 2-0-0			<u>5-8-8</u> 1-4-8	
LOADING TCLL TCDI	(psf) 20.0 10.0	SPACING- Plate Grip DOL	2-0-0 . 1.15 . 1.15	CSI. TC BC	0.09	DEFL. Vert(LL) Vert(CT)	in -0.00 0.00	(loc) 1	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Inc Code IRC2015	r NO 5/TPI2014	WB Matri	0.05 x-S	Horz(CT)	-0.00	7	n/a	n/a	Weight: 23 lb	FT = 20%
I UMBER-						BRACING						

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-8-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 5-8, 5-6. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 5-10-0. (lb) - Max Horz 2=88(LC 12)

- Max Uplift All uplift 100 lb or less at joint(s) 8, 7, 2, 9
 - Max Grav All reactions 250 lb or less at joint(s) 7, 2, 9 except 8=372(LC 19)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown. TOP CHORD 5-8=-340/270

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 5-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 7, 2, 9
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 5-6=-90(F=-30), 2-7=-20 Concentrated Loads (lb)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	6-10-0									
LOADING (psf)SPACING-TCLL20.0Plate Grip DTCDL10.0Lumber DOBCLL0.0 *Rep StressBCDL10.0Code IRC2	2-0-0 OL 1.15 L 1.15 Incr YES 015/TPI2014	CSI. TC 0.80 BC 0.53 WB 0.04 Matrix-P	DEFL. ir Vert(LL) -0.10 Vert(CT) -0.20 Horz(CT) 0.00	(loc) 2-6 2-6	l/defl >761 >380 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%		

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 2=323/0-3-8, 6=263/Mechanical (lb/size) Max Horz 2=102(LC 8) Max Uplift 2=-75(LC 8), 6=-63(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-10-0 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[2:0-3-6,Edge], [3:0-3-0,0-2-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.63 BC 0.30 WB 0.03 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) 0.03 2-7 >999 240 MT20 244/190 Vert(CT) -0.06 2-7 >999 180 MT20 244/190 Horz(CT) 0.00 n/a n/a MZ Weight: 30 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF	9 No.2 9 No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins: 3-5.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=329/0-3-8, 7=268/Mechanical Max Horz 2=80(LC 4)

Max Uplift 2=-87(LC 4), 7=-55(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-20, 2-6=-20

Concentrated Loads (lb)

Vert: 8=-9(F) 9=-4(F) 10=2(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:69.8

	8-8-11 8-8-11	16-9-9 8-0-14		24-10-7 8-0-14		<u>32-11</u> 8-0-1	-5 4	41-8-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.95 BC 0.81 WB 0.58 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (la -0.30 14- -0.60 14- 0.16	oc) l/defl -15 >999 -15 >831 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 *Except* 1-4,8-11: 2x4 SP No.1 DOP CHORD Structural wood sheathing directly applied. BOT CHORD BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3									
REACTIONS. (Ib Ma Ma	/size) 2=1716/0-3-8, 10=17 ax Horz 2=151(LC 12) ax Uplift 2=-223(LC 12), 10=-2	16/0-3-8 223(LC 13)							
FORCES. (lb) - M TOP CHORD 2 BOT CHORD 2 WEBS 6 5	lax. Comp./Max. Ten All for -3=-3618/433, 3-5=-3437/458 -10=-3618/433 -17=-466/3256, 15-17=-285/2 -14=-171/925, 7-14=-701/276 -15=-701/276, 5-17=-133/722	ces 250 (lb) or l , 5-6=-2637/397 619, 14-15=-99 , 7-12=-133/722 , 3-17=-380/219	ess except when shown. 7, 6-7=-2637/397, 7-9=-3 /1984, 12-14=-188/2619. 2, 9-12=-380/219, 6-15=- 9	437/458, , 10-12=-315/325(171/925,	6				

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-3-8, Interior(1) 3-3-8 to 20-10-0, Exterior(2) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 42-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F		8-8-11	15-0-9		26-7-7			32-11-5	41-4	-8
		8-8-11	6-3-14	1	11-6-14		1	6-3-14	8-5-	-3
Plate Offs	ets (X,Y)	[10:0-1-5,0-0-3]								
LOADING TCLL TCDL BCLL BCDL	6 (psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.98 BC 0.82 WB 0.46 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.21 13-16 -0.44 13-16 0.10 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 272 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHC BOT CHC WEBS	- DRD 2x4 SP 1-4: 2x DRD 2x6 SP 14-15: 2x4 SP	2 No.1 *Except* 4 SP No.2, 8-10: 2x4 S 2 No.2 *Except* 2x8 SP No.2 No.3	P DSS		BRACING- TOP CHOR BOT CHOR	D Struct D Rigid (ural wood ceiling dire	sheathing dire	ectly applied. 10-0-0 oc bracing.	
REACTIO	DNS. (Ib/size Max H Max U	e) 2=1709/0-3-8, 10= orz 2=158(LC 12) plift 2=-223(LC 12), 10:	1646/Mechanical =-199(LC 13)							
FORCES. TOP CHC	. (lb) - Max. DRD 2-3=- 9-10= DRD 2-18=	Comp./Max. Ten All f 3641/438, 3-5=-3459/4 3583/431 474/3285_16-18=-305	forces 250 (lb) or 57, 5-6=-2818/43	less except when showr 0, 6-7=-2803/433, 7-9=- 20/1949_11-13=-202/263	n. 3405/452, 77 10-11=-326/322	2				
WEBS	6-13= 5-16=	199/1013, 7-13=-685/ 706/284, 5-18=-128/6	280, 7-11=-125/6 65, 3-18=-366/20	24, 9-11=-342/204, 6-16 1)=-201/1035,	-				
NOTES- 1) Unbala 2) Wind: A MWFR , Interio	nced roof live ASCE 7-10; V S (envelope) or(1) 24-11-10	e loads have been cons /ult=130mph (3-second gable end zone and C-) to 41-3-12 zone;C-C fo	idered for this des gust) Vasd=103n C Exterior(2) -0-1 or members and f	sign. nph; TCDL=6.0psf; BCD 0-8 to 3-3-2, Interior(1) (forces & MWFRS for rea	L=6.0psf; h=25ft; C 3-3-2 to 20-10-0, E: ctions shown; Lum	at. II; Exp B; i ‹terior(2) 20-1 ber DOL=1.6(Enclosed; 0-0 to 24-΄) plate grip	11-10		
DOL=1 3) All plate 4) This tru 5) * This tru 5) * This t will fit b 6) Refer to 7) Provide 10=190	.60 es are 4x6 M uss has been russ has been between the b o girder(s) for e mechanical	T20 unless otherwise in designed for a 10.0 psf n designed for a live loa ottom chord and any ot truss to truss connection connection (by others)	dicated. bottom chord live d of 20.0psf on the her members, wit ons. of truss to bearing	e load nonconcurrent wit ne bottom chord in all ar th BCDL = 10.0psf. g plate capable of withst	h any other live loa eas where a rectan anding 100 lb uplift	ds. gle 3-6-0 tall t at joint(s) exc	oy 2-0-0 wi cept (jt=lb)	de	ALTORTH	CAROLINI ESSIDIALITY
8) One R	T7A USP con	nectors recommended	to connect truss t	o bearing walls due to U	IPLIFT at it(s) 2. Th	is connection	is for uplif	only	= :	ULAL :

and does not consider lateral forces.

9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offs	ets (X,Y)	[2:0-2-0,Edge]										
LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.33 0.22 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	k-R						Weight: 20 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP №.2					BRACING- TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 5-5-8	oc purlins,	

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

VEBS 2x4 SP No.3

REACTIONS. (lb/size) 4=193/5-5-2, 3=193/5-5-2

Max Horz 4=-99(LC 13) Max Uplift 4=-52(LC 13), 3=-8(LC 13)

Max Grav 4=194(LC 20), 3=193(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-9-4, Interior(1) 3-9-4 to 4-11-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=143/4-2-2, 3=143/4-2-2 Max Horz 4=-67(LC 13)

Max Uplift 4=-33(LC 13), 3=-9(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

IM	RF	R.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (lb/size) 4=93/2-11-2, 3=93/2-11-2 Max Horz 4=-35(LC 13) Max Uplift 4=-15(LC 13), 3=-9(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

Structural wood sheathing directly applied or 2-11-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 14-1-8.

(lb) - Max Horz 1=147(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6 except 8=-165(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=323(LC 20), 8=564(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-371/219

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 9-0-4, Exterior(2) 9-0-4 to 12-0-4, Interior(1) 12-0-4 to 13-11-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6 except (jt=lb) 8=165.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets	(X,Y)	[3:0-2-0,Edge

	[0.0-2-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.24 BC 0.15 WB 0.08	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 o 6 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 53 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.2 2 No.2		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0 oc purlins,

WEBS 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3

REACTIONS. All bearings 12-10-8.

Max Horz 1=116(LC 9) (lb) -

2-8=-304/179

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 7 except 8=-131(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=339(LC 20), 8=439(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 7-9-4, Exterior(2) 7-9-4 to 10-9-4, Interior(1) 10-9-4 to 12-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 7 except (jt=lb) 8=131.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

minimum CAR WWWWWWWWW Contraction of the SEAL 45844 EW 101 minim February 12,2019

LOADING(psTCLL20.TCDL10.BCLL0.BCDL10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.18 0.13 0.06 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3					BRACING- TOP CHOR BOT CHOR	D D	Structur except Rigid ce	ral wood end verti eiling dire	sheathing di cals. ctly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,		

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 11-7-8.

Max Horz 1=98(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7 except 8=-105(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=308(LC 20), 8=323(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-7-8, Interior(1) 3-7-8 to 6-6-4, Exterior(2) 6-6-4 to 9-6-4, Interior(1) 9-6-4 to 11-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 8=105.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1 1010 0110010 (71,17)			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.17 BC 0.13 WB 0.05	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 37 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 10-4-8.

(lb) - Max Horz 1=-79(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=331(LC 20), 7=259(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-3-4, Exterior(2) 5-3-4 to 8-3-4, Interior(1) 8-3-4 to 10-0-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 1=153/7-11-12, 3=153/7-11-12, 4=261/7-11-12 (lb/size) Max Horz 1=-58(LC 10) Max Uplift 1=-34(LC 12), 3=-42(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

BOT CHORD

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-0-4, Exterior(2) 4-0-4 to 7-0-4, Interior(1) 7-0-4 to 7-6-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

2x4 SP No.2

2x4 SP No.3

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	0-0 ¹ 6 [2:0-2-0,Edge]	5-6-2						1			
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0. BC 0.	09 26	DEFL. Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2015/TP	YES 12014	WB 0. Matrix-P	.00	Horz(CT)	0.00	3	n/a	n/a	Weight: 16 lb	FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-6-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=183/5-5-12, 3=183/5-5-12 Max Horz 1=-38(LC 8) Max Uplift 1=-20(LC 12), 3=-20(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-Č Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REPERENCE PAGE MIT-14's rev. Involvers Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 🥢

2x4 📎

Structural wood sheathing directly applied or 3-0-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		0-Q ₁ 6				3-0-8								
	0-0-6				3-0-2									
Plate Offse	ets (X,Y)	[2:0-2-0,Edge]												
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999				
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a				
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-P						Weight: 8 lb	FT = 20%		

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (Ib/size) 1=83/2-11-12, 3=83/2-11-12 Max Horz 1=17(LC 11) Max Uplift 1=-9(LC 12), 3=-9(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015