

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20583A 240.3174.A CVP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I36910254 thru I36910279

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

April 30,2019

Sevier, Scott

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ſ	loh	Truss	Truss Type	Otv	Plv	240 3174 A CVP	
		11000		Catly	,	210.0111.1.0011	CO10255
						13	0910255
	20583A	AG	COMMON GIRDER	1	2		
					_	Job Reference (optional)	
	84 Components (Dunn),	Dunn, NC - 28334,		8.2	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 13:51:36 2019 Pa	age 2
			ID:	B Q7f7Bi	J7XlherXja	rx6dzmHHa-sDIGkpSF3ZrI7oVoUjq6LdzjB87eYwrWyr0W0C	zLr35

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-1427(B) 10=-1437(B) 11=-1427(B) 12=-1427(B) 13=-1427(B) 14=-1427(B) 15=-1427(B) 16=-1437(B) 17=-1437(B) 18=-1443(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Left: 2x4 SP No.3, Right: 2x4 SP No.3

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-3-0, Exterior(2) 2-3-0 to 6-3-0, Corner(3) 6-3-0 to 9-3-0, Exterior(2) 9-3-0 to 13-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 11 except (jt=lb) 13=103, 10=104.

A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 12-6-0.

⁽lb) - Max Horz 2=-117(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 12, 11 except 13=-103(LC 14), 10=-104(LC 15) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 11, 10

0- <u>2-8</u>	7-5-12	13-3-5	5			20-0-	0	
0-2-8 Plate Offsets (X,Y) [5:0-3-5.1	T-3-4 Edgel	5-9-9	1			6-8-1	1	
Load Diversion (r, r) (rot o o) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.44 WB 0.28 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.08 -0.17 0.01	loc) l/defl 1-9 >999 1-9 >532 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3		BR TC BC	RACING- DP CHORD St DT CHORD Ri	ructural w igid ceiling	vood sheath g directly ap	ing directly ap plied or 6-0-0	plied or 6-0-0 oc purlin oc bracing.	S.
REACTIONS. (Ib/size) 9=91 Max Horz 1=-5 Max Uplift 9=-1 Max Grav 9=10	8/0-3-8, 5=409/0-3-8, 1=121/0-3-0 7(LC 21) 22(LC 12), 5=-117(LC 13), 1=-35(LC 16) 338(LC 2), 5=474(LC 35), 1=186(LC 34))						
FORCES. (lb) - Max. Comp./M TOP CHORD 1-2=-44/284, 2 BOT CHORD 1-9=-252/82, 5 WEBS 2-9=-440/205,	lax. Ten All forces 250 (lb) or less exc: 2-3=-69/550, 3-4=-565/123, 4-5=-801/17 5-7=-125/729 3-9=-826/159, 3-7=-84/588, 4-7=-353/1	ept when shown. 8 71						
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-10; Vult=130m MWFRS (envelope) gable en Interior(1) 13-0-0 to 20-10-8 z DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.15 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) This truss has been designed non-concurrent with other live 7) * This truss has been designed will fit between the bottom che 8) Provide mechanical connection 	ave been considered for this design. ph (3-second gust) Vasd=103mph; TCE d zone and C-C Exterior(2) 0-1-8 to 3-1- cone;C-C for members and forces & MW sf (roof live load: Lumber DOL=1.15 Plat 5 Plate DOL=1.15); Category II; Exp B; F been considered for this design. I for greater of min roof live load of 12.0 1 loads. I for a 10.0 psf bottom chord live load no od for a live load of 20.0psf on the bottom ord and any other members. on (by others) of truss to bearing plate ca	DL=6.0psf; BCDL=6.0psf; 8, Interior(1) 3-1-8 to 10-0 (FRS for reactions shown; te DOL=1.15); Pg=20.0 p artially Exp.; Ct=1.10 psf or 1.00 times flat roof n concurrent with any othe n chord in all areas where apable of withstanding 10	h=30ft; Cat. II; Exp 0-0, Exterior(2) 10- ; Lumber DOL=1.6 sf (ground snow); F load of 15.4 psf on er live loads. a rectangle 3-6-0 0 lb uplift at joint(s)	9 B; Enclos 0-0 to 13- 0 plate gri 2f=15.4 ps overhang tall by 2-0	osed; -0-0, ip sf (flat gs 0-0 wide		UNORTH CA	ROLINIA

9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 5. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

7-1-4	12-10-13			19-7-8		
7-1-4 '	5-9-9	1		6-8-11		
ugej						
SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.44 BC 0.44 WB 0.28 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(CT) -0.13 Horz(CT) 0.01	(loc) l/defl 1-9 >999 1-9 >640 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
	BRAC TOP C BOT C	ING- CHORD Structura CHORD Rigid cei	al wood sheathi ling directly app	ng directly applied	l or 6-0-0 oc purlin racing.	s.
1/0-3-8, 9=909/0-3-8, 5=411/0-3-8 7(LC 17) 3(LC 16), 9=-118(LC 12), 5=-117(LC 13) 9(LC 34), 9=1028(LC 2), 5=473(LC 35))					
ax. Ten All forces 250 (lb) or less exce -3=-64/552, 3-4=-563/122, 4-5=-799/17 -7=-123/727 3-9=-832/156, 3-7=-83/591, 4-7=-352/1	ept when shown. 6 71					
ve been considered for this design. ph (3-second gust) Vasd=103mph; TCE d zone and C-C Exterior(2) 0-1-12 to 3-1 ne;C-C for members and forces & MWF sf (roof live load: Lumber DOL=1.15 Plat Plate DOL=1.15); Category II; Exp B; P been considered for this design. for greater of min roof live load of 12.0 p loads. for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the bottom ord and any other members. n (by others) of truss to bearing plate ca ecommended to connect truss to bearing	DL=6.0psf; BCDL=6.0psf; h=3 -12, Interior(1) 3-1-12 to 9-7- RS for reactions shown; Lum te DOL=1.15); Pg=20.0 psf (g artially Exp.; Ct=1.10 psf or 1.00 times flat roof load nconcurrent with any other liv n chord in all areas where a re apable of withstanding 100 lb g walls due to UPLIFT at jt(s)	Boft; Cat. II; Exp B; En 8, Exterior(2) 9-7-8 to ber DOL=1.60 plate g ground snow); Pf=15.4 d of 15.4 psf on overha re loads. ectangle 3-6-0 tall by uplift at joint(s) 1. 9 and 5. This connect	closed; 12-7-8, grip I psf (flat angs 2-0-0 wide tion is for	<u></u>	OPTIESS SEA	ROLINACA
	7-1-4 idge] SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 Code IRC2015/TPI2014 1/0-3-8, 9=909/0-3-8, 5=411/0-3-8 r(LC 17) S(LC 16), 9=-118(LC 12), 5=-117(LC 13) 9(LC 34), 9=1028(LC 2), 5=473(LC 35) ax. Ten All forces 250 (lb) or less excer- -3=-64/552, 3-4=-563/122, 4-5=-799/170 -7=-123/727 3-9=-832/156, 3-7=-83/591, 4-7=-352/11 ve been considered for this design. ph (3-second gust) Vasd=103mph; TCE a zone and C-C Exterior(2) 0-1-12 to 3-1 ne;C-C for members and forces & MWF sf (roof live load: Lumber DOL=1.15 Plat Plate DOL=1.15); Category II; Exp B; P been considered for this design. for greater of min roof live load of 12.0 ploads. for a 10.0 psf bottom chord live load no d for a live load of 20.0psf on the bottom rod and any other members. n (by others) of truss to bearing plate carbon- accommended to connect truss to bearing	7-1-4 12-10-13 5-9-9 5-9-9 idgel 5-9-9 sidgel CSI. Plate Grip DOL 1.15 TC 0.44 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014 BRACC TOP C BOT CO BRACC 1/0-3-8, 9=909/0-3-8, 5=411/0-3-8 r(LC 17) Matrix-S BLC 12), 5=-117(LC 13) 9(LC 34), 9=1028(LC 2), 5=473(LC 35) ax. Ten All forces 250 (lb) or less except when shown. -3=-64/552, 3-4=-563/122, 4-5=-799/176 -7=-123/727 3-9=-832/156, 3-7=-83/591, 4-7=-352/171 ve been considered for this design. ph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=3 i zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-7 ne;C-C for members and forces & MWFRS for reactions shown; Lum f (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (g Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 been considered for this design. for greater of min roof live load of 12.0 psf or 1.00 times flat roof load loads. for a	7-1-4 12-10-13 5-9-9 5-9-9 idge] 5-9-9 SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES VB 0.28 Horz(CT) 0.01 Code IRC2015/TPI2014 Matrix-S BRACING- TOP CHORD TOP CHORD Structure BOT CHORD Rigid cei 1/0-3-8, 9=909/0-3-8, 5=411/0-3-8 (LC 17) Structure SQLC 16), 9=-118(LC 12), 5=-117(LC 13) 9(LC 34), 9=1028(LC 2), 5=473(LC 35) ax. Ten All forces 250 (lb) or less except when shown. -3=-64/552, 3-4=-563/122, 4-5=-799/176 -7=-123/727 3-9=-832/156, 3-7=-83/591, 4-7=-352/171 ve been considered for this design. pf (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; En fill zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-7-8, Exterior(2) 9-7-8 to ne;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate g ff (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 been c	7.1-4 12:10-13 idgel 5:9:9 idgel 5:9:9 SPACING- 2:0:0 Plate Grip DOL 1.15 Rep Stress Incr YES WB 0.28 Code IRC2015/TPI2014 Matrix-S BRACING- TOP CHORD Structural wood sheathin BOT CHORD Rigid ceiling directly app 1/0-3-8, 9=909/0-3-8, 5=411/0-3-8 (LC 17) 3(LC 34), 9=1028(LC 2), 5=-117(LC 13) 9(LC 34), 9=1028(LC 2), 5=-417(LC 13) 9(LC 34), 9=1028(LC 2), 5=-417(LC 13) 9(LC 34), 9=1028(LC 2), 5=473(LC 35) ax. Ten All forces 250 (lb) or less except when shown. -3=64/552, 3-4=-563/122, 4-5=-799/176 -7=-123/727 -3=-832/156, 3-7=-83/591, 4-7=-352/171 ve been considered for this design. ph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; Lone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-7-8, Exterior(2) 9-7-8 to 12-7-8, ne;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip if (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 been considered for this design. for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs loads.	7:1-4 12:10:13 19:74 idgel 59:99 6-8:11 idgel 6-8:11 6-8:11 idgel 0:84:10 0:00 1.9 59:99 240 Lumber DOL 1.15 TC 0.44 Vert(LL) -0.06 1.9 >999 240 Lumber DOL 1.15 BC 0.44 Vert(LT) -0.06 1.9 >999 240 Lumber DOL 1.15 BC 0.44 Vert(CT) 0.01 5 n/a n/a Code IRC2015/TPI2014 Matrix-S BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc b 10/0-3-8, 9=909/0-3-8, 5=411/0-3-8 (LC 17) Structural wood sheathing directly applied or 6-0-0 oc b 10/0-3-8, 9=909/0-3-8, 5=473(LC 35) ax. Ten All forces 250 (lb) or less except when shown. -3=e4563/122, 4-5=799/176 -7=-123/727 3-9=-832/156, 3-7=-83/591, 4-7=-352/171 ve been considered for this design. pi (s-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; Iz one and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-7-8, Exterior(2) 9-7-8 to 12/-7-8, ne; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip fi (roof live load: Lumber D	T-1-4 12-10-13 19-7-8 idgel 6-8-11 idgel

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:34.9

April 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 1=161/0-3-8, 3=161/Mechanical (lb/size) Max Horz 1=63(LC 12) Max Uplift 1=-22(LC 12), 3=-45(LC 12) Max Grav 1=182(LC 2), 3=182(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 4-10-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPRETED FACE PAGE MIT-14/3 refer to 100 Sec. Design valid for use only with MTRK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

LUMBER-TOP CHORD

BCDL

2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

10.0

TOP CHORD Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=155/Mechanical, 2=218/0-3-8 Max Horz 2=75(LC 12) Max Uplift 4=-42(LC 16), 2=-67(LC 12) Max Grav 4=175(LC 2), 2=250(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KETEKERICE FAGE MILETATION, INVERTIGATION AND INVERTI AND INVERTIGATION AND INVERTIGATION AND INVERTICALIA AND fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	l	3-10-0		3	- <u>11-12 4-10-0</u>	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.37 BC 0.16 WB 0.00 Matrix-R	DEFL. in (loc) Vert(LL) -0.01 2-8 Vert(CT) -0.01 2-8 Horz(CT) 0.01 5) I/defl L/ 3 >999 24 3 >999 18 5 n/a n/	(d PLATES 0 MT20 0 /a Weight: 20 I	GRIP 244/190 Ib FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-10-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 5-8, 3-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (Ib/size) 7=32/Mechanical, 2=210/0-3-8, 5=426/0-3-8 Max Horz 2=61(LC 12) Max Uplift 7=-36(LC 12), 2=-79(LC 12), 5=-55(LC 13) Max Grav 7=50(LC 3), 2=317(LC 36), 5=468(LC 36)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-292/166

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-5-2, Interior(1) 2-5-2 to 3-10-0, Exterior(2) 2-5-2 to 4-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2, 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-3=-51, 3-4=-51, 3-5=-51, 5-6=-83(F=-22), 2-7=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	240.3174.A CVP
					13691026
20583A	M2	HALF HIP	6	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Apr 29 13:51:42 2019 Page 2

ID:B_Q7f7Biu7XlherXjarx6dzmHHa-gNfY?tW0fPbSrjyyrzxWatDmgZlfyr7OKnTrDszLr3?

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 5=-200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			4 10 0						
Plate Offsets (X,Y) [3:0-2-0,0)-2-13]		4-10-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.16 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT	in 0.00 0.01) 0.00	(loc) 1 1 7	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3		BR TO	ACING- P CHORD	Structura except 2-0-0 oc	al wood	sheathin : 3-4, 5-6	g directly app	plied or 4-10-0 oc purl	ins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (Ib/size) 2=189/4-10-0, 7=28/4-10-0, 8=338/4-10-0 Max Horz 2=27(LC 12) Max Uplift 2=-70(LC 12), 7=-38(LC 13), 8=-27(LC 12)

Max Grav 2=234(LC 40), 7=46(LC 58), 8=372(LC 39)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 1-0-0, Exterior(2) 1-0-0 to 4-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=20.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7, 8.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-51, 3-4=-61, 2-7=-20, 5-6=-261(F=-200)

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.39 BC 0.58 WB 0.09 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.04 0.01	(loc) 4-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER-		BR	ACING.						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=396/0-3-8, 4=396/0-3-8 Max Horz 2=33(LC 20) Max Uplift 2=-186(LC 12), 4=-186(LC 13) Max Grav 2=450(LC 2), 4=450(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-687/582, 3-4=-687/579

 BOT CHORD
 2-6=-490/602, 4-6=-490/602

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-0-0, Exterior(2) 5-0-0 to 8-0-0, Interior(1) 8-0-0 to 10-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=186.

9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 8-2-4 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢ −−		9-11-12						10-0-0	
LOADING (psf)		9-11-12						0-0-4	
TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDI 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.10 BC 0.06	Vert(LL) Vert(CT)	0.00 0.00	(loc) 7 7	n/r n/r	L/d 120 120	MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Matrix-S	Horz(CT)	0.00	6	n/a	n/a	Weight: 38 lb	FT = 20%
LUMBER-		BRA	CING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. All bearings 9-11-8.

Max Horz 2=33(LC 16) (lb) -

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-0-0, Corner(3) 5-0-0 to 8-0-0, Exterior(2) 8-0-0 to 10-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8. 11) Non Standard bearing condition. Review required.
- MILLIN - HILLING WIND 4925 S Μ. (IIIIIIII) April 30,2019

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

L	8-0-0		16-0-0		25-8	-0	_	33-8-0		41-4-8	
	8-0-0	1	8-0-0		9-8-	0		8-0-0	I	7-8-8	
Plate Offsets ()	X,Y) [10:0-1-1	0,0-0-11], [10:0-8-1	<u>3,0-1-5], [10:0-2-0,0</u>	-3-11]							
LOADING (ps	f)	SPACING	200	C 61		DEEL	in	(loc) I/do	fi i/d		CDID
TCLL (roof)	20.0	Bloto Grip Di	2-0-0		0.90	Vort(LL)	0.25.1	2 1 4 5 00	n 1/0	FLATES MT20	244/100
Snow (Pf/Pg)	15.4/20.0	Flate Grip Do	JL 1.15 1.15		0.00	Vert(LL)	-0.25 1	2 14 >99	9 240	11120	244/190
TCDL	10.0	Lumber DOL Ron Stross I	1.10 nor VES		0.62		-0.49 1	3-14 >99	9 160 a p/a		
BCLL	0.0 *	Codo IPC20	15/TDI2014	Motr	0.51 iv 9	1012(01)	0.11	10 11/	a II/a	Woight: 245 lb	ET - 20%
BCDL	10.0		13/11/2014	Iviati	IX-0					Weight. 245 lb	11 = 2070
LUMBER-					в	RACING-					
TOP CHORD	2x4 SP No.1 *Ex	xcept*			T	OP CHORD	Structural	wood sheat	thing directly ap	plied or 2-2-0 oc purling	
	1-4.8-10: 2x4 SF	P No.2			B	OT CHORD	Rigid ceili	ng directly a	ipplied or 10-0-0	0 oc bracing.	
BOT CHORD	2x6 SP No 2						. ugia com	ng anoony c		o oo blaanigi	
WEBS	2x4 SP No 3										
WEDGE	2.0.0.0.000										
Right: 2x4 SP I	No.3										
5											
REACTIONS.	(lb/size) 2=15	510/0-3-8, 10=1457/	Mechanical								
	Max Horz 2=15	54(LC 20)									
	Max Uplift 2=-2	22(LC 16), 10=-199	(LC 17)								
	Max Grav 2=17	709(LC 2), 10=1646	(LC 2)								
FORCES. (lb) - Max. Comp./M	lax. Ten All forces	250 (lb) or less exc	ept when sh	nown.						
TOP CHORD	2-3=-3499/426	6, 3-5=-3328/451, 5-	6=-2703/384, 6-7=-2	2691/388, 7	-9=-3267/445	,					
	9-10=-3434/41	9									
BOT CHORD	2-16=-468/312	24, 14-16=-289/2612	2, 13-14=-103/1955,	11-13=-167	7/2595, 10-11	=-314/3052					
WEBS	3-16=-304/203	8, 5-16=-128/617, 5-	14=-670/289, 6-14=	-187/995, 6	-13=-184/976	,					
	7-13=-650/286	6, 7-11=-124/569, 9-	11=-274/204								
NOTES-											
 Unbalanced 	l roof live loads ha	ave been considered	I for this design.								
Wind: ASCE	E 7-10; Vult=130m	nph (3-second gust)	Vasd=103mph; TCI	DL=6.0psf; I	3CDL=6.0psf	h=30ft; Cat. II; E	xp B; Enc	losed;			
MWFRS (en	nvelope) gable en	d zone and C-C Ext	erior(2) -0-10-8 to 2-	-1-8, Interio	r(1) 2-1-8 to 2	0-10-0, Exterior(2	2) 20-10-0	to 23-10-0,		, mmm	1111
Interior(1) 23	3-10-0 to 41-3-12	zone;C-C for memb	pers and forces & M	WFRS for re	eactions show	n; Lumber DOL=	1.60 plate	grip		UN'TH CA	Rall
DOL=1.60									•	1 A	Oli'a
3) TCLL: ASCE	E 7-10; Pr=20.0 p	sf (roof live load: Lu	mber DOL=1.15 Pla	te DOL=1.1	5); Pg=20.0 p	esf (ground snow)	; Pf=15.4	psf (flat)	V.O'	dis 11
roof snow: L	umber DOL=1.15	Plate DOL=1.15);	Jategory II; Exp B; F	Partially Exp	.; Ct=1.10				<u> </u>	VARD >	gener
4) Unbalanced	I snow loads have	been considered to	or this design.								- K 2
5) This truss ha	as been designed	I for greater of min r	bot live load of 12.0	pst or 1.00	times flat roof	load of 15.4 pst	on overha	ngs			1
6) This trues h	ent with other live	loaus.	m abard live load or	noonourron	t with any oth	or live loode				SEAL	- 1 8
7 * This trues	as been designed	non a 10.0 psi Dollo	20 Oper on the better	m chord in a	l with any off	er rive ludus.	0 toll by 2	0.0 wide	Ξ.	04491	25 E
will fit betwo	has been designed	ord and any other m	ambars with RCDI	- 10 Opef		a rectanyle 3-0-	o tali by Z	-0-0 wide	Ξ.	: 07752	-
8) Refer to gird	for trues to t	truss connections	embers, with BCDL	– 10.0psi.							1 5
9) Provide mer	chanical connection	n (by others) of true	es to bearing plate o	anable of w	ithstanding 1	0 lb unlift at ioint	(s) excent	(it-lb)	5	- 10 · A.	Aiai
2=222, 10=1	199.		s to bearing plate to	apable of W	ni islanung h	o io upint at joint	(3) except	01-10)		GINE	E. E.S

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1			41-4	-0						
			41-4	-8						
Plate Offsets (X,Y) [2:0-0-0,0	0-1-2], [2:0-1-11,0-6-0]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 15.4/20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.06 WB 0.21 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.01	(loc) 1 1 25	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%
LUMBER-			E	BRACING-						
TOP CHORD	2x4 SP No.2		1	TOP CHORD	Structura	l wood	sheathin	g directly ap	plied or 6-0-0 oc purlins	,
BOT CHORD	2x4 SP No.2				except e	nd verti	cals.			
WEBS	2x4 SP No.3		E	BOT CHORD	Rigid cei	ling dire	ctly appl	ied or 10-0-0) oc bracing.	
OTHERS	2x4 SP No.3		١.	VEBS	1 Row at	midpt		13-36	-	

44 4 0

WEDGE Left: 2x4 SP No.3

- REACTIONS. All bearings 41-4-8. (Ib) - Max Horz 2=162(LC 16)
 - Max Uplift All uplift 100 b or less at joint(s) 2, 37, 38, 39, 41, 42, 43, 44, 45,
 - 46, 35, 34, 33, 31, 30, 29, 28, 27, 26 Max Grav All reactions 250 lb or less at joint(s) 25, 2, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 35, 34, 33, 31, 30, 29, 28, 27, 26

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 11-12=-99/269, 12-13=-112/304, 13-14=-112/308, 14-15=-99/273

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 20-10-0, Corner(3) 20-10-0 to 23-10-0, Exterior(2) 23-10-0 to 41-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 37, 38, 39, 41, 42, 43, 44, 45, 46, 35, 34, 33, 31, 30, 29, 28, 27, 26.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

balance only what bit day only what here contractions. This design is based only duot registers and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI 1** Quality Criteria, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932 MULLIUM,

L	8-0-0	16-0-0	25-8-0		3	3-8-0	1	41-8-0	
	8-0-0	8-0-0	9-8-0		6	-0-0	1	8-0-0	1
LOADING (pr	sf)								
TCLL (roof)	20.0	SPACING- 2-0-0	CSI.	DEFL.	in (loc	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)	15 4/20 0	Plate Grip DOL 1.15	TC 0.80	Vert(LL)	-0.20 17-19	>999	240	MT20	244/190
TCDI	10.0	Lumber DOL 1.15	BC 0.73	Vert(CT)	-0.41 17-19	>999	180		
BCLI	0.0 *	Rep Stress Incr YES	WB 0.51	Horz(CT)	0.10 10) n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 271 lb	FT = 20%
		L							
LUMBER-			В	RACING-	a				
TOP CHORD	2x4 SP No.1 *E	xcept*	I	OP CHORD	Structural woo	d sheathi	ng directly a	pplied or 2-2-0 oc purlins	
	1-4,8-11: 2x4 SI	P No.2	В	OT CHORD	Rigid ceiling c	irectly app	blied or 10-0-	-0 oc bracing.	
BOT CHORD	2x6 SP No.2 *E	xcept*							
	15-16: 2x8 SP N	10.2							
WEBS	2x4 SP No.3								
	(1) (:								
REACTIONS.	(ID/SIZE) 2=15	517/0-3-8, 10=1517/0-3-8							
	Max Horz 2=-1	51(LC 17)							
	Max Uplift 2=-2	23(LC 16), 10=-223(LC 17)							
	Max Grav 2=1	(16(LC 2), 10=1716(LC 2)							
	h) Max Camp (M	lov Top All forces 250 (lb) or los	avaant whan abown						
	0) - Max. Comp./w								
TOP CHORD	2-3=-3520/423	5, 5-5=-3549/450, 5-6=-2661/410,	-7=-2661/410, 7-9=-3349/45	Ι,					
	2 10=-3320/42	12 17 10- 280/2506 14 17- 102/	042 12 14- 199/2506 10 12	- 212/21/2					
WERS	6 14 - 199/077	7 7 14 - 672/296 7 12 - 122/627	943, 12-14=-100/2390, 10-12 12- 202/204 6 17- 199/07	7					
WEDS	6-14=-100/9/1 5 17 672/200	7, 7-14=-073/200, 7-12=-123/027, 5 = 10 = 123/027, 2 = 10 = 202/202	-12=-303/204, 6-17=-188/97	,					
	5-17=-075/200	5, 5-19=-122/027, 5-19=-505/205							
NOTES-									
1) Unhalancer	d roof live loads ha	ave been considered for this desig							
2) Wind: ASC	F 7-10: \/ult-130m	and (3-second quist) Vasd-103mp	: TCDI –6 (Inst: BCDI –6 (Inst	h-30ft Cat II F		4.			
MW/ERS (or	nvelone) apple en	d zone and C-C Exterior(2) -0-10-	to 3-3-8 Interior(1) 3-3-8 to 1	, 11-0011, 0011. 11, 1 20-10-0 Exterior(2) 20-10-0 to 2	5-0-0			
Interior(1) 2	25-0-0 to 42-6-8 70	ne:C-C for members and forces 8	MWERS for reactions shown	Lumber DOI –1	60 plate arin	000,			
DOI = 1.60	.0 0 0 10 42 0 0 20	she, o o for members and forces e	www.rte.ion.reactions.shown		oo plate grip				
	F 7-10. Pr-20.0 n	sf (roof live load: Lumber DOI –1	5 Plate DOI -1 15): Pa-20.0	nsf (around snow). Pf-15 4 nsf	flat			1111
roof snow:	Lumber DOI –1 14	5 Plate DOI –1 15): Category II: Ex	B: Partially Exp : Ct-1 10	psi (ground show), 11=10.4 poi	nat		THUA	90.14
4) Unhalancer	d snow loads have	been considered for this design	D, T attaily $Exp., O(=1.10)$				~ ~	N'OH	allin
5) This truss h	as been designed	for greater of min roof live load of	12.0 psf or 1.00 times flat roo	f load of 15 4 nsf	on overhands			X HEESSI	ON: KS
non-concur	rent with other live	loads			on ovoniango		2	Kear >	mil
6) This truss h	as been designed	for a 10.0 psf bottom chord live k	ad nonconcurrent with any of	ner live loads				q	~~ .
7) * This truss	has been designed	ed for a live load of 20.0psf on the	ottom chord in all areas whe	e a rectangle 3-6	-0 tall by 2-0-0	wide		CEAL	
will fit betwo	een the bottom ch	ord and any other members with	CDL = 10.0psf.				=	: SEAL	•
8) Provide me	chanical connecti	on (by others) of truss to bearing r	ate capable of withstanding 1	00 lb uplift at ioin	t(s) except (it=	b)	=	: 04492	25 :
2=223				ees apint at join		-,			· · · ·
9) One RT7A	USP connectors r	ecommended to connect truss to b	earing walls due to UPLIFT a	t it(s) 10. This cor	nection is for u	plift			- A - S
only and dc	bes not consider la	iteral forces.		,,				- 12 · EN	cR: AS

10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8-0-0	15-11-10	25-8-0	33-8-0	41-8-0		
8-0-0	7-11-10	9-8-6	8-0-0	8-0-0		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. DEFL. TC 0.82 Vert(LL) BC 0.73 Vert(CT) WB 0.51 Horz(CT) Matrix-S Horz(CT) Horz(CT)	in (loc) l/defl L/d -0.26 14-15 >999 240 -0.50 14-15 >995 180 0.11 10 n/a n/a	PLATES MT20 GRIP 244/190 Weight: 247 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SP No.1 *E 1-4,8-11: 2x4 S BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3	xcept* P No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly ap Rigid ceiling directly applied or 10-0-0	plied or 2-2-0 oc purlins.) oc bracing.		
REACTIONS. (lb/size) 2=19 Max Horz 2=-1 Max Uplift 2=-2 Max Grav 2=1	517/0-3-8, 10=1517/0-3-8 51(LC 17) !23(LC 16), 10=-223(LC 17) 716(LC 2), 10=1716(LC 2)					
FORCES. (lb) - Max. Comp./N TOP CHORD 2-3=-3516/42' 9-10=-3517/4'. 9-10=-3517/4'. BOT CHORD 2-17=-465/31. WEBS 6-14=-186/99. 5-15=-669/28. 5-15=-669/28.	Aax. Ten All forces 250 (lb) or less exce 7, 3-5=-3346/452, 5-6=-2724/385, 6-7=-2 27 40, 15-17=-287/2632, 14-15=-100/1972, 7 6, 7-14=-669/289, 7-12=-129/616, 9-12=- 8, 5-17=-128/613, 3-17=-302/202	pt when shown. 722/385, 7-9=-3346/453, 12-14=-164/2630, 10-12=-314/3140 303/203, 6-15=-187/996,				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-10; Vult=130n MWFRS (envelope) gable en Interior(1) 23-10-0 to 42-6-8 : DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.11 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) This truss has been designed non-concurrent with other live 6) This truss has been designed non-concurrent with other live 6) This truss has been designed non-concurrent with other live 6) This truss has been designed will fit between the bottom ch 8) Provide mechanical connecti 2=223. 9) One RT7A USP connectors r only and does not consider live 	ave been considered for this design. nph (3-second gust) Vasd=103mph; TCD id zone and C-C Exterior(2) -0-10-8 to 2 zone;C-C for members and forces & MWI bits (roof live load: Lumber DOL=1.15 Plate 5 Plate DOL=1.15); Category II; Exp B; P. be been considered for this design. d for greater of min roof live load of 12.0 p be loads. d for a 10.0 psf bottom chord live load nor d for a live load of 20.0psf on the bottom ord and any other members, with BCDL= on (by others) of truss to bearing plate ca recommended to connect truss to bearing ateral forces.	L=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; f -8, Interior(1) 2-1-8 to 20-10-0, Exterior(FRS for reactions shown; Lumber DOL= e DOL=1.15); Pg=20.0 psf (ground snow artially Exp.; Ct=1.10 sf or 1.00 times flat roof load of 15.4 psf chord in all areas where a rectangle 3-6 = 10.0psf. pable of withstanding 100 lb uplift at join walls due to UPLIFT at jt(s) 10. This cor	Exp B; Enclosed; 2) 20-10-0 to 23-10-0, I.60 plate grip); Pf=15.4 psf (flat on overhangs I-0 tall by 2-0-0 wide t(s) except (jt=lb) anection is for uplift	SEAL 044925		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

├		41-8-0						——
Plate Offsets (X,Y) [2:0-0-0,0	0-1-2], [2:0-1-11,0-6-0], [24:0-0-0,0-1-2],	[24:0-1-11,0-6-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.06 WB 0.21 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 24 0.00 25 0.01 24	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 268 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3, Right: 2x4 SP	P No.3	BF TC BC WI	RACING- DP CHORD S DT CHORD I EBS 2	Structural wood Rigid ceiling dir 1 Row at midpt	l sheathin ectly appli	g directly ap ied or 10-0- 13-36	oplied or 6-0-0 oc purlin: 0 oc bracing.	5.
REACTIONS. All bearings 4 (lb) - Max Horz 2=-1 Max Uplift All 28, 2 Max Grav All 30, 2	1-8-0. 51(LC 17) uplift 100 lb or less at joint(s) 2, 37, 38, 3 27, 26, 24 reactions 250 lb or less at joint(s) 2, 36, 3 29, 28, 27, 26, 24	9, 41, 42, 43, 44, 45, 46, 37, 38, 39, 41, 42, 43, 44	, 35, 34, 33, 31, 3(I, 45, 46, 35, 34, 3	0, 29, 33, 31,				
FORCES. (lb) - Max. Comp.// TOP CHORD 11-12=-91/258	lax. Ten All forces 250 (lb) or less exce 3, 12-13=-104/293, 13-14=-104/293, 14-	pt when shown. 5=-91/258						
 TOP CHORD 11-12=-91/258, 12-13=-104/293, 13-14=-104/293, 14-15=-91/258 NOTES- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 20-10-0, Corner(3) 20-10-0 to 23-10-0, Exterior(2) 23-10-0 to 42-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15); Category II; Exp B; Partially Exp.; C1=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for russ to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 37, 38, 39, 41, 42, 43, 44, 45, 46, 35, 34, 33, 31, 30, 29, 28, 27, 26, 24. 								

April 30,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 =

2x4 ||

LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) L/d PLATES GRIP in l/defl TCLL (roof) 20.0 Plate Grip DOL тс Vert(LL) 999 244/190 1.15 0.16 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.10 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-P Weight: 12 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-1-3 oc purlins, 2x4 SP No.2 BOT CHORD

BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=107/4-0-7, 3=107/4-0-7 (lb/size) Max Horz 1=39(LC 12) Max Uplift 1=-15(LC 12), 3=-29(LC 12) Max Grav 1=120(LC 2), 3=120(LC 2)

2x4 SP No.3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ENGINEERING BY RENCO A MITEK Atfillate

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-7-4, Exterior(2) 5-7-4 to 8-7-4, Interior(1) 8-7-4 to 10-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-4-4, Exterior(2) 4-4-4 to 7-4-4, Interior(1) 7-4-4 to 8-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat

roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0-6	0-2	-2					
Plate Offsets (X,Y) [2:0-2-0,B	Edge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.12 BC 0.35 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc n/a n/a 0.00	;) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2		B T	RACING- OP CHORD S	Structural wo	od sheathin	g directly app	lied or 6-0-0 oc purlir	IS.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 1=186/6-1-12, 3=186/6-1-12 (lb/size) Max Horz 1=43(LC 11) Max Uplift 1=-23(LC 14), 3=-23(LC 15) Max Grav 1=210(LC 2), 3=210(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.03 BC 0.09 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 0.0 *	Code IRC2015/TPI2014	Matrix-P	- (- /					Weight: 10 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=97/3-7-12, 3=97/3-7-12 Max Horz 1=-23(LC 10) Max Uplift 1=-12(LC 14), 3=-12(LC 15) Max Grav 1=110(LC 2), 3=110(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=15.4 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 3-8-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

SEAL 044925 MGINEEP, HAMMAN April 30,2019

