

136507738

136507739

136507740

136507741

136507742

136507743

136507744

136507745

136507746

136507747

136507749

136507750

136507751

136507752 136507753

13650775

136507763

136507764

136507765

1365077

1365

507748

A04

A05

A06

A07

A08

A09

A10

A11

A17

B02

B03

C01

D01

D02

D03

Trenco RE: 654050 - H&H/Hatteras/ 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: H AND H Project Name: 654050 Lot/Block: A Subdivision: All Model: Address: City: Fayetteville State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2 Wind Code: ASCE 7-10 Wind Speed: 120 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 136507735 A01 35 36 37 38 39 40 136507769 E05 3/25/19 12345678901123456789012222222222223333/25/10 136507736 A02 136507770 Jõĩ /25/19 3/25/19 136507737 A03 136507771 Ĵ02 25/10 3/25/19

136507772

136507773

136507774

136507775 136507776

136507777

136507778

136507779

J03

J04

Jŏ5

J06

J07

J08

ĴÕ9

J10

32 33 34	136507766 136507767 136507768	E01 E02 E04	3/25/19 3/25/19 3/25/19	
The tr	uss drawing(s) referen	nced above have been p	prepared by
MiTel	k USA, Inc. u	inder my	direct supervision base	ed on the parameter
provid	ded by Builde	ers FirstS	ource-Sumter.SC.	

Truss Design Engineer's Name: Johnson, Andrew My license renewal date for the state of North Carolina is December 31, 2019 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use the building designer should verify applicability of design parameters

Johnson, Andrew

9

3/25/19

45 46 47 A12 136507780 J11 25/19 136507781 J12 J17 25/19 48 136507782 A15 25/19 49 50 A16 136507783 Ĵ18 25/19 136507784 J19 25/19 51 52 53 54 J20 J21 J22 J22 A18 B01 136507785 136507786 136507787 136507788 55 136507789 J24 CP02

41 42

43

44

25/19

25/19

25/19

25/19

25 C

25/

25/ 10

1 of 1

March 25,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **NSVITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Truss	Truss Type	Qty	Ply	H&H/Hatteras/
				1365077
A03	ROOF SPECIAL	20	1	
				Job Reference (optional)
Sumter, SC - 29153,		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:10 2019 Page 2
	Truss A03 Sumter, SC - 29153,	Truss Truss Type A03 ROOF SPECIAL Sumter, SC - 29153, Sumter, SC - 29153,	Truss Truss Type Qty A03 ROOF SPECIAL 20 Sumter, SC - 29153, 8.2	Truss Truss Type Qty Ply A03 ROOF SPECIAL 20 1 Sumter, SC - 29153, 8.220 s Nov 8.220 s Nov

ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-XyX57pLkHT9vt9c71NjLWVTXOa1UPobfLpLz8bzXPp?

LOAD CASE(S) Standard

Uniform Loads (pf) Vert: 1-4=-60, 4-7=-60, 11-17=-20, 10-11=-20, 10-20=-20

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

A MiTe 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
						136507741
654050	A07	HALF HIP GIRDER	2	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:22 2019 F	Page 2
		ID:Ox8sr	nJ6qTzXhi9	0vcz7B9d	zSnQN-BFFdewUGS9fCJ?WQkvx9?1zY1QE3DJuQ6hFcZuz	zXPop

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 14=-46(F) 15=-1(F) 16=-74(F) 17=-95(F) 18=-95(F) 19=-95(F) 20=-95(F) 21=-95(F) 22=-95(F) 23=-95(F) 24=-102(F) 25=-210(F) 26=-105(F) 27=-138(F) 28=-77(F) 29=-55(F) 30=-55(F) 31=-55(F) 32=-55(F) 33=-55(F) 34=-55(F) 35=-55(F) 36=-57(F)

1	8-2-11	1	17-5-11		1	24-4-8	1
	8-2-11	I	9-3-0		I	6-10-13	I
Plate Offsets ()	X,Y) [2:0-5-4,Edge], [5:0-4-6,Edge], [7:0-4	I-8,0-1-8]					
LOADING (psi TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	SPACING- 2-0-0 0 Plate Grip DOL 1.15 0 Lumber DOL 1.15 0 * Rep Stress Incr YES 0 Code IRC2015/TPI2014	CSI. TC 0.61 BC 0.74 WB 0.53 Matrix-AS	DEFL. ir Vert(LL) -0.18 Vert(CT) -0.36 Horz(CT) 0.03 Wind(LL) 0.06	n (loc) l/defl 9-11 >999 9-11 >807 8 8 n/a 9-11 >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 137 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 7-8: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing dire (5-4-12 max.): ectly applied. 5-9	ectly applied, except e 5-7.	and verticals, and
SLIDER	Left 2x6 SP No.2 1-11-12						

REACTIONS. (lb/size) 2=1023/0-5-8, 8=968/Mechanical Max Horz 2=253(LC 12) Max Uplift 2=-169(LC 12), 8=-224(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1511/434, 4-5=-1352/406, 5-6=-890/283, 6-7=-888/282, 7-8=-913/331
- BOT CHORD 2-11=-559/1295, 9-11=-383/1011
- WEBS 5-11=-71/425, 6-9=-461/251, 7-9=-359/1135

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=169, 8=224.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

RENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=269, 8=269.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-60, 5-9=-60, 16-19=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRENCO A MITek Affiliate 818 Soundside Road

Edenton, NC 27932

- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-5=-60, 5-8=-60, 15-18=-20

SEAL 45844 MGINEER 50 March 25,2019

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=264, 9=241.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

	12-0-0		23-4-8		34-11-0	
Plate Offsets (X,Y)	[2:0-5-0,0-0-10], [4:0-3-0,0-3-0], [5:0-10-	4,0-2-0], [13:0-4-0,0-3-4]	11-4-0		11-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.88 BC 0.82 WB 0.85 Matrix-AS	DEFL. in (loc) Vert(LL) -0.36 11-13 Vert(CT) -0.69 10-11 Horz(CT) 0.08 10 Wind(LL) 0.13 11-13	l/defl L/d >999 360 >607 240 n/a n/a >999 240	PLATES MT20 MT20HS Weight: 196 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 10-12: WEBS 2x4 SP SLIDER Left 2x4	No.2 No.1 *Except* 2x4 SP SS No.3 5 SP No.2 1-11-12	I	BRACING- TOP CHORD Struct 2-0-0 BOT CHORD Rigid WEBS 1 Row	ural wood sheathing dire oc purlins (3-10-9 max.): ceiling directly applied. / at midpt 6-	ectly applied, except e 5-9. 13, 8-10	and verticals, and
REACTIONS. (Ib/size Max H Max U Max G	 10=1390/Mechanical, 2=1444/0-5-8 porz 2=312(LC 12) plift 10=-329(LC 9), 2=-221(LC 12) rav 10=1424(LC 2), 2=1444(LC 1) 					
FORCES. (lb) - Max. TOP CHORD 2-4=- BOT CHORD 2-13= WEBS 4-13= 8-10=	Comp./Max. Ten All forces 250 (lb) or 2301/691, 4-5=-2008/576, 5-6=-1634/58 -835/1991, 11-13=-550/1713, 10-11=-3: -320/303, 5-13=-1/539, 6-13=-280/155, -1586/532	less except when shown. 4, 6-8–-1606/446 79/1167 6-11–-424/281, 8-11–-134	1/858,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Luu 3) Provide adequate dr 4) All plates are MT20 J 5) This truss has been will fit between the b 7) Refer to girder(s) for 8) Provide mechanical 10=329, 2=221. 9) This truss design rec sheetrock be applied:	loads have been considered for this deult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zon mber DOL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on t ottom chord and any other members, wi truss to truss connections. connection (by others) of truss to bearin quires that a minimum of 7/16" structural d directly to the bottom chord.	sign. bh; TCDL=6.0psf; BCDL=1 e; end vertical left expose e load nonconcurrent with he bottom chord in all area th BCDL = 10.0psf. g plate capable of withstar wood sheathing be applie he orientation of the purlir	6.0psf; h=25ft; Cat. II; Exp C; E d;C-C for members and forces any other live loads. as where a rectangle 3-6-0 tall t nding 100 lb uplift at joint(s) exc ad directly to the top chord and a along the top and/or bottom cl	nclosed; & MWFRS for by 2-0-0 wide cept (jt=lb) 1/2" gypsum hord.	ALL PRICE	SEAL 45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

March 25,2019

F	<u>10-10-5</u> 10-10-5	22-1) 		3	4-11-0 12-0-0	
Plate Offsets (X,Y)	[8:Edge,0-4-4], [9:0-5-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.91 BC 0.74 WB 0.85 Matrix-AS	DEFL. in Vert(LL) -0.15 Vert(CT) -0.33 Horz(CT) 0.07 Wind(LL) 0.12	(loc) l/defl 8-9 >999 8-9 >999 8 n/a 11-14 >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 211 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x4 SF 1-3: 2x BOT CHORD 2x6 SF WEBS 2x4 SF REACTIONS. (Ib/siz Max H Max L	 No.2 *Except* 86 SP No.2 No.2 No.3 8=1390/Mechanical, 2=1432/0-5-8 lorz 2=253(LC 12) Jplift 8=-338(LC 9), 2=-195(LC 12) 		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing direct (2-2-0 max.): 3-7 ctly applied. 4-11	ly applied, except e 7. , 6-8	nd verticals, and
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-11 WEBS 3-11	Comp./Max. Ten All forces 250 (lb) or -2301/597, 3-4=-1965/630, 4-6=-1980/51 =-631/1951, 9-11=-695/2182, 8-9=-473/1 =-2/585, 4-11=-452/239, 4-9=-405/287, 6	less except when shown. 7 473 -9=-71/829, 6-8=-1809/588					
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; \ MWFRS (envelope) reactions shown; Lu 3) Provide adequate d 4) All plates are MT20 5) This truss has been 6) * This truss has been will fit between the b	e loads have been considered for this de /ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) zon imber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on t bottom chord and any other members, wi	sign. ph; TCDL=6.0psf; BCDL=6.0p e; end vertical left exposed;C- e load nonconcurrent with any he bottom chord in all areas w th BCDL = 10.0psf.	sf; h=25ft; Cat. II; E: C for members and other live loads. here a rectangle 3-6	xp C; Enclosed; forces & MWFRS 3-0 tall by 2-0-0 wi	for de		CARO

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=338, 2=195.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

	8-2-5		17	17-1-13 25-11-8		11-8	11-8 3					
		8-2-5	8	11-8		1	8-9	9-12		1	8-11-8	
Plate Offset	s (X,Y)	[2:0-0-0,0-0-0], [3:0-5-4,0-2	-12], [8:Edge,0-4-8]									
LOADING TCLL TCDL	(psf) 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. C0. 3C0.	0.56 0.63	DEFL. Vert(LL) Vert(CT)	in -0.14 -0.28	(loc) 9-11 9-11	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TPI2	NO 2014 I	VB 0. Лatrix-N	0.78 //S	Horz(CT) Wind(LL)	0.07 0.18	8 9-11	n/a >999	n/a 240	Weight: 467 lb	FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	D 2x6 SP D 2x6 SP 2x4 SP	No.2 No.2 No.2				BRACING- TOP CHOR BOT CHOR WEBS	2D 2D	Structu except Rigid c 1 Row	iral wood end verti eiling dire at midpt	sheathing c cals, and 2- cctly applied	directly applied or 6-0-0 o -0-0 oc purlins (5-10-4 ma d or 10-0-0 oc bracing. 6-8	oc purlins, ax.): 3-7.
REACTION	S. (Ib/size Max Ho Max Uj	e) 8=2677/Mechanical, 2= orz 2=196(LC 8) plift 8=-991(LC 5), 2=-892(L	=2754/0-5-8 _C 5)									
FORCES. TOP CHOR BOT CHOR WEBS	(lb) - Max. D 2-3=- D 2-13= 3-13= 6-8=-	Comp./Max. Ten All force 4574/1583, 3-4=-5536/2063 1457/3974, 11-13=-1455/3 =0/659, 3-11=-715/1789, 4-7 4699/1744	es 250 (lb) or less ex 3, 4-6=-5536/2063, 3 3991, 9-11=-1585/4 11=-1005/761, 6-11	cept wh '-8=-39 ?70, 8-9 -535/14	nen shown. 5/286 9=-1585/4270 416, 6-9=0/711	,						
NOTES- 1) 2-ply trus Top chor Bottom c Webs co 2) All loads ply conne 3) Unbaland 4) Wind: AS MWFRS 5) Provide a 6) This trus 7) * This tru will fit be	s to be con ds connected hords conne nnected as are conside cections have ad roof live GCE 7-10; V (envelope) adequate dr s has been ss has beer ween the b	nected together with 10d (0 ed as follows: 2x6 - 2 rows ected as follows: 2x6 - 2 row follows: 2x4 - 1 row at 0-9-0 ered equally applied to all pl e been provided to distribute loads have been considere fult=120mph (3-second gust gable end zone; end vertica ainage to prevent water por designed for a 10.0 psf bott n designed for a live load of ottom chord and any other i	1.131"x3") nails as fo staggered at 0-9-0 c ws staggered at 0-9-) oc. es, except if noted a e only loads noted a ed for this design. t) Vasd=95mph; TC al left exposed; Lum nding. com chord live load r 20.0psf on the bott members.	llows: c, 2x4 - 0 oc. as front s (F) or DL=6.0p Der DOL oper DOL onconc om chor	(F) or back (B) (B), unless off psf; BCDL=6.0 L=1.60 plate gr current with any rd in all areas v	oc.) face in the Li nerwise indica psf; h=25ft; Ca ip DOL=1.60 y other live loa where a rectar	DAD C/ ted. at. II; Ex ids. igle 3-6	ASE(S) ¢p C; En -0 tall b	section. F nclosed; y 2-0-0 w	Ply to	Augure Art	CAROLIN

8) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=991, 2=892.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

Continued on page 2

Job	Truss	Truss Type	Qtv	Ply	H&H/Hatteras/	
			,	-		36507751
654050	A18	HALF HIP GIRDER	2	2		
				Z	Job Reference (optional)	
Builders FirstSource. S	umter. SC - 29153.		8.2	20 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:45 2019 F	Page 2

NOTES-

ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-0h8KTnmh2DZxaXnraEsZRtQYth2b5ccpOmKJt3zXPoS

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 86 lb down and 77 lb up at 3-5-8, 41 lb down and 45 lb up at 5-5-8, 134 lb down and 115 lb up at 7-5-8, 149 lb down and 137 lb up at 9-5-8, 149 lb down and 137 lb up at 11-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 23-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 149 lb down and 137 lb up at 13-5-8, 68 lb down at 13-5-8, 6

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 17=-46(B) 18=-1(B) 19=-74(B) 20=-95(B) 21=-95(B) 22=-95(B) 23=-95(B) 24=-95(B) 25=-95(B) 26=-95(B) 27=-95(B) 28=-95(B) 29=-95(B) 30=-95(B) 31=-95(B) 32=-95(B) 33=-210(B) 34=-105(B) 35=-138(B) 36=-77(B) 37=-55(B) 38=-55(B) 40=-55(B) 41=-55(B) 42=-55(B) 43=-55(B) 44=-55(B) 44=-55(B

LOADING (psf) SPACING- Plate Grip DOL 2-0-0 CSI. TCLL 20.0 Plate Grip DOL 1.15 TC 0.15 TCDL 10.0 Lumber DOL 1.15 BC 0.10 BCLL 0.0 * Rep Stress Incr YES WB 0.11 BCDL 10.0 Code IRC2015/TPI2014 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 12 n/r 120 Vert(CT) -0.00 12 n/r 120 Horz(CT) 0.00 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 128 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2	BRACING- TOP CHORD Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0 oc purlins,

 BOT CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

REACTIONS. All bearings 20-1-0.

(lb) - Max Horz 24=-236(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 24, 19, 23, 16 except 20=-110(LC 12), 22=-246(LC 12), 17=-121(LC 13), 15=-167(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 18, 17, 16 except 22=276(LC 19), 23=262(LC 20), 15=257(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 19, 23, 16 except (jt=lb) 20=110, 22=246, 17=121, 15=167.

818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
					I:	36507753
654050	B02	Common Girder	5	2		
				-	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:50 2019 P	age 2

8.220 s Nov 16 2018 Mi Lek Industries, Inc. Mon Mar 25 11:03:50 2019 Page 2 ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-MeyDWUqqsmBEgJfpNnRk8x7UlirumyWYY214YGzXPoN

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 9=-531(B) 16=-1435(B) 17=-1434(B) 18=-531(B) 19=-531(B) 20=-531(B) 21=-531(B) 22=-531(B) 23=-531(B) 24=-531(B) 24=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
					136	6507754
654050	B03	Common Girder	2	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:51 2019 Pa	ige 2

ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-qrVbkqrSd3J5ITE?xVzzg8gYf66QVH?hnine4jzXPoM

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 7=-1370(B) 8=-1370(B) 16=-1379(B) 17=-1376(B) 18=-1376(B) 19=-1376(B) 20=-1376(B) 21=-2657(B)

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10 except (jt=lb) 12=101, 11=151, 9=149.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10, 11, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TRENGINEERING BY A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek onnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
					136	507757
654050	C03	Common Girder	5	2		
				-	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:55 2019 Pag	ge 2

ID:Ox8smJ6gTzXhi90vcz7B9dzSnQN-jcl6aCuzhlpWn4YmAK1vr_rJUjOOREUHhKlrDUzXPol

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 6=-948(B) 15=-948(B) 16=-948(B) 17=-948(B) 18=-948(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affil 818 Soundside Road Edenton, NC 27932

		5-11-8						5-11-6	8			
Plate Offse	ets (X,Y)	[2:0-1-13,0-2-12], [4:	0-1-13,0-2-12], [5	0-3-8,Edge],	[5:0-0-0,0-2	-12], [7:0-0-0,)-2-12], [7:()-3-8,Ed	ge]			
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL	. i	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DC	L 1.15	TC	0.36	Vert(I	.L) -0.02	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT) -0.04	6-7	>999	240		
BCLL	0.0 *	Rep Stress In	cr YES	WB	0.09	Horz(CT) 0.0 ⁴	5	n/a	n/a		
BCDL	CDL 10.0 Code IRC201		5/TPI2014	Matri	x-AS	Wind	LL) 0.03	6-7	>999	240	Weight: 50 lb	FT = 20%
LUMBER-						BRAG	ING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x6 SP No.2 *Except* 3-6: 2x4 SP No.3

- REACTIONS. (lb/size) 7=528/0-5-8, 5=455/0-5-8 Max Horz 7=154(LC 9) Max Uplift 7=-103(LC 12), 5=-74(LC 13)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-482/150, 3-4=-477/150, 2-7=-466/221, 4-5=-391/159

BOT CHORD 6-7=-47/327, 5-6=-47/327

NOTES-(7)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 7=103.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Hatteras/	
					136507	760
654050	C07	Common Girder	2	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8.3	220 s Nov	16 2018 MiTek Industries, Inc. Mon Mar 25 11:03:58 2019 Page 2	
			ID:Ox8smJ6gTzXh	i90vcz7B9	dzSnQN-7BQECDwr_DC5eXGLrTbcSdTlAwSxebdjOHzVqpzXPoF	

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 7-11=-20

Concentrated Loads (lb)

Vert: 6=-1888(B) 15=-948(B) 16=-948(B)

	<u>12-0-0</u> 12-0-0											
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.58 BC 0.39 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.02 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%			
LUMBER-			BRACING-					·				

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 2=228/12-0-0, 4=228/12-0-0, 6=549/12-0-0 (lb/size) Max Horz 2=41(LC 12) Max Uplift 2=-78(LC 8), 4=-83(LC 9), 6=-77(LC 8) Max Grav 2=235(LC 23), 4=235(LC 24), 6=549(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 3-6=-366/234 WEBS

NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 4.

¹⁾ Unbalanced roof live loads have been considered for this design.

	6-0-0 6-0-0		+		12-0-0 6-0-0		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.38	DEFL. in Vert(LL) 0.09	(loc) l/defl 6-12 >999	L/d 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.10 Matrix-AS	Horz(CT) -0.09	6-9 >999 4 n/a	240 n/a	Weight: 41 lb	FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=503/0-3-0, 4=503/0-3-0 Max Horz 2=-41(LC 13) Max Uplift 2=-244(LC 8), 4=-244(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-902/994, 3-4=-902/994

BOT CHORD 2-6=-877/826, 4-6=-877/826 3-6=-334/267 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=244. 4=244.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LUMBER-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 9=160, 7=153.

8) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever right exposed ; end vertical right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=108.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

	·					19-11-0						
late Offset	s (X,Y)	[6:0-3-0,Edge]										
DADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL :	20.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	0.00	<u>11</u>	n/r	120	MT20	244/190
DL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	0.01	11	n/r	120		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	10	n/a	n/a		
CDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 109 lb	FT = 20%
LUMBER-						BRACING-	BRACING-					
OP CHOR	D 2x6 S	P No.2				TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0 c	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 2=-85(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 15, 16, 13, 10 except 18=-142(LC 12), 12=-141(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 15, 16, 14, 13, 10 except 18=402(LC 1), 12=402(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-18=-299/217, 9-12=-299/217 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 16, 13, 10 except (jt=lb) 18=142, 12=141.

	9-11-8 9-11-8											
Plate Off	sets (X,Y)	[6:0-4-0,0-3-0]		-								
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.13	6-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.28	6-12	>844	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-AS	Wind(LL)	0.11	6-9	>999	240	Weight: 91 lb	FT = 20%
LUMBER	2-					BRACING-						

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=836/0-5-8, 4=836/0-5-8 Max Horz 2=-85(LC 13)

Max Uplift 2=-164(LC 12), 4=-164(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1235/403, 3-4=-1235/403 TOP CHORD

BOT CHORD 2-6=-241/1080, 4-6=-241/1080

WEBS 3-6=0/404

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=164. 4=164.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

	9-11-8		<u> </u>								
Plate Offsets (X,Y)	[2:0-8-0,0-0-11], [6:0-8-0,0-0-11], [8:0-5-	0,0-4-8]			0110						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.81 BC 0.46 WB 0.28 Matrix-MS	DEFL. in Vert(LL) -0.12 Vert(CT) -0.24 Horz(CT) 0.02 Wind(LL) 0.15	(loc) l/defl 8 >999 8-11 >999 6 n/a 8 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%				
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max He Max U	No.2 No.2 No.2) 2=883/0-5-8, 6=882/0-5-8 prz 2=-38(LC 32) Diff 2=-290(LC 4), 6=-288(LC 5)		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dir	sheathing dire (2-11-6 max.): ectly applied or	ctly applied or 4-7-2 c 3-5. 10-0-0 oc bracing.	oc purlins, except				
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-3=-1559/603, 3-4=-2488/891, 4-5=-2488/891, 5-6=-1558/600 3OT CHORD 2-8=-515/1420, 6-8=-508/1420 WEBS 3-8=-337/1146, 4-8=-409/263, 5-8=-340/1149											
 WEBS 3-8=-337/1146, 4-8=-409/263, 5-8=-340/1149 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=290, 6=288. 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 10) This manufactured truss is designed as an individual building component. The suitability and use of this component for any. 											
particular building is	s the responsibility of the building design	her per ANSI TPI 1 as refe	renced by the building c	code.		Quint	SEAL				
Uniform Loads (plf)	aranced): Lumber Increase=1.15, Plate	ncrease=1.15					45844				

Vert: 1-3=-60, 3-5=-60, 5-7=-60, 9-12=-20 Concentrated Loads (lb)

Vert: 8=-4(B) 19=-18(B) 20=-4(B) 21=-4(B) 22=-4(B) 23=-4(B) 24=-4(B) 25=-4(B) 26=-18(B)

818 Soundside Road Edenton, NC 27932

L	9-11-8				19-11-0					
	9-11-8		I		9-11-8					
Plate Offsets (X,Y)	[3:0-3-0,0-2-4], [4:0-3-0,0-2-4], [5:0-3-10	,Edge], [7:0-4-0,0-3-0]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.82 WB 0.10 Matrix-AS	DEFL. in Vert(LL) -0.13 Vert(CT) -0.27 Horz(CT) 0.03 Wind(LL) 0.06	n (loc) l/defl 3 7-13 >999 7 7-10 >872 3 5 n/a 5 7-10 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x6 SF 3-4: 2x BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2 *Except* 4 SP No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing dired (4-10-0 max.): ectly applied.	ctly applied, except 3-4.				
REACTIONS. (Ib/size) 2=836/0-5-8, 5=836/0-5-8 Max Horz 2=-63(LC 17) Max Uplift 2=-136(LC 8), 5=-136(LC 9)										
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-7=- WEBS 3-7=-	Comp./Max. Ten All forces 250 (lb) or 1326/427, 3-4=-1270/395, 4-5=-1326/42 -285/1174, 5-7=-286/1174 0/271, 4-7=0/271	less except when shown. 7								
 NOTES- (9) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=136, 5=136. 										

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 5=11/5-5-8, 2=154/5-5-8, 6=326/5-5-8 Max Horz 2=99(LC 11) Max Uplift 5=-8(LC 11), 2=-38(LC 8), 6=-104(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2 except (jt=lb) 6=104.

7) Non Standard bearing condition. Review required.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.32 WB 0.00 Matrix-AS	DEFL. in (loc) Vert(LL) 0.09 4-8 Vert(CT) -0.07 4-8 Horz(CT) -0.00 2	i) l/defl L/d 8 >776 240 8 >999 240 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 21 lb FT = 20%
LUMBER-			BRACING-		

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=290/0-3-0, 4=200/0-1-8 Max Horz 2=94(LC 8) Max Uplift 2=-141(LC 8), 4=-120(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=141. 4=120.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

<u>| 0-6-8</u> | 0-6-8 5-10-8 5-4-0 LOADING (psf) SPACING-2-0-0 DEFL. PLATES GRIP CSI. in (loc) I/defl L/d Plate Grip DOL Vert(LL) -0.05 244/190 TCLL 20.0 1.15 тс 0.49 5-9 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.70 Vert(CT) -0.09 >725 240 5-9 BCLL 0.0 Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 5 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP Wind(LL) 0.06 5-9 >999 240 Weight: 26 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2x4 SP No.2 TOP CHORD 2x6 SP No.2 BOT CHORD WEBS 2x4 SP No.2

REACTIONS. (lb/size) 5=848/Mechanical, 2=630/0-3-0 Max Horz 2=96(LC 19) Max Uplift 5=-275(LC 4), 2=-217(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(9)

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=275, 2=217.

6) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 5-8-12 to connect truss(es) to front face of bottom chord.

- Fill all nail holes where hanger is in contact with lumber.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 2-5=-20

Concentrated Loads (Ib)

Vert: 5=-337(F) 10=-326(F) 11=-328(F)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPRETED FACE PAGE MIT-14/3 refer to 100 Sec. Design valid for use only with MTRK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

			2-11-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.47 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl Vert(LL) -0.02 4-7 >999 Vert(CT) -0.03 4-7 >999 Horz(CT) 0.00 2 n/a Wind(LL) 0.03 4-7 >999	L/d PLATES GRIP 360 MT20 244/19 240 n/a 240 Weight: 14 lb FT	0 = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 2x4 SP No.2 BOT CHORD

REACTIONS. (lb/size) 2=156/0-3-8, 4=116/Mechanical Max Horz 2=51(LC 8) Max Uplift 2=-48(LC 8), 4=-40(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-11-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

	0-6-8		6-5-0 5-10-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.38 WB 0.00 Matrix-AS	DEFL. in (l Vert(LL) 0.12 Vert(CT) -0.09 Vert(CT) -0.00 Horz(CT) -0.00	loc) I/defl L/d 4-8 >615 240 4-8 >801 240 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

- REACTIONS. (Ib/size) 2=307/0-3-0, 4=218/0-1-8 Max Horz 2=100(LC 8) Max Uplift 2=-148(LC 8), 4=-130(LC 8)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES- (8

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=148. 4=130.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

LUMBER-

		0-	0-0			5-9-0							
Plate Offsets (X,Y) [2:0-9-0,0-1-3], [2:0-0-0,0-0-8]													
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.06	5-9	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.83	Vert(CT)	-0.12	5-9	>590	240			
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	5	n/a	n/a			
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-MP	Wind(LL)	0.08	5-9	>939	240	Weight: 28 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

 WEBS
 2X4 SP No.2

 REACTIONS.
 (lb/size)
 5=841/Mechanical, 2=670/0-3-0

Max Horz 2=103(LC 19) Max Uplift 5=-279(LC 4), 2=-230(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=279, 2=230.
- 6) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-1-0 oc max. starting at 2-0-12 from the left end to 6-1-12 to connect truss(es) to front face of bottom chord.
- 7) Fill all nail holes where hanger is in contact with lumber.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)
- 9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb)

Vert: 5=-337(F) 10=-326(F) 11=-328(F)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 9-6-6 oc bracing.

except end verticals.

			 	<u>5-10-12</u> 5-10-12					
Plate Offsets (X,Y)	[2:0-0-7,0-0-11], [2:0-0-1	5,0-4-14]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP	

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) 0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.16	Vert(CT) -0.03	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS					Weight: 34 lb	FT = 20%
LUMBER	-			BRACING-					

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE Left: 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

4

REACTIONS. (lb/size) 3=155/Mechanical, 2=279/0-5-8, 4=75/Mechanical Max Horz 2=191(LC 12) Max Uplift 3=-130(LC 12), 2=-9(LC 12) Max Grav 3=175(LC 19), 2=279(LC 1), 4=108(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

5x6 ||

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 3 = 130
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			5-10-12
Plate Offsets (X,Y)-	- [2:0-0-7,0-0-11], [2:0-0-15,0-4-14]		
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.15 BC 0.20	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) 0.03 6 >999 240 MT20 244/190 Vert(CT) -0.04 6 >999 240 MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.03 Matrix-AS	Horz(CT) 0.01 4 n/a n/a Weight: 36 lb FT = 20%
LUMBER-	SP No 2		BRACING-

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=134/Mechanical, 2=279/0-5-8, 5=97/Mechanical Max Horz 2=191(LC 12) Max Uplift 4=-100(LC 12), 2=-9(LC 12), 5=-30(LC 12) Max Grav 4=150(LC 19), 2=279(LC 1), 5=105(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		3-9-9		2-	1-3				
Plate Offsets (X,Y)	[2:0-3-0,0-0-2], [4:0-3-12,0-2-0]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.28 WB 0.05 Matrix-AS	DEFL. Vert(LL) -0.1 Vert(CT) -0.1 Horz(CT) 0.1 Wind(LL) 0.1	in (loc) 02 7-10 04 7-10 04 5 03 7-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-				0		

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied.

TOP CHORD	2x6 SP No.2 *Except*
	4-5: 2x4 SP No.2
BOT CHORD	2x6 SP No.2

 BOT CHORD
 2x8 SP N0.2

 WEBS
 2x4 SP N0.3

 SLIDER
 Left 2x4 SP N0.3 1-9-13

REACTIONS. (lb/size) 5=61/Mechanical, 2=286/0-5-8, 6=158/Mechanical Max Horz 2=136(LC 12) Max Uplift 5=-33(LC 8), 2=-39(LC 12), 6=-47(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	L	2-3-9	5-10-12
		2-3-9	3-7-3
Plate Offsets (X,Y)-	[2:0-0-15,0-4-14], [2:0-0-7,0-0-11], [3:	0-3-12,0-2-0]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	BC 0.24 WB 0.05	Vert(LL) -0.02 6 >999 360 M120 244/190 Vert(CT) -0.05 5-6 >999 240 Horz(CT) 0.05 4 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.03 6 >999 240 Weight: 32 lb FT = 20%
LUMBER- TOP CHORD 2x6	SP No.2 *Except*		BRACING- TOP CHORD Structural wood sheathing directly applied, except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied.

 TOP CHORD
 2x6 SP No.2 *Except* 3-4: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 X4

Left: 2x4 SP No.3

REACTIONS. (Ib/size) 4=106/Mechanical, 2=279/0-5-8, 5=125/Mechanical Max Horz 2=92(LC 12) Max Uplift 4=-57(LC 8), 2=-43(LC 12), 5=-4(LC 12) Max Grav 4=106(LC 1), 2=279(LC 1), 5=139(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			5-10-12						
		5-10-12							
Plate Offsets (X,Y)	[2:0-0-15,0-4-14], [2:0-0-7,0-0-11], [3:0-3	-12,0-2-0]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.55 BC 0.13 WB 0.08 Motrix MB	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0 Wind(L) 0.0	n (loc) 1 5-8 1 5-8 0 2	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20	GRIP 244/190		
DODE 10.0	Code 11(C2013/1112014	Mau 12-1011		0 5-0	2333 240	Weight. 55 lb	11 = 2078		
LUMBER- TOP CHORD 2x6 SI 3-4: 2:	P No.2 *Except* x4 SP No.2		BRACING- TOP CHORD	Structu	ural wood sheathing d t end verticals, and 2-(lirectly applied or 5-10- 0-0 oc purlins: 3-4.	12 oc purlins,		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 3-4: 2x4 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.2

REACTIONS. (Ib/size) 5=230/Mechanical, 2=278/0-5-8

Max Horz 2=48(LC 8) Max Uplift 5=-69(LC 5), 2=-56(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 11=-2(B) 12=-2(B)

	I-4-12							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vort(U) 0.00 7 0.00 260 MT20 244(400					
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 7 >999 360 MT20 244/190 Vert(CT) -0.00 7 >999 240					
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a Wind(L) 0.00 7 -000 240 Weight: 40 lb ET - 20%					
BCDL 10.0	Code IRC2015/1912014	IVIAUIX-IVIP	Wind(LL) 0.00 / >333 240 Weight: 1010 FT = 20%					

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=29/Mechanical, 2=109/0-5-8, 4=15/Mechanical Max Horz 2=44(LC 12) Max Uplift 3=-23(LC 12), 2=-23(LC 12), 4=-1(LC 12) Max Grav 3=29(LC 1), 2=109(LC 1), 4=24(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (6)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 1-4-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

Max Grav 4=252(LC 19), 2=276(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7)

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=128.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x6 SP No.2 2x6 SP No.2 BOT CHORD

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 3=48/Mechanical, 2=131/0-5-8, 4=24/Mechanical (lb/size) Max Horz 2=77(LC 12) Max Uplift 3=-43(LC 12), 2=-14(LC 12), 4=-2(LC 12) Max Grav 3=55(LC 19), 2=131(LC 1), 4=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-(6)

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 6) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1 1010 01												
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	-0.00	8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.00	8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2	2014	Matrix	-MP	Wind(LL)	0.00	8	>999	240	Weight: 12 lb	FT = 20%
	R-			•		BRACING						

LUMBE	२-	BRACING-	
TOP CH	ORD 2x6 SP No.2 *Except*	TOP CHORD Stru	uctural wood sheathing directly applied or 2-0-0 oc purlins, except
	3-4: 2x4 SP No.2	2-0-	-0 oc purlins: 3-4.
BOT CH	ORD 2x6 SP No.2	BOT CHORD Rigi	id ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=33/Mechanical, 2=131/0-5-8, 5=38/Mechanical Max Horz 2=50(LC 12) Max Uplift 4=-18(LC 8), 2=-26(LC 12), 5=-5(LC 12) Max Grav 4=33(LC 1), 2=131(LC 1), 5=46(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	0-0-0	2-0-0	
	0-6-8	1-5-8	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15	CSI. TC 0.03	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 5 >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014	BC 0.03 WB 0.00 Matrix-MP	Vert(CT) -0.00 5 >999 240 Horz(CT) -0.00 3 n/a n/a Wind(LL) 0.00 9 >999 240	Weight: 7 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=29/Mechanical, 4=10/Mechanical, 2=143/0-3-0 Max Horz 2=37(LC 8) Max Uplift 3=-20(LC 12), 4=-7(LC 9), 2=-76(LC 8) Max Grav 3=29(LC 1), 4=22(LC 3), 2=143(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-6-8			5-2	2-8			
0-6-8	0-6-8 4-8-0						
Plate Offsets (X,Y) [2:0-1-12,0-0-6], [2:0-0-	13,1-0-3]						
LOADING (psf) SPACING- TCLL 20.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 * Rep Stress Incr BCDL 10.0 Code IRC2015/	2-0-0 1.15 1.15 NO TPI2014	CSI. TC 0.24 BC 0.16 WB 0.05 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.01 5-10 -0.01 5-10 0.00 5 0.01 5-10	l/defl >999 3 >999 2 n/a >999 2	L/d PLATES 360 MT20 240 n/a 240 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-2-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2

REACTIONS. (lb/size) 5=174/Mechanical, 2=252/0-3-0 Max Horz 2=35(LC 4) Max Uplift 5=-93(LC 4), 2=-131(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=131.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 11 lb down and 15 lb up at 1-8-11, and 11 lb down and 15 lb up at 3-10-12 on top chord, and 1 lb down and 14 lb up at 1-10-12, and 1 lb down and 14 lb up at 3-10-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-20 Concentrated Loads (lb) Vert: 12=1(F) 13=1(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO AMITEK Attiliate 818 Soundside Road

Edenton, NC 27932

0-6-8				<u> </u>									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.09 0.08 0.04 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.00	(loc) 5-9 5-9 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%		

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied.

REACTIONS. (Ib/size) 5=167/Mechanical, 2=260/0-3-0 Max Horz 2=64(LC 12) Max Uplift 5=-92(LC 8), 2=-126(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=126.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

		F	0-6-8 0-6-8			<u>5-0-0</u> 4-5-8						
Plate Off	sets (X,Y)	[2:0-1-12,0-0-2], [2:0-0-1	3,1-0-3], [4:Eo	dge,0-1-14]		1					-	
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	0.05	4-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.03	4-9	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-AS						Weight: 20 lb	FT = 20%
	2-					BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=245/0-3-0, 4=166/0-1-8 Max Horz 2=86(LC 12) Max Uplift 2=-109(LC 8), 4=-97(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=109.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-6-8		5-10-8 5-4-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.39 BC 0.41 WB 0.00 Matrix-MP	DEFL. in (loc) l/def Vert(LL) 0.05 5-9 >999 Vert(CT) -0.06 5-9 >999 Horz(CT) 0.00 5 n/a	l L/d 9 240 9 240 a n/a	PLATES GRIP MT20 244/190 Weight: 26 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=342/Mechanical, 2=445/0-3-0 Max Horz 2=96(LC 19) Max Uplift 5=-205(LC 4), 2=-227(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

5=205, 2=227.

6) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb)

Vert: 10=-154(B) 11=-147(B)

