Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett		
J0818-3696	A1-GE	GABLE	1	1	Job Reference (optional)		
Comtech, Inc., Fayetteville, NC	28309, Anthony Williams		Run: 8.120 s Jun 2 ID:sLCkSalhyH	7 2017 Print S8R5NWL	:8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:24 2019 Page 1 OpYuoz4oz2-Alk6?HzPS4HA5Ee76zcLri4wGU7wrAoTXk5NKQzIGsv		
- <u>1-3-0</u> 1-3-0	<u>14-11-8</u> 14-11-8		24-11-8		<u>40-7-0</u> <u>15-7-8</u> <u>1-3-0</u>		
					Scale - 1:80.2		
		6x8 =		6x8 =	- 1.00.2		
		9.00 12 11 12 13	14 15 16 অ T3 অ অ	17 18			
ĪĪ					9		
	4x8 🖉	J2 a		R T2			
		9			20 4x8 ₿ 21		
	7				22		
8-1 11	6	° C3 C3 C2	G 3 G 3 G 3 G	4 05			
13-13-	5	G1 ST7 ST8 ST6	ST8 ST8 ST8 S	T7 ST6			
5x5 🖉	4 T 8 S	ST5 T4			ST5 ST4 8 74 25		
	3 ST1 ST3				ST3 ST2 ST926		
					ST1 8 27		
4x12	49 48 47	46 45 44 43 41	40 39 38	36 35	34 33 32 31 30 29 4x12		
		42 4x8 =	4x8	s =			
F			<u>40-7-0</u> 40-7-0				
Plate Offsets (X,Y) [11	:0-1-12,0-1-5], [12:0-4-0,0-0	-7], [17:0-4-0,0-0-7], [18:0-1-12	2,0-1-5], [27:Edge,0-0-7	7], [27:0-0-	5,0-3-9], [27:0-0-3,0-0-4], [37:0-3-8,0-2-0]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	l (loc) l	/defi L/d PLATES GRIP		
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00	27	n/r 120 M120 244/190		
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.17 Matrix-S	Horz(CT) 0.01	27	n/a n/a Weight: 447 lb FT = 20%		
					v		
TOP CHORD 2x6 SP No	p.1		TOP CHORD	Structura	al wood sheathing directly applied or 6-0-0 oc purlins, except		
OTHERS 2x4 SP No	o.1 o.3 *Except*		BOT CHORD	2-0-0 oc Rigid cei	purlins (6-0-0 max.): 12-17. ling directly applied or 10-0-0 oc bracing.		
ST7,ST8,S	ST6: 2x4 SP No.2		WEBS	T-Brace:	2x4 SPF No.2 - 18-36, 16-38, 15-39, 14-40, 13-41 11-43 10-44 9-45 19-35 20-34		
Right: 2x4 SP No.3				Fasten (2	2X) T and I braces to narrow edge of web with 10d (0.131"x3")		
SLIDER LEIL 2X8 S	P NO.1 2-0-8			Brace m	ust cover 90% of web length.		
				MiTek i	recommends that Stabilizers and required cross bracing		
				Installa	tion guide.		
(Ib) - Max Horz	ngs 40-7-0. .2=-376(LC 8)						
Max Uplif	t All uplift 100 lb or less at j	oint(s) 27, 38, 39, 40, 41, 43, 4	14, 46, 48, 35, 3(I C 12) 49–-284(I C 1	2)			
Mar O	34=-108(LC 13), 30=-103(L	.C 13), 29=-156(LC 13)	AL 40 44 45	<i>_</i>),			
Max Grav	46, 47, 48, 35, 34, 33, 32, 3	s at joint(s) 27, 36, 38, 39, 40, 4 31, 30, 29 except 2=321(LC 20	41, 43, 44, 45,), 49=319(LC 19)				
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	50 (lb) or less except when sh	iown.				
TOP CHORD 2-3=-357	7/288, 3-4=-341/307, 7-8=-2	13/254, 8-9=-201/267, 9-10=-2	288/321, 10-11=-337/38	81,			
16-17=-3	301/346, 17-18=-279/319, 1	8-19=-337/381, 19-20=-288/31	7, 26-27=-326/202				
BOT CHORD 2-49=-160/280, 48-49=-160/280, 47-48=-160/280, 46-47=-160/280, 45-46=-160/280, 44-45=-160/280, 43-44=-160/280, 42-43=-160/280, 41-42=-160/280, 40-41=-160/280,							
39-40=- ⁻ 34-35=	160/280, 38-39=-160/280, 3	7-38=-160/280, 36-37=-160/28	80, 35-36=-160/280, 80, 30-31160/280				
29-30=- ⁻	160/280, 27-29=-160/280	2 00= 100/200, 01 02= 100/20	, 00 01= 100/200,				
VVEDO 4-49=-2	12/203						
NOTES- 1) Unbalanced roof live le	oads have been considered	for this design.					
2) Wind: ASCE 7-10; Vul	t=130mph (3-second gust)	Vasd=103mph; TCDL=6.0psf;	BCDL=6.0psf; h=15ft; (Cat. II; Exp	C; enclosed; MWFRS		
plate grip DOL=1.60							
 Iruss designed for wi Gable End Details as 	nd loads in the plane of the applicable, or consult qualifi	truss only. For studs exposed ed building designer as per AN	to wind (normal to the NSI/TPI 1.	tace), see	Standard Industry		
4) Provide adequate drai	nage to prevent water pond	ing.					
6) Gable requires continu	uous bottom chord bearing.	<u></u>					
 able studs spaced at 8) This truss has been de 	ι ∠-υ-υ οc. esigned for a 10.0 psf bottor	n chord live load nonconcurrer	nt with any other live loa	ads.			
Commueu on paye 2							

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett
J0818-3696	A1-GE	GABLE	1	1	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 2	Run: 8	120 s Jun 2 CkSalhvH	7 2017 Prin S8R5NWI	: 8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:25 2019 Page 2 OpYuoz4oz2-el JII JDd 1 DNQ1iOD Job7aOwd52uT9ad2clOgwstzIGsu	

NOTES-

9)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

(it=b) 2=160,051.
(it=b) 2=161, 45=107, 47=103, 49=284, 34=108, 30=103, 29=156.
This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
(it=b) 2=161, 45=107, 47=103, 49=284, 34=108, 30=103, 29=156.
(it=b) 2=161, 45=107, 47=103, 49=284, 48=108, 30=103, 29=156.
(it=b) 2=161, 45=107, 47=103, 49=284, 48=108, 30=103, 29=156.
(it=b) 2=161, 45=107, 47=103, 49=284, 48=108, 30=103, 29=168, 48=10

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-8 to 3-3-5, Interior(1) 3-3-5 to 15-0-6, Exterior(2) 15-0-6 to 31-1-4, Interior(1) 31-1-4 to 41-8-8 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb)

2=108.7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett	
J0818-3696	A4	PIGGYBACK BASE	2	1	Job Reference (optional)	
Comtech, Inc., Fayetteville, NC 28309, Anthony Williams			un: 8.120 s Jun 27 ID:sLCkSalhyHS	2017 Print 88R5NWL	8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:28 2019 Page 2 OpYuoz4oz2-33zcrf0wWlocarxuLphH?YFW16NCnoS2RM3bTCzIGsr	

NOTES-9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=624.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

REACTIONS. (lb/size) 10=852/0-5-8 (min. 0-1-8), 2=-373/0-3-0 (min. 0-1-8), 16=2463/0-3-8 (min. 0-2-14) Max Horz 2=352(LC 9) Max Uplift10=-178(LC 13), 2=-624(LC 24), 16=-220(LC 12)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-112/1149, 3-4=-80/1204, 4-5=0/1032, 5-6=0/1098, 6-7=-472/388, 7-8=-476/387, 8-9=-2321/634, 9-10=-2688/840
- BOT CHORD 2-47=-857/210, 47-48=-857/210, 16-48=-857/210, 7-12=-347/207, 11-12=-227/903, 10-11=-633/2307
- WEBS 4-16=-768/531, 12-16=-272/185, 6-12=-116/835, 8-12=-734/65, 8-11=-284/1899, 9-11=-423/418, 6-16=-1785/94

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=178 2=624, 16=220.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett
J0818-3696	A6-GE	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Anthony Williams		Run: 8.120 s Jun 27	2017 Print	: 8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:30 2019 Page 2	
			ID:sLCkSalhyH	S8R5NW	LOpYuoz4oz2-?S5NGL1A2w2Kp95HTEjl5zKp8v4gFj_LvgYhX4zlGsp

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harne	ett		
J0818-3696	B1	ROOF SPECIAL	3	1				
Comtech, Inc., Fayetteville,	NC 28309, Anthony Williams		Run: 8.120 s Jun 2	27 2017 Prir	Job Reference (optional) It: 8.120 s Jun 27 2017 M	onal) liTek Industries, Inc. Thu May 9 10:29:30 2019 Page 1		
·····, · · , ·· · ,	120	9 5 9 14 1	ID:sLCkSalhyH	S8R5NWL	OpYuoz4oz2-?S5NGL	L1A2w2Kp95HTEjl5zKwDv3oFhOLvgYhX4zlGsp		
	1-3-0	8-5-8 6-5	-0	9-0-12 4-2-4	6-2-4			
						Soolo 1:71 1		
			5x8 =			Scale = 1./1.1		
		9.00 12	6					
	Ī							
		4x6 🖉	J2///	$\langle \rangle$	2x4 =			
			// W5		7			
		2x4 5	// _/	W6	<u>∎ \73</u>	Ţ		
		4 W	4	9				
	1-12		ВЗ	5v8	B4	Q.		
	12-1	3x6 1/2	/	570 11		8 4		
		3 71						
		W3 W3						
		105x8 =	6.00 12			4x6 <> ♀		
		W1 W2				3-10		
						1		
	3x10	13 12						
		$3x6 = 2x4 \parallel$						
	<u> </u>	8-5-8 8-9-0	16-9-4	+	25-3-0			
Plate Offsets (X,Y)	[2:0-0-5.0-3-9]. [2:0-0-3.0-0-4].	<u>8-5-8</u> [6:0-3-4.0-1-12]. [10:0-2-12.0-2-8]	8-0-4	· · · · · · · · · · · · · · · · · · ·	8-5-12	·		
	,							
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1.15	CSI. TC 0.25	DEFL. in	1 (loc) 1 9-10	I/defl L/d	PLATES GRIP MT20 244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.46	Vert(CT) -0.3	1 9-10	>953 240	NH20 244/130		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.99	Horz(CT) 0.3	1 8	n/a n/a			
BCDL 10.0	Code IRC2015/1PI2014	Matrix-S	Wind(LL) 0.1	1 9-10	>999 240	Weight: 195 lb F1 = 20%		
LUMBER-			BRACING-					
TOP CHORD 2x6 SP	' No.1 ' No.1 *Excent*		TOP CHORD	Structur Bigid co	al wood sheathing c	directly applied or 4-1-0 oc purlins.		
B01 0110110 2x0 01 B2: 2x4	4 SP No.3		BOT ONOTID	6-0-0 0	6-0-0 oc bracing: 12-13.			
WEBS 2x4 SP	' No.3			10-0-0	oc bracing: 10-12			
Left: 2x4 SP No.3				MiTek	recommends that S	Stabilizers and required cross bracing		
				Install	ation quide.	rection, in accordance with Stabilizer		
REACTIONS. (lb/size			0					
Max H Max II								
FORCES. (lb) - Max.	FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.							
6-15=	6-15=-2486/724, 6-7=-2939/448, 7-16=-3108/601, 8-16=-3252/579							
BOT CHORD 2-13=	-222/1019, 4-10=-439/284, 9-1	0=-49/1518, 8-9=-423/2793	04/004					
WEBS 6-10= 10-13	509/1210, 6-9=-148/2315, 7-9 3=-285/1363	=-286/280, 3-13=-834/245, 3-10=-1	31/921,					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-8 to 3-3-5, Interior(1) 3-3-5 to 14-10-8, Exterior(2) 14-10-8 to 19-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett
.0818-3696	D1-GE	GABI F	1	1	
Comtach Ing. Equationilla	NC 28200 Anthony Williams			7 0017 Prin	Job Reference (optional)
Contech, Inc., Fayetteville,	, NO 20309, Antinony Williams		ID:sLCkSalhyHS	88R5NWL	OpYuoz4oz2-qcSeWO6xdmoTX4ZRpVq9KEazLKDRfbaEHc?0lkzlGsj
	- <u>1-3-</u> 1-3-0) <u>12-3-8</u> 12-3-8		<u>24-7-0</u> 12-3-8	
					Scolo 1:01.0
			5x5 ≡		Scale = 1.01.9
		12 00 12	9		
	ĪĪ	12.00 12	Å		
	8-11-2:E1 4x4 // 4x4 // 4x4 // 4x4 // 3x	8x8 / 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	24 8.00 12	8x8 \ 11 11 11 11 11 12 12 14x6 =	2 ST10 13 19 B3 15 16 17 17 10 15 16 17 17 10 15 16 17 17 10
			6x6 =		
		<u> </u>	17-3-4 7-0-4	-	24-7-0 7-3-12
Plate Offsets (X,Y)	[2:0-7-6,0-0-3], [7:0-4-0,0-4-8]	, [11:0-4-0,0-4-8], [16:0-3-15,0	-1-8], [24:0-3-0,0-2-0]		T
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1	0 CSI. 5 TC 0.08 5 BC 0.06	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00	(loc) 1 1	I/defl L/d PLATES GRIP n/r 120 MT20 244/190 n/r 120 r/a 244/190
BCDL 10.0	Code IRC2015/TPI201	4 Matrix-S	Horz(CT) 0.01	16	Weight: 256 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF	P No.1		BRACING- TOP CHORD	Structu	ral wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD 2x6 SF	P No.1		BOT CHORD	Rigid ce	eiling directly applied or 10-0-0 oc bracing.
ST6,S	T5: 2x4 SP No.2		WED3	Fasten	(2X) T and I braces to narrow edge of web with 10d (0.131"x3")
SLIDER Left 2x	6 SP No.1 1-9-1, Right 2x6 S	P No.1 2-2-4		nails, 6i	in o.c., with 3in minimum end distance.
				MiTek	nust cover 90% of web length.
				be ins	talled during truss erection, in accordance with Stabilizer
BEACTIONS. All be	earings 24-7-0			Install	ation guide.
(lb) - Max H	lorz 2=399(LC 9)				
Max L	Jplift All uplift 100 lb or less at 20=-196(I C 11) 24=-221	joint(s) 16, 23, 22 except 2=-1 I C 13)_25=-157(I C 12)_26=-1	99(LC 10), I45(I C 12)_27=-102(I C	12)	
	28=-335(LC 12), 21=-160	LC 13), 19=-140(LC 13), 18=-1	101(LC 13), 17=-366(LC	13)	
Max G	arav All reactions 250 lb or le: 2=399(LC 12), 20=447(LC	ss at joint(s) 16, 24, 27, 22, 21, ; 13), 23=351(LC 13), 25=256()	19, 18 except LC 19), 26=255(LC 19),		
	28=276(LC 19), 17=274(L	C 20)	,(,,		
FORCES. (Ib) - Max.	. Comp./Max. Ten All forces	250 (lb) or less except when sl	hown.		
TOP CHORD 2-3=	-523/332, 3-4=-513/352, 4-5=- 1245/254, 14-15459/289	285/240, 7-8=-242/287, 8-9=-3 15-16482/283	00/328, 9-10=-299/327,		
BOT CHORD 2-28:	=-217/342, 27-28=-219/342, 2	6-27=-219/343, 25-26=-220/34	3, 24-25=-221/343,		
23-24	4=-276/421, 22-23=-276/419, 9273/415, 17-18275/420	21-22=-276/419, 20-21=-269/4 16-17254/395	08, 19-20=-269/409,		
WEBS 9-23	=-337/252, 4-28=-291/314, 14	17=-310/350			
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; (envelope) gable e plate grip DOL=1.6 3) Truss designed fo Gable End Details 4) All plates are 2x4 M 5) Gable requires cor 6) Gable studs space 7) This truss has bee 8) * This truss has bee bottom chord and a 9) Provide mechanica (jt=lb) 2=199, 20=1 10) Beveled plate or Continued on page 2	ve loads have been considere Vult=130mph (3-second gust ind zone and C-C Exterior(2) z 30 r wind loads in the plane of th as applicable, or consult qual MT20 unless otherwise indicat titinuous bottom chord bearing d at 2-0-0 oc. n designed for a 10.0 psf botto en designed for a live load of any other members, with BCD al connection (by others) of tru 96, 24=221, 25=157, 26=145 shim required to provide full bo	d for this design. Vasd=103mph; TCDL=6.0psf; one;C-C for members and forc a truss only. For studs exposed fied building designer as per A ed. m chord live load nonconcurre 20.0psf on the bottom chord in _ = 10.0psf. ss to bearing plate capable of 27=102, 28=335, 21=160, 19- paring surface with truss chord	BCDL=6.0psf; h=15ft; C es & MWFRS for reaction d to wind (normal to the f NSI/TPI 1. ent with any other live loa all areas with a clearand withstanding 100 lb upliff =140, 18=101, 17=366. at joint(s) 20, 23, 22, 21	Cat. II; Ex ns show face), see ds. e greate at joint(s , 19, 18,	xp C; enclosed; MWFRS n; Lumber DOL=1.60 e Standard Industry er than 6-0-0 between the s) 16, 23, 22 except 17.

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett	
J0818-3696	D1-GE	GABLE	1	1	lah Defensera (antional)	
					Job Reference (optional)	
Comtech, Inc., Favetteville, NC 28309, Anthony Williams		R	Run: 8.120 s Jun 27 2017 Print: 8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:36 2019 Page			
			ID:sLCkSalhyHS	8R5NWL	DpYuoz4oz2-qcSeWO6xdmoTX4ZRpVq9KEazLKDRfbaEHc?0lkzlGsj	

NOTES-11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the

bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=212 10=206

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

bottom chord and any other members, with BCDL = 10.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb)

2=240, 11=198.6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (jt=lb) 2=242, 10=202.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Rice Residence / Harnett
J0818-3696	D6	ROOF SPECIAL	1	2	Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Anthony Williams			Run: 8.120 s Jun 2 ID:sLCkSalhy	7 2017 Prin HS8R5N	: 8.120 s Jun 27 2017 MiTek Industries, Inc. Thu May 9 10:29:40 2019 Page 2 WLOpYuoz4oz2-iNi9Ml9Rh_Iv0hsC2Kv5V4IaSxM1bPJpCEzDuVzIGsf

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=101, 6=101.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Bearing at joint(s) 6, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=101. 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members. 5) Bearing at joint(s) 6, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity

of bearing surface

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-5 to 3-4-8, Interior(1) 3-4-8 to 9-11-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=101, 7=144.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 2, 6 except 10=-119(LC 12), 8=-119(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6 except (jt=lb) 10=119, 8=119.

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Uplift2=-38(LC 12), 4=-46(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-15 to 4-7-11, Interior(1) 4-7-11 to 5-0-0, Exterior(2) 5-0-0 to 9-3-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Grav 2=143(LC 1), 4=143(LC 1), 6=150(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Grav 2=143(LC 1), 4=143(LC 1), 6=150(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

¹⁾ Unbalanced roof live loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 14=125, 15=159, 11=125, 10=159.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=-350/249, 2-13=-310/227, 5-10=-350/249, 6-8=-310/227

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 11-5-5, Exterior(2) 11-5-5 to 15-10-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=138, 13=119, 10=137, 8=119.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-12=-357/254, 2-13=-273/218, 5-10=-357/254, 6-8=-273/218

NOTES-

(a) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 9-7-12, Exterior(2) 9-7-12 to 14-0-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 13 except (jt=lb) 12=141, 10=141, 8=100.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

WEBS 2-8=-355/254, 4-6=-355/254

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-10-2, Exterior(2) 7-10-2 to 12-2-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=142, 6=142.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-0-9, Exterior(2) 6-0-9 to 10-5-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 23, 27, 21, 17, 15 except (jt=lb) 24=121, 25=108, 26=115, 28=153, 20=128, 19=108, 18=115, 16=153.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10=426(LC 20), 8=338(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 3-12=-328/225, 2-13=-301/210, 5-10=-328/225, 6-8=-301/210

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-4 to 4-10-1, Interior(1) 4-10-1 to 11-8-3, Exterior(2) 11-8-3 to 16-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 12=119, 13=106, 10=118, 8=106.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-4 to 5-0-3, Interior(1) 5-0-3 to 9-0-3, Exterior(2) 9-0-3 to 13-5-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=143, 7=143.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-4 to 4-10-1, Interior(1) 4-10-1 to 6-4-3, Exterior(2) 6-4-3 to 10-9-0 zone;0-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (it=lb) 8=107, 6=107.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 26, 28, 29, 30, 17, 23, 21, 20, 19 except (jt=lb) 27=104, 31=108, 22=105, 18=108.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.