

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0318-0845 Engage A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E11515451 thru E11515464

My license renewal date for the state of North Carolina is December 31, 2018.

North Carolina COA: C-0844

March 5,2018

Lassiter, Frank

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

	37-0-0 37-0-0											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	-0.00	22	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	0.00	22	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.08	Horz(TL)	0.00	22	n/a	n/a		
BCDL	10.0	Code IRC2009/TP	12007	Matri	x-S						Weight: 230 lb	FT = 20%
						PRACING						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.3 OTHERS

REACTIONS. All bearings 37-0-0

(lb) - Max Horz 2=116(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 2, 34, 35, 37, 38, 39, 40, 41, 32, 30, 29, 28, 27, 26, 25, 24, 22 except 42=-101(LC 5) Max Grav All reactions 250 lb or less at joint(s) 2, 33, 34, 35, 37, 38, 39, 40, 41, 42, 32, 30, 29, 28, 27, 26, 25, 24, 22

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 10-11=-28/252, 11-12=-30/294, 12-13=-30/294, 13-14=-28/252

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 18-6-0, Corner(3) 18-6-0 to 22-10-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 34, 35, 37, 38, 39, 40, 41, 32, 30, 29, 28, 27, 26, 25, 24, 22 except (jt=lb) 42=101.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 22.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 5,2018

🔔 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	12-7-13		24-4-3					37-0-0				
	r	12-7-13	I	11-8-7					12-7-13	1			
Plate Offset	ts (X,Y)	[2:0-0-7,0-1-7], [8:0-0-7,0-1-7]											
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.46 BC 0.64 WB 0.40 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL) Wind(LL)	in -0.19 -0.56 0.12 0.14	(loc) 8-10 8-10 8 13	l/defl >999 >788 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 220 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHOR BOT CHOR WEBS	2x6 SP D 2x6 SP 2x6 SP 2x4 SP	No.1 No.1 No.3	· · · · ·	BRACING- TOP CHORI BOT CHORI	D D	Structu Rigid c	ural wood ceiling dir	sheathing di ectly applied	rectly applied or 3-7-8 or 8-2-4 oc bracing.	oc purlins.			
REACTION	I S. (Ib/size Max H Max U	e) 2=1516/0-3-8, 8=1516/0-3-8 orz 2=-93(LC 8) plift 2=-262(LC 5), 8=-262(LC 6)											
FORCES. TOP CHOR BOT CHOR	(lb) - Max. 2D 2-3=- 2D 2-13=	Comp./Max. Ten All forces 250 (Ib) o 3440/1063, 3-5=-3033/943, 5-7=-3033/ 910/3186, 10-13=-511/2147, 8-10=-91	r less except when shown. 943, 7-8=-3440/1062 1/3186										

WEBS 5-10=-192/971, 7-10=-611/395, 5-13=-192/971, 3-13=-611/395

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

-0-7-13 to 3-9-0, Interior(1) 3-9-0 to 18-6-0, Exterior(2) 18-6-0 to 22-10-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=262, 8=262.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. Warch 5,2010

12-7-13 11-8-7 12-7-13 2 Offsets (X,Y) [2:0-0-11,0-0-15] 12-7-13 DING (psf) SPACING- 2-1-8 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP L 20.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.61 9-12 >716 360 MT20 244/190 L 10.0 Lumber DOL 1.15 BC 0.62 Vert(TL) -0.87 9-12 >506 240 L 0.0 * Rep Stress Incr NO WB 0.64 Horz(TL) 0.13 8 n/a n/a	L	12-7-13		24-4-3		37-0-0				
≥ Offsets (X,Y) [2:0-0-11,0-0-15] DING (psf) SPACING- 2-1-8 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP L 20.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.61 9-12 >716 360 MT20 244/190 L 10.0 Lumber DOL 1.15 BC 0.62 Vert(TL) -0.87 9-12 >506 240 L 0.0 * Rep Stress Incr NO WB 0.64 Horz(TL) 0.13 8 n/a n/a	ļ	12-7-13	1	11-8-7				12-7-13		
DING (psf) SPACING- 2-1-8 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP L 20.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.61 9-12 >716 360 MT20 244/190 L 10.0 Lumber DOL 1.15 BC 0.62 Vert(TL) -0.87 9-12 >506 240 L 0.0 * Rep Stress Incr NO WB 0.64 Horz(TL) 0.13 8 n/a n/a	late Offsets (X,Y)	[2:0-0-11,0-0-15]								
1 10.0 Code IRC2009/TPI2007 Matrix-S Wind(LL) 0.14 9-12 >999 240 Weight: 236 lb ET = 20%	OADING (psf) CLL 20.0 CDL 10.0 CLL 0.0 CLL 10.0	SPACING- 2-1-8 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.84 BC 0.62 WB 0.64 Matrix-S	DEFL. Vert(LL) - Vert(TL) - Horz(TL) Wind(L)	in (loc) 0.61 9-12 0.87 9-12 0.13 8 0.14 9-12	l/defl >716 >506 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190 FT = 20%	
	JMBER- DP CHORD 2x6 S DT CHORD 2x6 S VEBS 2x4 S 10-11	P No.1 P 2400F 2.0E P No.3 *Except* : 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD	Struct Rigid	tural wood ceiling dir	l sheathing di ectly applied	irectly applied or 2-8-6 or 10-0-0 oc bracing.	oc purlins.	
BER- CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 2-8-6 oc purlins. CHORD 2x6 SP 2400F 2.0E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. SS 2x4 SP No.3 *Except* 10-11: 2x6 SP No.1 Dot 11: 2x6 SP No.1	EACTIONS. (Ib/siz Max H Max U	ze) 2=1984/0-3-8, 8=1933/0-3-8 Horz 2=100(LC 7) Jplift 2=-278(LC 5), 8=-236(LC 6)								
BER- CHORD 2x6 SP No.1 BRACING- TOP CHORD CHORD 2x6 SP 2400F 2.0E TOP CHORD 2x6 SP 2400F 2.0E SS 2x4 SP No.3 *Except* 10-11: 2x6 SP No.1 CTIONS. (Ib/size) 2=1984/0-3-8, 8=1933/0-3-8 Max Horz Max Horz 2=100(LC 7) Max Uplift 2=-278(LC 5), 8=-236(LC 6)	ORCES. (Ib) - Max OP CHORD 2-3=	. Comp./Max. Ten All forces 250 (lb) o =-4872/1133, 3-5=-4441/1003, 5-7=-4443	r less except when shown. 3/1021, 7-8=-4877/1155							

WEBS 5-9=-206/1549, 7-9=-604/426, 5-12=-205/1546, 3-12=-595/419

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-7-13 to 3-9-0, Interior(1) 3-9-0 to 18-6-0, Exterior(2) 18-6-0 to 22-10-13 zone;C-C for members and forces & MWFRS for reactions

shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 4-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=278, 8=236.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	12-6-11		24-5-6		37-8-1			
Plate Offsets (X,Y)	[8:0-4-8,Edge]	1	1-10-12			13-2-10		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-1-8 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2009/TPI2007	CSI. TC 0.83 BC 0.65 WB 0.69 Matrix-S	DEFL. Vert(LL) -0 Vert(TL) -0 Horz(TL) 0 Wind(LL) 0	in (loc)).67 9-12).95 9-12).14 8).15 9-12	l/defl L/d >672 360 >472 240 n/a n/a >999 240	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF 10-11:	2 No.1 2 2400F 2.0E 2 No.3 *Except* 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD	Structu Rigid c	ural wood sheathing d æiling directly applied	irectly applied or 2-7-6 or 9-11-9 oc bracing.	oc purlins.	
REACTIONS. (Ib/size Max H Max U	e) 2=2026/0-3-8, 8=1960/0-3-8 orz 2=100(LC 7) plift 2=-281(LC 5), 8=-243(LC 6)							
FORCES. (lb) - Max. TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) or 5036/1180, 3-5=-4561/1012, 5-7=-4674	less except when shown. /1050, 7-8=-5238/1251						

BOT CHORD 2-12=-1028/4665, 9-12=-578/3205, 8-9=-1081/4893

WEBS 3-12=-615/435, 5-12=-181/1527, 5-9=-213/1668, 7-9=-763/484

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-7-13 to 3-9-0, Interior(1) 3-9-0 to 18-6-0, Exterior(2) 18-6-0 to 22-10-13 zone;C-C for members and forces & MWFRS for reactions

shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 4-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=281, 8=243.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X)	12-6-11 12-6-11		24-5-6 11-10-12		<u> </u>				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.53 BC 0.71 WB 0.44 Matrix-S	DEFL. in Vert(LL) -0.23 Vert(TL) -0.67 Horz(TL) 0.13 Wind(LL) 0.15	(loc) 8-9 8-9 8 9-12	l/defl L/d >999 360 >666 240 n/a n/a >999 240	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	x6 SP No.1 x6 SP No.1 x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structura Rigid ce	al wood sheathing di iling directly applied o	rectly applied or 3-4-7 (or 7-8-9 oc bracing.	oc purlins.		
REACTIONS. (I M M	b/size) 2=1543/0-3-8, 8=1495/0-3-8 lax Horz 2=94(LC 7) lax Uplift 2=-265(LC 5), 8=-228(LC 6)								
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) c 2-3=-3562/1111, 3-5=-3105/952, 5-7=-3199/ 2-12=-968/3304, 9-12=-544/2231, 8-9=-101 3-12=-634/410, 5-12=-170/936, 5-9=-200/10	r less except when shown /989, 7-8=-3721/1178 8/3480 /51, 7-9=-739/455							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)
- -0-7-13 to 3-9-0, Interior(1) 3-9-0 to 18-6-0, Exterior(2) 18-6-0 to 22-10-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=265, 8=228.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	12-6-11 12-6-11 [2:0-0-7,0-1-7], [8:0-8-8,Edge]		24-5-6 11-10-12		37-8-1 13-2-10				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.53 BC 0.71 WB 0.44 Matrix-S	DEFL. in Vert(LL) -0.23 Vert(TL) -0.67 Horz(TL) 0.13 Wind(LL) 0.15	(loc) // 8-9 > 8-9 > 8 9-12 >	'defl L/d 999 360 666 240 n/a n/a 999 240	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4	SP No.1 SP No.1 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural Rigid ceili	wood sheathing dire ng directly applied o	ectly applied or 3-4-7 o r 7-8-9 oc bracing.	oc purlins.		
REACTIONS. (Ib/s Max Max	ize) 2=1543/0-3-8, 8=1495/0-3-8 Horz 2=94(LC 7) Uplift 2=-265(LC 5), 8=-228(LC 6)								
FORCES.(lb) - MaTOP CHORD2BOT CHORD2WEBS3	x. Comp./Max. Ten All forces 250 (lb) or =-3562/1111, 3-5=-3105/952, 5-7=-3199/9 /2=-968/3304, 9-12=-544/2231, 8-9=-1018 /2=-634/410, 5-12=-170/936, 5-9=-200/109	- less except when shown. 989, 7-8=-3721/1178 /3480 51, 7-9=-739/455							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

-0-7-13 to 3-9-0, Interior(1) 3-9-0 to 18-6-0, Exterior(2) 18-6-0 to 22-10-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=265, 8=228.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:63.2

			37-8-0				
			37-8-0				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.08 BC 0.03 WB 0.09 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(TL) 0.00 Horz(TL) 0.00	(loc) l/defl 1 n/r 1 n/r 22 n/a	L/d 120 120 n/a	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP OTHERS 2x4 SP	No.1 No.1 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood Rigid ceiling dire	sheathing dire	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins.
REACTIONS. All be (lb) - Max He Max Up Max G	arings 37-8-0. brz 2=95(LC 7) blift All uplift 100 lb or less at joint(s) 2, 23 rav All reactions 250 lb or less at joint(25, 24, 22 except 23=259(LC 12)	33, 34, 36, 37, 38, 39, 40 s) 2, 32, 33, 34, 36, 37, 3	0, 41, 31, 29, 28, 27, 26, 18, 39, 40, 41, 31, 29, 28	25, 24, , 27, 26,			
FORCES. (lb) - Max. TOP CHORD 10-11 WEBS 21-23	Comp./Max. Ten All forces 250 (lb) or =-27/253, 11-12=-29/295, 12-13=-29/29 =-180/287	less except when shown 5, 13-14=-27/253					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-05; 1 -0-10-8 to 3-6-5, Ext shown; Lumber DOL 3) Truss designed for w Gable End Details as 4) All plates are 2x4 MT 5) Gable requires contii 6) Gable studs spaced 7) This truss has been 8) * This truss has been 9) Provide mechanical 38, 39, 40, 41, 31, 29 10) Beveled plate or structure 	loads have been considered for this de 10mph; TCDL=6.0psf; BCDL=6.0psf; h= erior(2) 3-6-5 to 18-6-1, Corner(3) 18-6- =1.60 plate grip DOL=1.60 ind loads in the plane of the truss only. s applicable, or consult qualified building f20 unless otherwise indicated. nuous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom chord livin n designed for a live load of 20.0psf on t chord and any other members. connection (by others) of truss to bearin 9, 28, 27, 26, 25, 24, 23. him required to provide full bearing surfa	sign. 15ft; Cat. II; Exp C; enclo 1 to 22-10-13 zone;C-C fo For studs exposed to wir designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta ce with truss chord at joir	esed; MWFRS (low-rise) or members and forces & nd (normal to the face), s PI 1. n any other live loads. eas with a clearance great anding 100 lb uplift at join nt(s) 22.	and C-C Corner(& MWFRS for rea see Standard Indu ater than 6-0-0 nt(s) 2, 33, 34, 36	3) ctions Jstry , 37,	SEA	ROLLS

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	ŀ	-0-10-8	9-10-8						<u> </u>			
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL TCDL BCLL	20.0 10.0 0.0 *	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.11 0.02 0.11	Vert(LL) Vert(TL) Horz(TL)	0.00 0.00 0.00	6 6 6	n/r n/r n/a	120 120 n/a	MT20	244/190
BCDL	10.0	Code IRC2009/TF	912007	Matrix	-S						Weight: 46 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-0-0. (lb) - Max Horz 2=50(LC

Max Horz 2=50(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-124(LC 7), 8=-122(LC 8) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-10=-154/366, 5-8=-154/365

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 4-6-0, Corner(3) 4-6-0 to 9-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=124. 8=122.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

ENGINEERING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		4-6	-0			4-6-0		
LOADIN TCLL TCDL BCLL	I G (psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.29 BC 0.24 WB 0.08	DEFL. Vert(LL) Vert(TL) Horz(TL) (in (loc) 0.00 2-6 0.01 2-6 0.00 4	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL)	0.00 6	>999 240	Weight: 43	lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=410/0-3-8, 4=410/0-3-8 Max Horz 2=43(LC 7) Max Uplift 2=-97(LC 7), 4=-97(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD2-3=-412/188, 3-4=-412/188BOT CHORD2-6=-41/296, 4-6=-41/296

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-6-0, Exterior(2) 4-6-0 to 8-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

-0-10-8 					20-10-8						21-9-0
Plate Offsets (X,Y)	[17:0-2-8,0-3-0]				2000						0.10.0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2009/TF	2-0-0 1.15 1.15 YES 12007	CSI. TC BC WB Matrix	0.06 0.02 0.06 <-S	DEFL. Vert(LL) Vert(TL) Horz(TL)	in -0.00 -0.00 0.00	(loc) 12 12 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER-					BRACING-					1	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No 3 OTHERS

REACTIONS. All bearings 20-0-0

(lb) - Max Horz 2=67(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 12, 19, 20, 21, 22, 17, 16, 15, 14, 2

Max Grav All reactions 250 lb or less at joint(s) 12, 18, 19, 20, 21, 22, 17, 16, 15, 14, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 10-0-0, Corner(3) 10-0-0 to 14-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 19, 20, 21, 22, 17, 16, 15, 14, 2.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>						20-0-0							
			10-0-0	1							10-0-0			
LOADING (p	sf)	SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20	.0	Plate Grip DOL	1.15	TC	0.59	· ·	Vert(LL)	-0.17	4-7	>999	360	MT20	244/190	
TCDL 10	.0	Lumber DOL	1.15	BC	0.78	· ·	Vert(TL)	-0.48	4-7	>491	240			
BCLL 0	.0 *	Rep Stress Incr	YES	WB	0.17		Horz(TL)	0.05	4	n/a	n/a			
BCDL 10	.0	Code IRC2009/TP	12007	Matrix	-S		Wind(LL)	0.07	2-7	>999	240	Weight: 88 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1438/475, 3-4=-1438/475

 BOT CHORD
 2-7=-331/1294, 4-7=-331/1294

 WEBS
 3-7=0/455

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-7-13 to 3-9-0, Interior(1) 3-9-0 to 10-0-0, Exterior(2) 10-0-0 to 14-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=159, 2=159.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-0-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=836/0-3-8, 2=836/0-3-8 Max Horz 2=54(LC 7) Max Uplift 4=-159(LC 6), 2=-159(LC 5)

SEAL 030652

REACTIONS. All bearings 7-10-8

(lb) - Max Horz 2=88(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 7

Max Grav All reactions 250 lb or less at joint(s) 5, 2, 6 except 7=367(LC 1)

```
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.
                 3-7=-285/452
```

WEBS

NOTES-

- 1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 7-10-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 7.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-3-6,0-0-9]	I I						Т	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.88 BC 0.30	DEFL. Vert(LL) Vert(TL)	in -0.05 -0.12	(loc) 2-4 2-4	l/defl >999 >775	L/d 360 240	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL)	0.00	4 2-4	>743	240	Weight: 34 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SI	P No.1		BRACING- TOP CHOR	D	Structu	ral wood	sheathing d	irectly applied or 2-2-0) oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No 3

REACTIONS. (lb/size) 2=374/0-3-8, 4=303/0-1-8 Max Horz 2=88(LC 5) Max Uplift 2=-218(LC 5), 4=-181(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 7-10-1 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=218, 4=181
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) 0-7-7 to 5-0-7, Interior(1) 5-0-7 to 7-0-7, Exterior(2) 7-0-7 to 11-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 9 except (jt=lb) 12=117, 8=117.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

