

Trenco 818 Soundside Rd Edenton, NC 27932

Re: COMAS_JOB

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I37516079 thru I37516133

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

June 21,2019

Fox, Steve

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Max Uplift 2=-30(LC 10), 4=-36(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L			7-1-7				4
			7-1-7				
Plate Offsets (X,Y) [3:0	0-3-0,0-0-2], [5:0-3-0,0-0-2]						
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.04 BC 0.07 WB 0.03	DEFL. in Vert(LL) -0.00 Vert(TL) 0.00 Horz(TL) 0.00	(loc) 6 6	l/defl L/d n/r 120 n/r 90 n/a n/a	PLATES MT20	GRIP 197/144
BCDL 0.0 *	Code IBC2012/TPI2007	Matrix-S				Weight: 16 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF N	lo.2		BRACING- TOP CHORD	Structural	wood sheathing dir	ectly applied or 6-0-0	oc purlins, except

BOT CHORD

2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=160/5-7-3, 6=160/5-7-3, 8=185/5-7-3 Max Horz 2=-25(LC 8) Max Uplift 2=-25(LC 10), 6=-26(LC 11), 8=-2(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

BOT CHORD 2x4 SPF No.2

2x4 SPF Stud

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 8.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-1	1-15 7-4-0 1-15 3-4-1	<u>11-8-12</u> 4-4-12	<u>16-3-4</u> 4-6-8	+ 20-8-0 4-4-12	24-0-1	28-0-0		
Plate Offsets (X,Y)	[2:0-0-0,0-0-1], [4:0-3-0,0-2-0]], [7:0-3-0,0-2-0], [9:0-0-0,0-0-1]						
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2012/TPl2	2-0-0 CSI. 1.15 TC 0.70 1.15 BC 0.46 NO WB 0.76 2007 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) l/defl -0.16 13-15 >999 -0.34 13-15 >979 0.07 9 n/a	L/d 240 180 n/a	PLATES MT20 GRIP 197/144 Weight: 168 lb FT = 20%		
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x8 S WEBS 2x4 S REACTIONS. (lb/siz Max I	PF No.2 P No.1 PF Stud re) 2=1776/0-4-0, 9=1776/0 forz 2=54(LC 52) Joift 2=.465(/ C 10) 9=.465//	4-0	BRACING- TOP CHOR BOT CHOR	D Structural wood s 2-0-0 oc purlins (2 D Rigid ceiling direc	heathing directly a 2-7-15 max.): 4-7. tly applied or 9-8-	ipplied or 3-0-0 oc purlins, except 1 oc bracing.		
FORCES. (Ib) - Max TOP CHORD 2-3= 7-8= BOT CHORD 2-17 11- WEBS 3-16 6-12	Grav 2=1997(LC 10), 9=1997(L Grav 2=1997(LC 29), 9=1997(L -3241/811, 3-4=-3089/800, 4-5 -3068/794, 8-9=-3245/813 =-714/2777, 16-17=-714/2777, 12=-663/2781, 9-11=-663/2781 =-341/111, 4-16=-139/594, 4-1 (=-1096/316, 7-12=-273/1101, 4)	LC 29) 250 (lb) or less except when shown 5=-3495/915, 5-6=-3494/915, 6-7=-2 , 15-16=-682/2733, 13-15=-872/352 1 15=-290/1007, 5-15=-466/133, 6-13 8-12=-361/107	2690/718, 29, 12-13=-872/352 =-66/298,	9,				
 WEBS 3-16—341/111, 4-16—139/594, 4-15—290/1007, 5-15=-466/133, 6-13=-66/298, 6-12=-1096/316, 7-12=-273/1101, 8-12=-361/107 NOTES- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DDL=1.60 plate grip DDL=1.60 2) TCLL: ASCE 7-10; PI=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Cl=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for grateer of min roof live load of 18.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Trois truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and ny other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2-465, 9-466. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 5 lb up at 12-00, 56 lb down and 35 lb up at 14-0-0, 56 lb down and 35 lb up at 14-0-0, 76 lb down and 60 lb up at 20-0-0 on top chord, and 123 lb down and 55 lb up at 14-0-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 12-0, 76 lb down and 60 lb up at 12-0, 76 lb down and 60 lb up at 12-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down and 60 lb up at 20-0, 76 lb down								
WARNING - Veriti Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage, Safety Information	y design parameters and READ NOTE only with MiTek® connectors. This desi re use, the building designer must verifi- cing indicated is to prevent buckling of i r stability and to prevent collapse with p delivery, erection and bracing of trusses available from Truss Plate Institute, 21	S ON THIS AND INCLUDED MITEK REFERE ign is based only upon parameters shown, any y the applicability of design parameters and p individual truss web and/or chord members o obssible personal injury and property damage s and truss systems, see ANS/ITPH 8 N. Lee Street, Suite 312, Alexandria, VA 22	NCE PAGE MII-7473 rei di si for an individual bui properly incorporate this nly. Additional temporau . For general guidance I Quality Criteria, DSB- 2314.	r. 10/03/2015 BEFORE USE. ding component, not design into the overall y and permanent bracing regarding the 89 and BCSI Building Compo	nent	ENGINEERING BY TRENCO A MITEK Atfillate 818 Soundside Road Edenton, NC 27932		

					1
Job	Truss	Truss Type	Qty	Ply	
					137516082
COMAS_JOB	GD3	Hip Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:12 2019 Page 2
		ID:Gbs5d2E	Bwvalhhs	zRMqhXq	z5S1p-TMTANqlXheBG2ZHT0HZPfouxLNL4uBqPWfum7Ez4MQL

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 7-10=-60, 2-9=-20

Concentrated Loads (lb)

Vert: 14=-69(F) 17=-120(F) 15=-69(F) 13=-69(F) 11=-120(F) 27=-123(F) 28=-120(F) 29=-69(F) 30=-69(F) 31=-69(F) 32=-69(F) 33=-120(F) 34=-123(F) 34=-123(F) 32=-69(F) 31=-69(F) 32=-69(F) 32=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2 LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
COMAS IOB	GD4	Hip Girder	1	1	137516083
	604		ľ		Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	.220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:14 2019 Page 2

ID:Gbs5d2EBwvglhhszRMqhXgz5S1p-PkbxoWnnCFR_HtQs8ibtkDzLzB19M8JizzNtB7z4MQJ

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 7-10=-60, 2-9=-20

Concentrated Loads (lb)

Vert: 14=-87(B) 5=-1(B) 13=-87(B) 6=-1(B) 18=-1(B) 19=-1(B) 20=-1(B) 21=-1(B) 22=-1(B) 23=-143(B) 24=-143(B) 25=-87(B) 26=-87(B) 27=-87(B) 28=-87(B) 28=-87(29=-87(B) 30=-143(B) 31=-143(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=221/0-4-0, 4=54/Mechanical, 5=89/Mechanical Max Horz 7=110(LC 10) Max Uplift 4=-36(LC 10), 5=-40(LC 10) Max Grav 7=221(LC 1), 4=57(LC 18), 5=101(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y) [2:	0-0-2,0-0-3], [2:0-0-3,0-5-1]			
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.08 BC 0.03 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2 >999 240 Vert(TL) -0.00 2-4 >999 180 Horz(TL) -0.00 3 n/a n/a Weight: 7 lb FT = 20)%
LUMBER-	1		BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE

Left: 2x4 SPF Stud

REACTIONS. (lb/size) 3=44/Mechanical, 2=143/0-4-0, 4=19/Mechanical Max Horz 2=42(LC 12) Max Uplift 3=-29(LC 12), 2=-17(LC 12) Max Grav 3=44(LC 1), 2=150(LC 18), 4=38(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 1-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

June 21,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 10032010 SECORE 052. Design valid for use only with MITCK we connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift 5=-33(LC 7), 7=-23(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 5=140/Mechanical, 7=218/0-4-0 Max Horz 7=107(LC 7) Max Uplift 5=-45(LC 7), 7=-16(LC 10)

Max Grav 5=143(LC 18), 7=218(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-3-4	
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2012/TPI2007	CSI. TC 0.10 BC 0.04 WB 0.03 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 4-5 >999 240 Vert(TL) -0.00 4-5 >999 180 Horz(TL) -0.00 3 n/a n/a	RIP 7/144 FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF Stud

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-3-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=160/0-4-0, 3=47/Mechanical, 4=21/Mechanical Max Horz 5=52(LC 10) Max Uplift 5=-3(LC 10), 3=-29(LC 10), 4=-5(LC 10) Max Grav 5=169(LC 16), 3=49(LC 18), 4=42(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 5=163/Mechanical, 7=239/0-4-0 Max Horz 7=71(LC 5)

Max Uplift 5=-46(LC 5), 7=-38(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 56 lb down and 27 lb up at 2-5-12 on top chord, and 18 lb down and 18 lb up at 2-5-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 9=-1(B)

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 5=163/Mechanical, 7=239/0-4-0 Max Horz 7=113(LC 7)

Max Uplift 5=-49(LC 7), 7=-18(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift 4=-30(LC 10), 5=-39(LC 10)

Max Grav 7=196(LC 1), 4=49(LC 18), 5=81(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WED2x4 SPF No.2

WEBS 2x4 SPF Stud

REACTIONS. (lb/size) 5=177/0-4-0, 3=65/Mechanical, 4=26/Mechanical Max Horz 5=62(LC 10) Max Uplift 5=-1(LC 10), 3=-40(LC 10), 4=-1(LC 10) Max Grav 5=177(LC 1), 3=68(LC 18), 4=53(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web snd/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

June 21,2019

ENGINEERING BY EREPACED A MITEK Attillate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	9-4-2	1	18-7-14		28-0-0				
	9-4-2		9-3-12		9-4-2				
Plate Offsets (X,Y) [2:0	0-0-2,0-0-3], [2:0-0-3,0-5-1], [8:0-0-2,0-0	0-3], [8:0-0-3,0-5-1]							
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2012/TPI2007	CSI. TC 0.77 BC 0.82 WB 0.18 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.32 10-12 -0.53 8-10 0.08 8	l/defl L/d >999 240 >622 180 n/a n/a	PLATES MT20 Weight: 100 lb	GRIP 197/144 FT = 20%		
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N 7-10,3-12: WEDGE Left: 2x4 SPF Stud, Right:	lo.2 lo.2 lo.2 *Except* 2x4 SPF Stud 2x4 SPF Stud	BRACING- TOP CHORE BOT CHORE) Structura) Rigid ce	al wood sheathing di iling directly applied	irectly applied or 2-2-0 or or 10-0-0 oc bracing.	c purlins.			
REACTIONS. (Ib/size) Max Horz Max Uplifi	2=1169/0-4-0, 8=1169/0-4-0 2=-97(LC 13) 2=-97(LC 12), 8=-97(LC 13)								

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1850/334, 3-5=-1643/342, 5-7=-1643/342, 7-8=-1850/334

BOT CHORD 2-12=-214/1565, 10-12=-53/1055, 8-10=-214/1565

WEBS 5-10=-82/643, 7-10=-399/217, 5-12=-82/641, 3-12=-399/217

NOTES-

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 18.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-4-3	10-8-0	I	17-4-0	1	22-7-13	1	28-0-0	
	5-4-3	5-3-13		6-8-0	1	5-3-13	I	5-4-3	
Plate Offsets	(X,Y) [2:0-0-3,0-0-2], [2	2:0-5-1,0-0-3], [2:Edge,0-	3-2], [4:0-3-0,0-2-0], [5:0-	-4-0,0-2-8], [7:0-0-3	3,0-0-2], [7:0-5	-1,0-0-3], [7:Ed	ge,0-3-2]		
LOADING (p TCLL (Roof Snow=2 TCDL BCLL BCDL	ssf) SPACII 20.0 Plate G 20.0) Lumber 10.0 Rep Str 0.0 * Code I	NG- 2-0-0 rip DOL 1.15 DOL 1.15 ress Incr YES BC2012/TPI2007	CSI. TC 0.93 BC 0.73 WB 0.44 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.11 10-12 -0.28 10-12 0.10 7	l/defl L/d >999 240 >999 180 n/a n/a	P M W	PLATES 1T20 Veight: 111 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Left: 2x4 SPF	2x4 SPF No.2 *Except* 4-5: 2x4 SPF 1650F 1.5 2x4 SPF No.2 2x4 SPF Stud *Except* 4-10: 2x4 SPF No.2	E		BRACING- TOP CHORD BOT CHORD WEBS	Structura 2-0-0 oc Rigid cei 1 Row at	al wood sheathi purlins (2-2-0 r iling directly app t midpt	ng directly app nax.): 4-5. blied or 10-0-0 4-10	blied or 3-2-9 oc	: purlins, except
REACTIONS.	. (lb/size) 2=1169/0-4-1 Max Horz 2=-76(LC 17 Max Uplift 2=-78(LC 12 Max Grav 2=1553(LC 3	0, 7=1169/0-4-0)), 7=-78(LC 13) (1), 7=1553(LC 31)							
FORCES. (I TOP CHORD BOT CHORD WEBS	b) - Max. Comp./Max. Ten 2-3=-2491/300, 3-4=-1 2-13=-197/2064, 12-1 3-12=-606/125, 4-12=	All forces 250 (lb) or le 857/282, 4-5=-1528/285 3=-197/2064, 10-12=-89/ 0/441, 5-10=0/430, 6-10=	ess except when shown. , 5-6=-1858/282, 6-7=-24 1528, 9-10=-197/2064, 7 -605/125	.91/301 -9=-197/2064					
NOTES- 1) Wind: ASC MWFRS (e exposed;C 2) TCLL: ASC 3) Unbalance 4) This truss f non-concul 5) Provide ad 6) This truss f 7) * This truss	E 7-10; Vult=115mph (3-si anvelope) gable end zone a t-C for members and forces CE 7-10; Pf=20.0 psf (flat ro d snow loads have been c has been designed for gre rrent with other live loads. lequate drainage to preven has been designed for a 10 s has been designed for a 10	econd gust) Vasd=91mpl and C-C Exterior(2) zone s & MWFRS for reactions bof snow); Category II; Ez onsidered for this design. ater of min roof live load of t water ponding. .0 psf bottom chord live ive load of 20.0psf on the	n; TCDL=4.2psf; BCDL=6 cantilever left and right shown; Lumber DOL=1. φ B; Partially Exp.; Ct=1. of 18.0 psf or 2.00 times f load nonconcurrent with a bottom chord in all area	5.0psf; h=30ft; Cat. exposed ; end vertii 60 plate grip DOL= .10 ilat roof load of 20.0 any other live loads s where a rectangle	II; Exp B; Encl cal left and rig 1.60) psf on overh s. e 3-6-0 tall by	losed; ht angs 2-0-0 wide	unu.	IN DEF	CAROLINI SSIDA

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

June 21,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. 818 Soundside Road

Edenton, NC 27932

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
					137516111
COMAS_JOB	R5A	Roof Special Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:38 2019 Page 2
		ID:Gbs	5d2EBwvo	alhhszRMq	hXqz5S1p-iM2?qj3qZdTaAZGTYk1VjHzMxs6I vqEUhB81kz4MPx

NOTES-

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-8=-60, 8-9=-60, 9-12=-60, 11-23=-20 Concentrated Loads (lb)

Vert: 13=-2(B) 26=-1(B) 27=-1(B) 28=-1(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-8=-2040/364, 8-9=-2226/338, 9-10=-2420/342, 10-11=-2318/307, 11-12=-3226/381,
	12-13=-3152/333, 13-14=-1869/202
BOT CHORD	1-27=-214/1562, 25-27=-150/2001, 24-25=-150/2001, 23-24=-169/2227, 20-21=-169/2403,
	19-20=-105/1870, 18-19=-177/2136, 14-16=-105/1189
WEBS	4-27=-65/777, 5-27=-791/111, 5-24=-54/409, 6-24=-289/99, 6-23=-1186/206,
	7-23=-344/0, 21-23=-46/1982, 7-21=-207/2186, 9-21=-1060/168, 9-20=-563/125,
	10-20=-105/856, 10-19=-17/408, 11-19=-381/108, 11-18=-75/794, 16-18=-107/1403,
	13-18=-131/1506, 13-16=-976/95

NOTES-

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=119, 14=108.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	5-4-13 10-6-2 5-4-13 5-1-5	14-6-2 18-6-2 4-0-0 4-0-0	20-4-0 21-4-8	<u>26-1-14</u> 4-9-6		34-2-0 8-0-2	36-8-0 35-3-4 1-1-4 1-4-12		
Plate Offsets (X,Y) [1:	0-2-12,0-0-4], [4:0-4-4,0-2-4], [10:0-4-4	,0-2-4], [13:0-1-4,Edge], [14:0-2-12,0-4-1],	[18:0-3-4,0-3-0], [20:0-2-0,8	Edge]			
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.90 BC 0.74 WB 0.91 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.17 19-20 -0.51 18-19 0.27 14	l/defl >999 2 >867 1 n/a i	L/d 240 80 n/a	PLATES MT20 Weight: 236 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORD 2x4 SPF I BOT CHORD 2x4 SPF I 12-17: 2x WEBS 2x4 SPF 3 4-25,4-24 SLIDER Left 2x6 S	No.2 No.2 *Except* 4 SPF Stud Stud *Except* ,5-24,6-24,6-23,6-22,7-22,7-20,9-19: 2: SPF 1650F 1.5E 3-3-12, Right 2x8 SP N	4 SPF No.2 Io.1 1-5-12	BRACING- TOP CHORD BOT CHORD WEBS	9 Structura 2-0-0 oc 9 Rigid cei 6-0-0 oc 1 Row at	al wood shea purlins (4-3- iling directly bracing: 20- t midpt	athing direc 4 max.): 4 applied or 21. 6-2	ctly applied, except -6, 9-10. 10-0-0 oc bracing, E 24, 6-22, 7-22	Except:	
REACTIONS. (lb/size) 1=1466/Mechanical, 14=1520/0-6-0 Max Horz 1=170(LC 7) Max Uplift 1=-119(LC 10), 14=-108(LC 11)									
FORCES. (lb) - Max. Co TOP CHORD 1-3=-21 7-8=-20 12-13=-	omp./Max. Ten All forces 250 (lb) or le 39/259, 3-4=-1820/293, 4-5=-1700/308 11/367, 8-9=-2194/368, 9-10=-1676/27 3171/328, 13-14=-1868/201	ess except when shown. , 5-6=-1699/308, 6-7=-18- 7, 10-11=-2117/301, 11-1	40/343, 2=-3308/398,						
BOT CHORD 1-27=-1 19-20=- WEBS 3-25=-2 7-22=-2 10-19=- 13-16=-	86/1617, 25-27=-186/1617, 24-25=-95/ 102/1929, 18-19=-164/2006, 14-16=-10 52/118, 4-25=-23/276, 4-24=-69/520, 5 74/0, 20-22=-63/2046, 7-20=-198/2101 77/889, 11-19=-434/150, 11-18=-88/99 984/83	1458, 23-24=-96/1758, 22)2/1186 -24=-252/107, 6-22=-947/ , 9-20=-973/192, 9-19=-4 4, 16-18=-87/1420, 13-18	2-23=-95/1756, /184, 79/98, =-138/1535,						
NOTES- 1) Wind: ASCE 7-10; Vult MWFRS (envelope) ga exposed;C-C for memt 2) TCLL: ASCE 7-10; Pf= 3) This truss has been de non-concurrent with ott 4) Provide adequate drain	=115mph (3-second gust) Vasd=91mpl ble end zone and C-C Exterior(2) zone bers and forces & MWFRS for reactions 20.0 psf (flat roof snow); Category II; E signed for greater of min roof live load of her live loads. hage to prevent water ponding.	n; TCDL=4.2psf; BCDL=6 cantilever left and right e shown; Lumber DOL=1.6 p B; Partially Exp.; Ct=1. of 16.0 psf or 2.00 times fl	.0psf; h=30ft; Cat. exposed ; end vert 50 plate grip DOL= 10 at roof load of 20.	II; Exp B; Enci ical left and rig =1.60 0 psf on overh:	losed; ht angs		NUM PRESE	CAROJU ESSION VIII SEAL	

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=119, 14=108.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	6	-7-13	13-0-2	17	-2-5	21-4-8	23-7-14	1 2	28-10-15		34-2-0	35-3-4 36-8	-0
	6	-7-13	6-4-5	4-	2-3	4-2-3	2-3-6	0.4.41	5-3-1	0 0 01 000	5-3-1	1-1-4 '1-4-1	2 '
Plate Offsets ()	X,Y) [1:0)-2-12,0-0-4], [4:0-4-4,	0-2-4], [7:0-4-4,0	-2-4], [9:0-4	-0,Edgej, [1	2:0-1-4,Edgej, [13:0-2-12	2,0-4-1],	[17:0-3-4	,0-3-0], [20	:0-2-12,E0	agej	
LOADING (pst TCLL (Roof Snow=20 TCDL BCLL BCDL	f) 20.0 0.0) 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2012/	2-0-0 1.15 1.15 YES TPI2007	CSI. TC BC WB Matri	0.90 0.62 0.65 x-S	DEFL. Vert(LL) Vert(TL) Horz(TL	ii -0.12 -0.29 0.21	n (loc) 2 19-20 9 18-19 13	l/defl >999 >999 n/a	L/d 240 180 n/a	F	PLATES MT20 Weight: 222 lb	GRIP 197/144 FT = 20%
LUMBER-						BRACING	i-						
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 11-16: 2x4 SPF Stud						TOP CHC BOT CHC	TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-6-12 max.): 4-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:						
WEBS	2X4 SPF S			0				1 ROW a	at midpt		6-20		
SLIDER	3-23,4-23, Left 2x6 S	4-22,5-22,5-20,7-20,7- PF 1650F 1.5E 4-0-12	, Right 2x8 SPF No	.2 lo.1 1-5-12		WEB2		1 Row a	at midpt	:	5-22		
REACTIONS.	(lb/size) Max Horz Max Uplift	1=1466/Mechanical, 1=180(LC 7) 1=-65(LC 10), 13=-81	13=1520/0-6-0 (LC 11)										
FORCES. (Ib)) - Max. Coi 1-3=-213 7-8=-186	mp./Max. Ten All for 1/258, 3-4=-1727/295 9/318, 8-10=-2330/32	ces 250 (lb) or le , 4-5=-1451/302 7, 10-11=-3249/	ss except w 5-6=-1577/ 404, 11-12=	/hen shown. /302, 6-7=-1: -3150/334, /	580/302, 12-13=-1867/20	1						
BOT CHORD	D 1-25=-124/1620, 23-25=-124/1620, 22-23=-49/1342, 19-20=-23/1491, 18-19=-89/1745, 17-18=-159/2062, 13-15=-102/1186												
WEBS	17-18=-159/2062, 13-15=-102/1186 3-25=0/269, 3-23=-387/161, 4-23=-37/409, 4-22=-123/264, 5-22=-504/126, 20-22=-43/1406, 5-20=-20/291, 7-20=-125/314, 7-19=-70/529, 8-19=-497/141, 8-18=-46/493, 10-18=-388/126, 10-17=-110/872, 15-17=-103/1390, 12-17=-139/1515, 12-15=-967/92												

NOTES-

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSVTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

A MITEK Alfiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

TREERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

H	9-5-0	<u>18-4-0</u> 8-11-0	+ 27	<u>′-3-0</u> ·11-0		<u>36-8-0</u> 9-5-0		
Plate Offsets (X,Y) [4:0	-4-4,0-2-4], [6:0-4-0,Edge], [8:0-4-4,0-	2-4]						
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2012/TPI2007	CSI. TC 0.74 BC 0.77 WB 0.31 Matrix-MS	DEFL. Vert(LL) -0.: Vert(TL) -0. Horz(TL) 0.	in (loc) l/defl 25 13-15 >999 55 13-15 >798 15 11 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N 14-16: 2x4 WEBS 2x4 SPF N 3-17,4-17,4 SLIDER Left 2x6 SP	0.2 0.2 *Except* SPF 1650F 1.5E 0.2 *Except* 3-13,9-13: 2x4 SPF Stud PF 1650F 1.5E 2-6-0, Right 2x6 SPF 1	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing direc (3-11-10 max.): cctly applied or 1 5-17	tly applied or 2-8-1 or 4-8. 10-0-0 oc bracing. 7, 7-13	c purlins, except		
REACTIONS. (lb/size) 1=1466/Mechanical, 11=1520/0-4-0 Max Horz 1=-130(LC 8) Max Uplift 1=-40(LC 10), 11=-55(LC 11)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2019/293, 3-4=-1876/284, 4-5=-1503/271, 5-7=-1984/323, 7-8=-1501/270, 8-9=-1873/283, 9-11=-2015/292 BOT CHORD 1-17=-150/1593, 15-17=-151/1915, 13-15=-141/1914, 11-13=-149/1588 WEBS 4-17=-43/720, 5-17=-648/163, 7-13=-650/162, 8-13=-43/718								
 NOTES- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord in eload nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>6-11-0</u> 6-11-0		14-5-12 7-6-12		<u>22-2-4</u> 7-8-8		29-9-0 7-6-12	36-	8-0
Plate Offsets (2	X,Y) [3:0	-4-4,0-2-4], [5:0-4-0,Edg	je], [7:0-4-4,0-2	-4]					
LOADING (ps TCLL (Roof Snow=20 TCDL BCLL BCDL	if) 20.0 0.0) 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2012/TF	2-0-0 1.15 1.15 YES Pl2007	CSI. TC 0.84 BC 0.78 WB 0.47 Matrix-MS	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.16 12 -0.49 11-12 0.18 9	l/defl L/a >999 240 >897 180 n/a n/a	d PLATES 0 MT20 0 a Weight: 15	GRIP 197/144 50 lb FT = 20%
BCDL IO.0 BRACING- TOP CHORD 2x4 SPF 1650F 1.5E *Except* TOP CHORD 5-7: 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 3-3-3 oc purlins, except BOT CHORD 2x4 SPF No.2 BOT CHORD BOT CHORD WEBS 2x4 SPF Stud *Except* BOT CHORD 3-15,6-15,6-11: 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing. WEBS 1.55,6-15,6-11: 2x4 SPF No.2 WEBS 1 Row at midpt SLIDER Left 2x6 SPF 1650F 1.5E 2-6-0, Right 2x6 SPF 1650F 1.5E 2-6-0 WEBS 1 Row at midpt REACTIONS. (lb/size) 1=1466/Mechanical, 9=1520/0-4-0 Max Horz 1=-97(I C. 8)									
Max Horz 1=-97(LC 8) Max Uplift 1=-70(LC 7), 9=-74(LC 6) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2026/277, 3-4=-2533/396, 4-6=-2533/396, 6-7=-1570/273, 7-9=-2023/276 BOT CHORD 1-16=-155/1594, 15-16=-158/1591, 12-15=-239/2532, 9-11=-115/1591 WEBS 3-15=-199/1146, 4-15=-490/185, 6-12=0/319, 6-11=-1163/201, 7-11=-10/754									
NOTES- 1) Wind: ASCE 7-10: Vult-115mph (3-second aust) Vasd-91mph; TCDI -4 2nsf; BCDI -6 0nsf; h=30ff; Cat. II; Evp.B; Enclosed;									

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
 This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 21,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- All plates are 2.5x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 17, 18, 15, 14 except (jt=lb) 20=112, 19=117, 13=110.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. Edenton, NC 27932

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply		
					1375	16125
COMAS_JOB	R9X	Common Girder	1	2		
				2	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8	.220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:54 2019 Page	;2
		ID:Gbs5	d2EBwvglł	hszRMqh)	(qz5S1p-ER02BBGtoYUJ50UYU5JFMfd5JJhbjDhaAB3 bpz4MF	۶h

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-60, 5-8=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 9=-1446(B) 12=-1443(B) 13=-1446(B) 14=-1446(B) 15=-1446(B) 16=-1446(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 14.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) All plates are 2.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 17, 18, 15, 14 except (jt=lb) 20=102, 19=111, 13=105.

June 21,2019

ENGINEERING BY REENCO A MITek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

beign valid for dee only with mew connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANXITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
	D 40Y				137516127
COMAS_JOB	R10X	Common Girder	1	2	
				-	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:26 2019 Page 2
		ID:Gbs5	d2EBwvgl	hhszRMqh	Xgz5S1p-22JTJcwJOxyHkjL9rDphDITJ217?AYOTkgHVcQz4MQ7

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-8=-60, 1-7=-20

Concentrated Loads (lb)

Vert: 10=-1446(B) 12=-1447(B) 13=-1446(B) 14=-1446(B) 15=-1446(B) 16=-1860(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=626. 10=608.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

June 21,2019

Continued on page 2

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE FACE INFERTOR FOR INFERTOR OF THE ADDRESS OF THE ADDRE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply		
COMAS_JOB	RD8	Hip Girder	1	1	137516	128
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Jun 20 14:37:56 2019 Page 2	

NOTES-

ID:Gbs5d2EBwvglhhszRMqhXgz5S1p-Ap7pctH7J9k1KKewbWMjR4iQX7K_B2gtdVY5fhz4MPf

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 49 lb down and 42 lb up at 3-9-12, 52 lb down and 29 lb up at 5-9-12, 52 lb down and 29 lb up at 7-9-12, 52 lb down and 29 lb up at 15-9-12, 52 lb down and 29 lb up at 15-9-12, 52 lb down and 29 lb up at 15-9-12, 52 lb down and 29 lb up at 15-9-12, 52 lb down and 29 lb up at 21-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 23-9-12, 52 lb down and 29 lb up at 33-9-12, on top chord, and 58 lb down and 59 lb up at 1-9-12, 58 lb down and 59 lb up at 1-9-12, 58 lb down and 59 lb up at 1-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 15-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 25-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 23-9-12, 58 lb down and 59 lb up at 33-9-12 on bottom chord. The d

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-9=-60, 9-11=-60, 1-10=-20

Concentrated Loads (lb)

Vert: 17=-48(F) 18=-48(F) 13=-48(F) 35=-48(F) 36=-48(F) 37=-48(F) 38=-48(F) 39=-48(F) 40=-48(F) 41=-48(F) 42=-48(F) 43=-48(F) 43=-48(F) 45=-48(F) 46=-48(F) 45=-48(F) 45=-48(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

EN

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=124, 6=124.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

June 21,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

