

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 20178A 243.2939 D 12x12-8CP Tray

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I36483557 thru I36483612

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

March 22,2019

Johnson, Andrew

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-F473 rev. 10/03/2015 BEFORE 05E.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray			
						36483558		
20178A	AG1	COMMON GIRDER	1	2				
				_	Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Mar 21 14:24:20 2019 F	Page 2		
		ID:n	ID:nWgOt4t5g4cSMBishLJF9DzZSKL-AFL_VKy43MuwylzKR7zKmmgYzci8mdVyE8k0pVzYhEP					

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 9=-915(B) 7=-915(B) 15=-1293(B) 16=-915(B) 17=-915(B) 18=-915(B) 19=-915(B) 20=-915(B) 21=-915(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

PEW JOH

"minimum March 22.2019

818 Soundside Road Edenton, NC 27932

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray	
					13	36483559
20178A	AGE	Common Girder	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Mar 21 14:24:22 2019 P	age 2

ID:nWgOt4t5g4cSMBishLJF9DzZSKL-7eTlv0_Kb_8eB37iYY0orBlyzQV9ETYFiRD7uNzYhEN

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-5=-60, 5-9=-60, 2-8=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray	
						136483560
20178A	BGE	GABLE	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Mar 21 14:24:24 2019	Page 2

ID:nWgOt4t5g4cSMBishLJF9DzZSKL-31bVKi?b7bOMQMG5gz2GwcrPuD5tiRFY9liEyGzYhEL

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 17=-920(B) 18=-920(B) 19=-920(B) 20=-920(B) 21=-917(B) 22=-1293(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0-4 0-0-4	6-4-0 6-3-12					12-7-12 6-3-12		<u>12-8</u> -0 0-0-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.45 BC 0.62 WB 0.12	DEFL. in Vert(LL) 0.04 Vert(CT) -0.05 Horz(CT) 0.01	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 55 lb	FT = 20%

BOT CHORD

Structural wood sheathing directly applied or 5-7-1 oc purlins.

Rigid ceiling directly applied or 9-3-13 oc bracing.

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD 2x4 SP No.3 WEBS

REACTIONS. (lb/size) 2=556/0-3-8, 4=556/0-3-8 Max Horz 2=40(LC 16)

Max Uplift 2=-225(LC 8), 4=-225(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-875/690, 3-4=-875/690

BOT CHORD 2-6=-581/758, 4-6=-581/758

3-6=-306/309 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-4-0, Exterior(2) 6-4-0 to 9-4-0, Interior(1) 9-4-0 to 13-6-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

	4-3-8											
LOADING	G (psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI.	0.29	DEFL. Vert(LL)	in 0.01	(loc) 2-4	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.09	Vert(CT) Horz(CT)	-0.01 -0.00	2-4 3	>999 n/a	180 n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-P						Weight: 18 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (lb/size) 3=117/Mechanical, 2=233/0-3-0, 4=41/Mechanical Max Horz 2=68(LC 8) Max Uplift 3=-64(LC 12), 2=-101(LC 8), 4=-13(LC 8) Max Grav 3=117(LC 1), 2=233(LC 1), 4=83(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-3-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 4-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0 <u>-8</u> 0-0-8	<u>2-4-0</u> 2-3-8	4-4-0	
Plate Offsets (X,Y)	[3:0-2-0,0-2-13]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d /ert(LL) 0.01 2-5 >999 240 /ert(CT) -0.01 2-5 >999 180 /orz(CT) 0.01 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 18 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 4-4-0 oc purlins, except 2-0-0 oc purlins: 3-4.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=100/Mechanical, 2=234/0-3-0, 5=59/Mechanical Max Horz 2=43(LC 8) Max Uplift 4=-47(LC 8), 2=-110(LC 8), 5=-23(LC 9) Max Grav 4=100(LC 1), 2=234(LC 1), 5=87(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-4-0, Interior(1) 2-4-0 to 4-3-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 39 lb down and 135 lb up at 2-4-0 on top chord, and 22 lb down and 46 lb up at 2-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb) Vert: 6=-2(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	ł		3-:	2-2				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.87 BC 0.16 WB 0.00 Matrix-P	DEFL. i Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) -0.00	n (loc) 1 2-4 1 2-4) 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=67/Mechanical, 2=224/0-4-9, 4=29/Mechanical Max Horz 2=40(LC 8) Max Uplift 3=-38(LC 12), 2=-112(LC 8), 4=-9(LC 8) Max Grav 3=67(LC 1), 2=224(LC 1), 4=58(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=112.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied or 3-2-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.02 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2 >999 240 Vert(CT) -0.00 2 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 11 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=49/Mechanical, 2=161/0-3-8, 4=21/Mechanical Max Horz 2=42(LC 8) Max Uplift 3=-31(LC 12), 2=-78(LC 8), 4=-7(LC 8) Max Grav 3=49(LC 1), 2=161(LC 1), 4=43(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0-4	4-4-0		8-4-0		12-	-7-12	<u>12-</u> 8-0
Plate Offsets (X,Y)	[2:0-3-5,0-0-6], [5:0-3-5,0-0-6]		4-0-0			5-12	0-0-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.59 WB 0.10 Matrix-S	DEFL. in Vert(LL) 0.05 Vert(CT) -0.07 Horz(CT) 0.02	(loc) l/defl 7-8 >999 7-8 >999 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x6 S WEBS 2x4 S REACTIONS. (Ib/siz Max I Max I	P No.2 P No.2 P No.3 ze) 2=754/0-3-8, 5=754/0-3-8 Horz 2=-29(LC 17) Uplift 2=-346(LC 8), 5=-346(LC 9)		BRACING- TOP CHORD BOT CHORD	Structural woo 2-0-0 oc purlin Rigid ceiling d	d sheathing dire is (4-7-14 max.) irectly applied o	ectly applied or 4-6-3 : 3-4. r 8-1-7 oc bracing.	oc purlins, except
FORCES. (lb) - Max TOP CHORD 2-3= BOT CHORD 2-8= WEBS 3-8=	:. Comp./Max. Ten All forces 250 (lb) or 1424/909, 3-4=-1292/885, 4-5=-1424/90 800/1279, 7-8=-812/1292, 5-7=-799/127 147/261, 4-7=-147/261	less except when shown 99 '9					
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; MWFRS (envelope Interior(1) 12-6-4 tc DOL=1.60 plate gri 3) Provide adequate of 4) This truss has beer 5) * This truss has beer 6) One RT7A USP co uplift only and does 7) Graphical purlin rep 8) "NAILED" indicates 9) In the LOAD CASE LOAD CASE(S) Star	ve loads have been considered for this de Vult=130mph (3-second gust) Vasd=103r) gable end zone and C-C Exterior(2) -0- or 13-6-8 zone; porch left and right expose p DOL=1.60 drainage to prevent water ponding. In designed for a 10.0 psf bottom chord liv en designed for a live load of 20.0psf on t bottom chord and any other members. Innectors recommended to connect truss is not consider lateral forces. Dresentation does not depict the size or th is 3-10d (0.148"x3") or 3-12d (0.148"x3.25 (S) section, loads applied to the face of the ndard	sign. mph; TCDL=6.0psf; BCDI 10-8 to 2-1-8, Interior(1) 2 d;C-C for members and for e load nonconcurrent with he bottom chord in all are to bearing walls due to UI ne orientation of the purlin ") toe-nails per NDS guid ne truss are noted as fron	L=6.0psf; h=30ft; Cat. II; I 2-1-8 to 4-4-0, Exterior(2) orces & MWFRS for reac an any other live loads. eas where a rectangle 3-6 PLIFT at jt(s) 2 and 5. Th a along the top and/or bot lines. It (F) or back (B).	Exp B; Enclosed 4-4-0 to 12-6-4 tions shown; Lu 3-0 tall by 2-0-0 is connection is tom chord.	d; ,imber wide for	AUDIORI	H CAROLINA
1) Dead + Roof Live (Uniform Loads (plf) Vert: 1-3=- Concentrated Load	balanced): Lumber Increase=1.15, Plate 	Increase=1.15					45844

Vert: 3=-57(F) 4=-57(F) 8=-21(F) 7=-21(F) 9=-40(F) 10=-57(F) 11=-40(F) 12=-39(F) 13=-21(F) 14=-39(F)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO A MITEK Atfiliate 818 Soundside Road

Edenton, NC 27932

	8-0-0		16-0-0		23-9-0
I	8-0-0	1	8-0-0		7-9-0
Plate Offsets (X,Y)	[2:0-0-3,Edge], [3:0-3-5,Edge], [4:0-3-5,Edge]	ge], [5:0-0-15,0-0-10], [5:0)-5-6,0-1-4], [5:Edge,	0-3-1]	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.94	Vert(LL) 0.11	2-8 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.68	Vert(CT) -0.22	2-8 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) 0.04	5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 107 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x4 SE	P No 1		TOP CHORD	Structural wood sheathing dire	ectly applied except
BOT CHORD 2x4 SE	No.2			2-0-0 oc purlins (3-6-12 max)	· 3-4
WEBS 2x4 SE	P No 3			Rigid ceiling directly applied o	r 10-0-0 oc bracing
WEDGE	110.5		WEBS	1 Row at midot	6
Right: 2v4 SP No 3			**200	The attract of	0
Night. 274 OF 10.5					

REACTIONS. (lb/size) 2=1004/0-3-8, 5=940/Mechanical Max Horz 2=140(LC 11) Max Uplift 2=-97(LC 12), 5=-73(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1340/186, 3-4=-978/225, 4-5=-1316/188

BOT CHORD 2-8=-84/1023, 6-8=-86/1014, 5-6=-44/986

WEBS 3-8=0/350, 4-6=0/352

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 12-2-15, Interior(1) 12-2-15 to 16-0-0, Exterior(2) 16-0-0 to 20-2-15, Interior(1) 20-2-15 to 23-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

	8-0-0		15-8-10		1	23-8-12	
	8-0-0	1	7-8-10		1	8-0-2	
Plate Offsets (X,Y)	[2:0-0-3,Edge], [3:0-4-0,0-1-9]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.97 BC 0.66 WB 0.56 Matrix-S	DEFL. in Vert(LL) -0.11 Vert(CT) -0.23 Horz(CT) 0.04	(loc) 6-7 2-9 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF 3-5: 2>	P No.1 *Except* <4 SP No.2		BRACING- TOP CHORD	Structura 2-0-0 oc	al wood sheathing c purlins (4-8-9 max.	lirectly applied, except e	end verticals, and
BOT CHORD 2x4 SP WEBS 2x4 SP	P No.2 P No.3		BOT CHORD WEBS	Rigid ceil 1 Row at	ling directly applied midpt	or 10-0-0 oc bracing. 4-9, 4-6	
REACTIONS. (lb/siz	e) 6=936/Mechanical. 2=1000/0-3-8						

REACTIONS. (lb/size) 6=936/Mechanical, 2=1000/0-3-8 Max Horz 2=222(LC 12) Max Uplift 6=-162(LC 9), 2=-84(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1313/145, 3-4=-977/188

BOT CHORD 2-9=-184/981, 7-9=-175/1019, 6-7=-175/1019

WEBS 3-9=0/355, 4-7=0/333, 4-6=-1192/205

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 12-2-15, Interior(1) 12-2-15 to 23-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=162.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	6-0-0			14-8-12			-			23-9-0	
	6-0-0			8-8-12			1			9-0-4	1
Plate Offsets (X,Y)	[<u>3:0-4-0,0-1-9], [6:0-2-0,E</u>	_dgej									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.59 0.84 0.50	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.32 0.05	(loc) 8-9 8-9 8	l/defl >999 >875 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 119 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.3				BRACING- TOP CHOR BOT CHOR WEBS	D D	Structu except Rigid ce 1 Row a	ral wood : end vertio eiling dire at midpt	sheathing di cals, and 2-0 ctly applied	rectly applied or 3-11-0 I-0 oc purlins (4-9-3 max or 10-0-0 oc bracing. 5-8	oc purlins, x.): 3-7.
REACTIONS. (Ib/size Max Ho Max Up	 8=937/Mechanical, 2 orz 2=170(LC 12) plift 8=-166(LC 9), 2=-84³ 	2=1001/0-3-8 (LC 9)									
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-11= WEBS 3-11=	Comp./Max. Ten All for 1410/164, 3-4=-1072/186 183/1085, 9-11=-265/14 4/462, 4-11=-499/189, 5	rces 250 (lb) or le 5, 4-5=-1333/196 429, 8-9=-216/10 5-9=0/462, 5-8=-	ess except 94 1273/259	when shown.							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 10-2-15 to DOL=1.60 2) Bravito adaguato da	loads have been conside ult=130mph (3-second gu gable end zone and C-C 23-7-4 zone;C-C for mer	ered for this des ust) Vasd=103m Exterior(2) -0-1(mbers and force	gn. ph; TCDL=)-8 to 2-1-8 s & MWFR	6.0psf; BCDL=6. 8, Interior(1) 2-1-8 S for reactions sh	0psf; h=30ft; C to 6-0-0, Exte nown; Lumber	at. II; E rior(2) 6 DOL=1	Exp B; E 6-0-0 to .60 plat	nclosed; 10-2-15, æ grip			
 4) This truss has been 5) * This truss has been 6) Refer to girder(s) for 7) Provide mechanical 	designed for a 10.0 psf b 1 designed for a live load ottom chord and any othe truss to truss connection	of 20.0psf on the of 20.0psf on the er members.	load nonco e bottom cl	oncurrent with any hord in all areas v	y other live loa vhere a rectan	ds. gle 3-6· at ioint	-0 tall by	y 2-0-0 wi	de	In the the	CARO
8=166.		a uss to bedning	piace capa		ig i oo io upliit	arjonit		shr (Ir—in)		ANOR	Zacia KIA!

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	6-0-0	14-8-10			23-8-12	
Plata Offacta (X X)	6-0-0	8-8-10		I	9-0-2	i
Plate Offsets (X, Y)	[3:0-4-0,0-1-9], [6:0-2-0,Edge]					
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.59 BC 0.84 WB 0.50	DEFL. in Vert(LL) -0.15 Vert(CT) -0.32 Horz(CT) 0.05	(loc) l/defl 8-9 >999 8-9 >878 8 n/a	L/d PL/ 240 MT 180 n/a	ATES GRIP 20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			We	ight: 119 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S REACTIONS (Ib/si Max Max	P No.2 P No.2 P No.3 ze) 8=936/Mechanical, 2=1000/0- Horz 2=170(LC 12) Uplift 8=-166(LC 9), 2=-84(LC 9)	3-8	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sl except end vertica Rigid ceiling direc 1 Row at midpt	heathing directly appli als, and 2-0-0 oc purlir tly applied or 10-0-0 o 5-8	ied or 3-11-2 oc purlins, ns (4-9-4 max.): 3-7. oc bracing.
FORCES.(lb) - MaxTOP CHORD2-3:BOT CHORD2-1WEBS3-1	Comp./Max. Ten All forces 250 (=-1409/164, 3-4=-1070/186, 4-5=-13 1=-183/1083, 9-11=-265/1426, 8-9=- 1=-4/461, 4-11=-497/189, 5-9=0/462	lb) or less except when shown. 30/196 216/1092 , 5-8=-1271/259				
NOTES- 1) Unbalanced roof li 2) Wind: ASCE 7-10; MWFRS (envelope Interior(1) 10-2-15 DOL=1.60 3) Provide adequate 4) This truss has bee 5) * This truss has bee will fit between the	ve loads have been considered for th Vult=130mph (3-second gust) Vasd gable end zone and C-C Exterior(2 to 23-7-0 zone;C-C for members an drainage to prevent water ponding. In designed for a 10.0 psf bottom cho en designed for a live load of 20.0ps bottom chord and any other membe	his design. =103mph; TCDL=6.0psf; BCDL=6.0 2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 d forces & MWFRS for reactions sh ord live load nonconcurrent with any of on the bottom chord in all areas w rs.	Dpsf; h=30ft; Cat. II; E to 6-0-0, Exterior(2) iown; Lumber DOL=1 v other live loads. vhere a rectangle 3-6	Exp B; Enclosed; 6-0-0 to 10-2-15, .60 plate grip -0 tall by 2-0-0 wid	e	
Refer to girder(s) f	or truss to truss connections.					N'AL CARO

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=166.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

73 rev. 10/03/2015 BEFORE USE. al building component, not this design into the overall porary and permanent bracing ance regarding the DSB-89 and BCSI Building Component 818 Soundside Road

Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray	
					1364	83573
20178A	HG4	HALF HIP GIRDER	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Mar 21 14:24:36 2019 Page	e 2
		ID:nWg	Ot4t5q4c	SMBishLJF	9DzZSKL-iKJ1ro96IHvftCBONUG4P8KL23FZVoyJwdcsNZzYh	Ξ 9

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-46(B) 6=-46(B) 12=-18(B) 14=-192(B) 11=-18(B) 5=-46(B) 16=-46(B) 17=-46(B) 18=-46(B) 19=-46(B) 20=-46(B) 21=-46(B) 23=-46(B) 24=-18(B) 25=-18(B) 26=-18(B) 27=-18(B) 28=-18(B) 29=-18(B) 30=-18(B) 30=-18(B

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MTG+We® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-99 and BCSI Building Component Safety Information a valiable from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray				
					136	6483574			
20178A	HG5	HALF HIP GIRDER	1	1					
					Job Reference (optional)				
84 Components (Dunn),	Dunn, NC - 28334,		8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Mar 21 14:24:38 2019 Pag	ge 2			
		ID:nWgC	ID:nWgOt4t5g4cSMBishLJF9DzZSKL-fjRoGUANqu9N6WLnUvIYVZQhVsw0ziPcNx5zSSzYhE7						

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-46(F) 6=-46(F) 12=-18(F) 14=-192(F) 11=-18(F) 5=-46(F) 16=-46(F) 17=-46(F) 18=-46(F) 19=-46(F) 20=-46(F) 21=-46(F) 23=-46(F) 24=-18(F) 25=-18(F) 25=-18(F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						5-7-8						
						5-7-8						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.01	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.03	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix	(-P						Weight: 23 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

REACTIONS. (lb/size) 3=157/Mechanical, 2=284/0-3-8, 4=54/Mechanical

Max Horz 2=85(LC 8) Max Uplift 3=-85(LC 12), 2=-69(LC 8)

Max Grav 3=157(LC 1), 2=284(LC 1), 4=108(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 5-7-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 22,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1** Quality Criteria, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			5-7-8			⊣	
			5-7-8			1	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.58	DEFL. in Vert(LL) -0.01	(loc) l/def 1-3 >999	i L/d 9 240	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.15 WB 0.00	Vert(CT) -0.03 Horz(CT) -0.00	1-3 >999 2 n/a	9 180 a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-7-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=217/0-3-8, 2=162/Mechanical, 3=54/Mechanical Max Horz 1=78(LC 8) Max Uplift 1=-25(LC 8), 2=-87(LC 8) Max Grav 1=217(LC 1), 2=162(LC 1), 3=108(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[1:0-3-7,0-0-11], [2:0-2-0,0-2-13]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.49 BC 0.13 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 1-5 >999 240 MT20 244/190 Vert(CT) -0.01 1-5 >999 180 Horz(CT) 0.01 3 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R	Weight: 27 lb FT = 20%
LUMBER-			BRACING-

TOP CHORD2x4 SP No.2BOT CHORD2x8 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-7-8 oc purlins, except end verticals, and 2-0-0 oc purlins: 2-3. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=257/0-3-8, 3=139/Mechanical, 5=120/Mechanical Max Horz 1=50(LC 8)

Max Uplift 1=-38(LC 8), 3=-73(LC 8)

Max Grav 1=257(LC 1), 3=139(LC 1), 5=162(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-254/81

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-4=-20 Concentrated Loads (lb)

Vert: 2=-33(B) 6=-22(B) 8=-25(B) 9=-14(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[2:0-0-0,0-1-2], [2:0-1-5,0-7-9], [3:0-1-1]	2,0-0-9], [4:0-4-0,0-2-3], [7	<u>7:0-1-8,0-2-0], [7:0-0-0,0-</u>	1-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 PODU 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Inor NO	CSI. TC 0.94 BC 0.19 WB 0.06	DEFL. in Vert(LL) 0.14 Vert(CT) -0.26 Horz(CT) 0.13	(loc) l/defl 8 >457 8 >252 5 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 21 lb	FI = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2 P No.2		BRACING- TOP CHORD	Structural wood 2-0-0 oc purlins	sheathing dire : 4-5.	ectly applied or 5-7-8	oc purlins, except

 BOT CHORD
 2x4 SP No.2
 2-0-0 oc purlins: 4-5.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing

 WEDGE
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing

Left: 2x4 SP No.3

REACTIONS. (lb/size) 5=204/Mechanical, 2=334/0-3-8, 6=51/Mechanical Max Horz 2=59(LC 8) Max Uplift 5=-68(LC 8), 2=-82(LC 8) Max Grav 5=204(LC 1), 2=334(LC 1), 6=77(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-12, Interior(1) 2-1-12 to 5-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 2-8=-20, 6-7=-20 Concentrated Loads (lb)
 - Vert: 4=-10(F) 9=-22(F) 10=-25(F) 11=-38(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

			1-7-8					3	-7-8 -0-0		
Plate Offsets (X,Y)	[3:0-2-0,0-2-13]							-			
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.00	2-5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.00	2-5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	4	n/a	n/a		
BCDL 10.0	Code IRC2015/1	FPI2014	Matrix	-P						Weight: 16 lb	FT = 20%
					BRACING						

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-7-8 oc purlins, except 2-0-0 oc purlins: 3-4.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=82/Mechanical, 2=207/0-3-8, 5=45/Mechanical Max Horz 2=34(LC 8) Max Uplift 4=-36(LC 8), 2=-69(LC 8) Max Grav 4=82(LC 1), 2=207(LC 1), 5=69(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 1-7-8, Interior(1) 1-7-8 to 3-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				1		3-7-8					1	
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	-0.00	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.00	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P						Weight: 16 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=93/Mechanical, 2=207/0-3-8, 4=34/Mechanical Max Horz 2=59(LC 8) Max Uplift 3=-52(LC 12), 2=-61(LC 8) Max Grav 3=93(LC 1), 2=207(LC 1), 4=68(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 3-7-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			L		2-3-8	3		1	3-	7-8		
			I		2-3-8	3		1	1-	4-0	I	
Plate Offs	sets (X,Y)	[2:0-0-0,0-1-2], [2:0-1-5,0)-7-9], [3:0-1-1	12,0-0-9], [3:0	-2-0,0-2-4],	[6:0-0-0,0-1-12]						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.00	6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.01	6	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-R						Weight: 15 lb	FT = 20%
						1					1	
LUMBER	-					BRACING-						

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 3-7: 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=70/Mechanical, 2=207/0-3-8, 5=58/Mechanical Max Horz 2=58(LC 8) Max Uplift 4=-27(LC 12), 2=-60(LC 8), 5=-7(LC 12) Max Grav 4=70(LC 1), 2=207(LC 1), 5=59(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-12, Interior(1) 2-1-12 to 3-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 3-7-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d TCLL 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) -0.01 2-4 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.02 2-4 >999 180 BCI 0.0* Rep Stress Incr YES WB 0.00 Horr/(CT) -0.02 2-4 >999 180			1	4-0-0	
BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 15 lb FT = 20%	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.25 BC 0.17 WB 0.00 Matrix-P	DEFL. in (loc) l/defl Vert(LL) -0.01 2-4 >999 Vert(CT) -0.02 2-4 >999 Horz(CT) -0.00 3 n/a	L/d PLATES GRIP 240 MT20 244/190 180 n/a Weight: 15 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=106/Mechanical, 2=221/0-3-8, 4=38/Mechanical Max Horz 2=121(LC 12) Max Uplift 3=-83(LC 12), 2=-17(LC 12) Max Grav 3=116(LC 19), 2=221(LC 1), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

			1-10-15				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.04 WB 0.00 Matrix-P	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) l/a 2 >9 2-4 >9 3	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=43/Mechanical, 2=142/0-3-8, 4=19/Mechanical Max Horz 2=69(LC 12) Max Uplift 3=-36(LC 12), 2=-22(LC 12) Max Grav 3=49(LC 19), 2=142(LC 1), 4=37(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)SPACING-TCLL 20.0Plate GripTCDL 10.0Lumber DCBCLL 0.0 *Rep StressBCDL 10.0Code IRC	2-0-0 DOL 1.15 DL 1.15 Incr NO 2015/TPI2014	CSI. TC BC WB Matrix	0.50 0.15 0.00 c-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 2-6 2-6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=202/Mechanical, 2=300/0-4-9 Max Horz 2=119(LC 31) Max Uplift 6=-59(LC 12), 2=-47(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -1-2-14 to 3-0-1, Exterior(2) 3-0-1 to 5-6-6 zone;C-C for members and forces
- & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.07 BC 0.04 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 2 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=46/Mechanical, 2=145/0-3-8, 4=20/Mechanical Max Horz 2=71(LC 12) Max Uplift 3=-38(LC 12), 2=-22(LC 12) Max Grav 3=52(LC 19), 2=145(LC 1), 4=39(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.07 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) l, 2-4 > 2-4 > 3	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 3=49/Mechanical, 2=209/0-4-9, 4=25/Mechanical Max Horz 2=68(LC 12) Max Uplift 3=-36(LC 12), 2=-45(LC 12) Max Grav 3=49(LC 1), 2=209(LC 1), 4=49(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 2-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:72.2

1	8	3-10-13	17	-2-13	1	25-9-3	1		34-1	3	43-0-0	1
Г	8	3-10-13	8	-4-0	1	8-6-6	1		8-4-)	8-10-13	3
Plate Offsets	(X,Y)	[2:0-1-11,Edge], [10:0-	1-11,Edge]									
LOADING (p TCLL 20 TCDL 10 BCLL 0	osf) 0.0 0.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.78 1.00 0.57	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.47 -0.74 0.17	(loc) 11-13 11-13 10	l/defl >999 >690 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10	0.0	Code IRC2015	TPI2014	Matrix	(-5	Attic	-0.29	13-14	338	360	weight: 272 lb	FI = 20%
LUMBER- TOP CHORD BOT CHORD	2x6 SP 2x6 SP 12-15: 2	No.2 No.2 *Except* 2x6 SP DSS				BRACING- TOP CHOR BOT CHOR	:D :D	Structu Rigid c 10-0-0	iral wood eiling dire oc bracir	sheathing di ectly applied ig: 13-14.	rectly applied or 2-3-11 or 2-2-0 oc bracing, E:	oc purlins. kcept:
WEBS	2x4 SP	No.3				WEBS JOINTS		1 Row 1 Brac	at midpt e at .lt(s):	17	9-13, 3-14, 5-17, 7-17	
REACTIONS	. (Ib/size Max Ho Max Ut) 2=1794/0-3-8, 10= orz 2=125(LC 16) olift 2=-246(LC 8), 10=	-1748/0-3-8 -216(LC 9)					. 5140	3(0).			

Max Gpint 2=240(LC 0), 10=210(LC 0)Max Grav 2=1814(LC 2), 10=1776(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-4626/537, 3-5=-3780/348, 5-6=-1026/131, 6-7=-1026/132, 7-9=-3780/348,

9-10=-4629/540

- BOT CHORD
 2-16=-526/4324, 14-16=-526/4324, 13-14=-200/3518, 11-13=-442/4328, 10-11=-442/4328

 WEBS
 9-13=-1292/378, 3-14=-1287/375, 5-14=-0/728, 7-13=0/730, 5-17=-2594/292, 10-17=-2594/29
 - 7-17=-2594/292, 6-17=-18/479, 3-16=0/374, 9-11=0/376

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-7-5 to 3-8-4, Interior(1) 3-8-4 to 21-6-0, Exterior(2) 21-6-0 to 25-6-4, Interior(1) 25-6-4 to 42-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (5.0 psf) on member(s). 5-17, 7-17
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 13-14
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 8) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

AMITEK ATMILIATE B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray	,	105.000
20178A	LG1	Hip Girder	1	2	In Reference (optional)		136483589
L			ID:nWgQt4t5	a4cSMBishLJ	8.220 s Jan 5 2019 MiTek I	ndustries, Inc. Fri Mar 22 09:27:35 J8DxTBdtWIJA Yɑ75BwaYefX	2019 Page 1 Gt7zYQUc
-0 _t 10-8 3-1-13 լ	5-7-8 11-6-12	17-7-12 20-2-1	1 23-8-12 30-0)-15	33-8-0 37-4-8	43-10-8	
0-10-8 3-1-13	2-5-11 5-11-4	6-1-0 2-6-15	5 3-6-1 6-4	-3	3-7-1 3-8-8	3-4-0 2-3-8 0 ¹ 10-8	Scale = 1:76.8
		NAILED NA	ILED NAILED		NAILED NAILED		
4.00 12	7x12 MT18H = NA	NAILED NAILED	NAILED NAILED	NAILED	NAILED	NAILED NAILED	
·	NAILED NAILED	2x4 NAILED 5x9 =	4x8 = 2x4 NA	AILED 4x8	= 2x4	8x12 =	
2	23 3 24		28 6 / 29 30	31 8;	32 33 9 34 35	$10 36 \ 37$ 3x6 =	I
0-5-2 × 12						12	2-5-0 2-5-0
					14	13 8x8 - B	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
4x8 =	38 ²¹ 39	40 ²⁰ 19 ⁴¹ 42 ¹⁸	43 44 17 45 46	16 47 ¹⁵	5 48 49 50 51	2x4 52	
NA	NAILED NAILED	AILED $7x12 \text{ MT18H} = 3x6 $ 8x8 = NAILED NA	NAILED 4	x6 10x12 ∣ 3ax9as0	10-9-0	1	
	NAILED	NAILED NAILED	NAILED	NAILED)		
		NAILED	NA	ALED			
3-1-13	5-7-8 11-6-12	2 _ 17-7-12 _ 20-2-1	1 23-8-12 29-1	1-8 30-Q	15 33-8-0 , 37-4-8	40-8-8 43-0-0	
	2-5-11 5-11-4 [2:0-2-1,Edge], [10:0	6-1-0 2-6-1 -7-8,0-4-0], [14:0-5-12,0-2-8], [15:Edge	5 <u>3-6-1</u> 6-2- e,0-3-8]	-12 0-1	-7 3-7-1 3-8-8	3-4-0 2-3-8	
LOADING (psf)	SPACING-	2-0-0 CS L	DEFL	in (loc)	l/defl l/d	PLATES GRIP	
TCLL 20.0	Plate Grip DC	DL 1.15 TC 0.83	Vert(LL) 0	.96 17-18	>536 240	MT20 244/190)
BCLL 0.0 *	Rep Stress In	cr NO WB 0.97	Horz(CT) 0	.27 12	n/a n/a		2004
BCDL 10.0	Code IRC201	15/TPI2014 Matrix-S				Weight: 593 lb $FI = 2$	20%
LUMBER- TOP CHORD 2x6 S	SP No.2 *Except*		BRACING- TOP CHORD	Structur	al wood sheathing direct	ly applied or 4-9-13 oc purlin	s, except
10-12 BOT CHORD 2x8 S	2: 2x8 SP DSS SP DSS *Except*		BOT CHORD	2-0-0 oc Riaid ce	c purlins (2-10-15 max.): illing directly applied or 1	3-10. 0-0-0 oc bracing.	
8-15: WEBS 2x4 S	2x4 SP No.3, 11-16: 2 SP No.3 *Except*	x6 SP DSS		0	0 7 11	Ū	
3-20,	5-20,5-17,8-17: 2x4 SF	P No.2					
12-22	2: 2x6 SP No.2						
REACTIONS. (Ib/si	ze) 2=2992/0-3-8, 12	2=2996/0-3-8					
Max Max	Horz 2=38(LC 16) Uplift 2=-605(LC 8), 12	2=-553(LC 9)					
FORCES. (Ib) - Max	x. Comp./Max. Ten A	Il forces 250 (Ib) or less except when s	shown.				
TOP CHORD 2-23 4-29	3=-8450/1683, 3-23=-8 5=-13254/2818, 4-26=-	380/1694, 3-24=-13254/2818, 24-25= 13254/2818, 26-27=-13254/2818, 5-2	-13254/2818, 7=-13254/2818.				
5-20	8=-16530/3433, 6-28=- 0=-16530/3433, 30-31-	16530/3433, 6-29=-16530/3433, 7-29 16530/3433, 31-3216530/3433, 8-	=-16530/3433, 32-16530/3433				
8-3	3=-15613/2983, 33-34=	-15613/2983, 9-34=-15613/2983, 9-34	5=-15613/2983,				
10	12=-824/166	b=-11017/2150, 30-37=-11033/2142, 1	1-37=-11719/2152,				
BOT CHORD 2-38 20-4	8=-1578/7943, 21-38=- 40=-1585/7908, 20-41=	-1578/7943, 21-39=-1585/7908, 39-40 =-3544/16987, 19-41=-3544/16987, 19	=-1585/7908, -42=-3544/16987,				1.
18-4 17-4	42=-3544/16987, 18-43 45=-3544/16987, 17-46	3=-3544/16987, 43-44=-3544/16987, 4 6=-3376/17176, 16-46=-3376/17176, 1	4-45=-3544/16987, 6-47=-3379/17181,			TH CAR	0/11
47 14-:	48=-3376/17190, 15-48 50=-3385/17319, 14-5	3=-3371/17193, 15-49=-3390/17308, 4 1=-2040/11254, 13-51=-2040/11254, 1	9-50=-3388/17315, 3-52=-2043/11335.			OF FESSIO	Nº1
11-5 WEBS 3-2	52=-2043/11335 1-0/602 3-20-1269/5	660 4-20-627/344 5-20-3036/835	5-18-0/726		l	mark	ann
5-1 5-1	7=-501/170, 7-17=-637	//344, 8-14=-1808/514, 10-14=-952/46	86, 10-13=-30/757,			SEAL	
8-1	1=-090/21					45844	
NOTES- 1) 2-ply truss to be co	onnected together with	10d (0.131"x3") nails as follows:					1. 8
Top chords conneo Bottom chords con	cted as follows: 2x6 - 2 nnected as follows: 2x8	rows staggered at 0-9-0 oc, 2x8 - 2 ro - 2 rows staggered at 0-9-0 oc, 2x6 - 2	ws staggered at 0-9-0 oc. 2 rows staggered at 0-9-0 oc	:, 2x4 - 1 row	/ at 0-9-0 oc.	NGINE	P. 5
Webs connected a	as follows: 2x4 - 1 row a	at 0-9-0 oc.	or back (B) face in the LOAD	CASE(S) se	ection Ply to	REWIO	INSIII
ply connections ha	ave been provided to di	stribute only loads noted as (F) or (B),	unless otherwise indicated.	202(0) 30		"minini	1111
						March 22,20	19
Continued on page 2	y design parameters and RE	AD NOTES ON THIS AND INCLUDED MITEK RE	EFERENCE PAGE MII-7473 rev. 10/0	3/2015 BEFOR	E USE.	ENGINEERING BY	
Design valid for use of a truss system. Befor	only with MiTek® connectors re use, the building designer	. This design is based only upon parameters sho must verify the applicability of design parameters	wn, and is for an individual building and properly incorporate this design	component, not n into the overal	ll 	TRENC	
building design. Brad is always required for	r stability and to prevent colla	ckiing of individual truss web and/or chord mem pse with possible personal injury and property da	bers only. Additional temporary and amage. For general guidance regar	ding the	cing	A MiTek At	filiate

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see SINTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	243.2939 D 12x12-8CP Tray
					136483589
20178A	LG1	Hip Girder	1	2	
				–	Job Reference (optional)
20178A	LG1	Hip Girder	1	2	Job Reference (optional)

ID:nWgOt4t5g4cSMBishLJF9DzZSKL-2Kp96tzWuZIU8DxTBdtWIJA_Yg75BwaYefXGt7zYQUc

NOTES-

- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-7-5 to 3-8-4, Interior(1) 3-8-4 to 5-7-8, Exterior(2) 5-7-8 to 11-6-12, Interior(1) 11-6-12 to 37-4-8, Exterior(2) 37-4-8 to 42-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 9) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 605 lb uplift at joint 2 and 553 lb uplift at joint 12.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-3=-60, 3-10=-60, 10-11=-60, 11-12=-81, 2-15=-20, 11-15=-20

Concentrated Loads (lb)

Vert: 6=-97(F) 10=-69(F) 21=-34(F) 20=-34(F) 3=-103(F) 4=-103(F) 5=-97(F) 18=-34(F) 13=-62 24=-103(F) 25=-103(F) 26=-97(F) 27=-97(F) 28=-97(F) 29=-97(F) 28=-97(F) 28= 30=-97(F) 31=-97(F) 32=-97(F) 33=-69(F) 33=-69(F) 35=-69(F) 37=-144(F) 38=-100(F) 39=-34(F) 40=-34(F) 41=-34(F) 42=-34(F) 43=-34(F) 44=-34(F) 45=-34(F) 45=-46=-34(F) 47=-34(F) 48=-34(F) 49=-62 50=-62 51=-62 52=-31

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-F473 rev. TWOSEVIS BEFORE USE. Design valid for use only with MITER connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	7-7-8	15-5-15	23-6-2	2	29-11-8	35-4-8	40-8-8 43	3-0-0
Plate Offsets (X,Y)	[2:0-1-9,Edge], [8:0	-4-0,Edge], [9:0-4-6,E	Edge], [10:0-1-12,0-2-8], [1	1:0-3-0,0-4-0], [12:1	_ <u>6-5-6</u> Edge,0-5-8], [15:0-6	5-0.0-6-8], [16:0-3-8	.0-2-0]	-3-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip D Lumber DOL Rep Stress I Code IRC20	2-0-0 OL 1.15 - 1.15 ncr YES)15/TPI2014	CSI. TC 0.93 BC 0.52 WB 0.93 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -1 Horz(CT) 0	in (loc) l/defl 1.64 14-15 >798 .29 14-15 >398 1.22 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 333 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 8-1 BOT CHORD 2x6 7-1 WEBS 2x4 OTHERS 2x6 LBR SCAB 8-1	 SP No.2 *Except* 0: 2x8 SP DSS SP DSS *Except* 2: 2x6 SP No.2 SP No.3 SP No.2 0 2x8 SP DSS one side 	3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except 2-0-0 oc purlim Rigid ceiling di 1 Row at midp 2 Rows at 1/3	d sheathing directly s (2-2-0 max.): 3-8. rectly applied or 8- t 7-11 pts 4-16	applied or 2-11-1:	2 oc purlins,
REACTIONS. (Ib Ma Ma	/size) 2=1754/0-3-8, ax Horz 2=48(LC 16) ax Uplift 2=-334(LC 8),	10=1710/0-3-8 10=-303(LC 9)						
FORCES. (lb) - M TOP CHORD 2 8 BOT CHORD 2 1 WEBS 3 7	lax. Comp./Max. Ten -3=-4621/804, 3-4=-426 -9=-5997/1041, 9-10=-5 -16=-729/4318, 15-16= 1-12=-1195/7089, 9-11: -16=-78/1035, 4-16=-25 -11=-1595/329, 8-11=-1	All forces 250 (lb) or 50/791, 4-6=-7283/13 524/108 -1207/6993, 14-15=-1 =-943/5779 967/572, 4-15=0/357, 26/1151, 7-14=-83/3	less except when shown. 08, 6-7=-7283/1308, 7-8=-5 1207/6994, 12-14=-1185/70 4-14=-79/389, 6-14=-411/1 62	5689/1030, 150, 86,				
NOTES- 1) Attached 9-0-7 s from end at joint 7-10-10 from en 2) Unbalanced roo 3) Wind: ASCE 7-1 MWFRS (envelc Interior(1) 13-8-4 for reactions sho 4) Provide adequat 5) This truss has b 6) * This truss has will fit between t	acab 8 to 10, front face (8, nail 2 row(s) at 7" o. d at joint 8, nail 2 row(s) live loads have been c 0; Vult=130mph (3-sec pe) gable end zone and 3 to 35-4-8, Exterior(2) 3 wm; Lumber DOL=1.60 the drainage to prevent w een designed for a 10.00 been designed for a live he bottom chord and an	s) 2x8 SP DSS with 2 c. for 2-0-0; starting a) at 3" o.c. for 1-0-0. onsidered for this des ond gust) Vasd=103n d C-C Exterior(2) -0-7 35-4-8 to 41-5-8, Inter plate grip DOL=1.60 vater ponding. psf bottom chord live I load of 20.0psf on th y other members.	row(s) of 10d (0.131"x3") r t 4-10-0 from end at joint 8 sign. nph; TCDL=6.0psf; BCDL=1 -5 to 3-8-4, Interior(1) 3-8- rior(1) 41-5-8 to 42-10-4 zo e load nonconcurrent with a ne bottom chord in all areas	nails spaced 9" o.c. , nail 2 row(s) at 3" 6.0psf; h=30ft; Cat. 4 to 7-7-8, Exterior(ne;C-C for membe ny other live loads. 5 where a rectangle	except : starting at o.c. for 2-7-0; starti II; Exp B; Enclosed (2) 7-7-8 to 13-8-8, rs and forces & MW e 3-6-0 tall by 2-0-0	0-0-1 ing at l; /FRS wide	AUXIA	SEAL 45844

 Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	9-7-8	17-5-15		<u>25-6-2</u> 8-0-3	29-11-8	33-4-8	40-8-8 4	<u>3-0-0</u>
Plate Offsets (X,Y)	[2:0-1-13,Edge], [7:0-4-0,E	dge], [9:0-1-12,0-2-8]		000	400	000	140	200
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 C 1.15 T(1.15 B YES W 2014 M	SI. C 0.87 C 0.96 B 0.76 atrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.47 13-14 -0.94 13-14 0.24 9	l/defl L/d >999 240 >543 180 n/a n/a	PLATES MT20 Weight: 328 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF 7-9: 2x BOT CHORD 2x8 SF 2-15: 2 WEBS 2x4 SF OTHERS 2x6 SF LBR SCAB 7-9 2x6	No.2 *Except* 8 SP DSS DSS *Except* x8 SP No.2, 8-12: 2x6 SP No.3 No.2 3 SP DSS one side	DSS		BRACING- TOP CHOR BOT CHOR WEBS	D Structu 2-0-0 o D Rigid c 1 Row	ural wood sheathing d cc purlins (2-8-2 max. æiling directly applied at midpt	irectly applied or 2-2-0): 3-7. or 2-2-0 oc bracing. 4-16, 6-14, 6-10	oc purlins, except
REACTIONS. (Ib/size Max H Max U	e) 2=1754/0-3-8, 9=1709 orz 2=59(LC 16) plift 2=-329(LC 8), 9=-297	//0-3-8 (LC 9)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-16= WEBS 3-16=	Comp./Max. Ten All forc 4430/755, 3-4=-4078/756, 468/95 674/4117, 14-16=-940/57 42/915, 4-16=-1918/383,	es 250 (lb) or less exc 4-6=-5706/1022, 6-7= 706, 13-14=-929/5822, 4-14=0/288, 6-10=-99	ept when shown -5095/915, 7-8= 10-13=-929/582 4/238, 7-10=-62	-5387/910, 22, 8-10=-796/5147 /965	,			
NOTES- 1) Attached 11-1-12 sc from end at joint 7, r 9-11-14 from end at 2) Unbalanced roof live 3) Wind: ASCE 7-10; W MWFRS (envelope) Interior(1) 15-8-8 to for reactions shown; 4) Provide adequate di 5) This truss has been 6) * This truss has been will fit between the b 7) Bearing at joint(s) 9 capacity of bearing 3; 8) One RT7A USP con uplift only and does	ab 7 to 9, front face(s) 2x8 hail 2 row(s) at 7" o.c. for 2- joint 7, nail 2 row(s) at 3" o loads have been consider (ult=130mph (3-second gus gable end zone and C-C E 33-4-8, Exterior(2) 33-4-8 t Lumber DOL=1.60 plate g ainage to prevent water po designed for a 10.0 psf bo n designed for a live load c ottom chord and any other considers parallel to grain surface. nectors recommended to c not consider lateral forces.	SP DSS with 2 row(s) 0-0; starting at 5-5-3 f .c. for 1-0-0. red for this design. st) Vasd=103mph; TCI ixterior(2) -0-7-5 to 3-8 to 39-5-8, Interior(1) 39 rip DOL=1.60 onding. ttom chord live load no f 20.0psf on the bottor members. value using ANSI/TPI connect truss to bearin	of 10d (0.131"x rom end at joint DL=6.0psf; BCDI 3-4, Interior(1) 3- 3-5-8 to 42-10-4 onconcurrent with n chord in all are 1 angle to grain g walls due to U	3") nails spaced 9" 7, nail 2 row(s) at 3 L=6.0psf; h=30ft; C 8-4 to 9-7-8, Exteri zone;C-C for mem h any other live loa eas where a rectan formula. Building o PLIFT at jt(s) 2 and	o.c.except : st " o.c. for 3-6-5 at. II; Exp B; E ior(2) 9-7-8 to 1 bers and force: ds. gle 3-6-0 tall by designer should	tarting at 0-0-1 5; starting at 5:nclosed; 15-8-8, Is & MWFRS y 2-0-0 wide d verify ection is for	A CORT	SEAL 45844

) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3x6 ||

5x12 = 8x8 =

43-0-0

F	5-´ 5-´	10-13 11- 10-13 5-8	-7-8 -11	20-9-	8)	21 ₁ -6 ₁ 0 2 0-8-8	9-11-8 8-5-8		31-4-8 1-5-0	2	40-8-8 9-4-0	<u>43-0-0</u> 2-3-8
Plate Offsets (X	<,Y)	[2:0-1-5,Edge], [4:0-4-	0,0-4-8], [5:0-4-0	,Edge], [6:0-	11-4,Edge], [7:0-1-12,0-2-8]						
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015	2-0-0 1.15 1.15 YES /TPI2014	CSI. TC BC WB Matri	0.78 0.89 0.74 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.37 -0.73 0.22	(loc) 11-13 11-13 7	l/defl >999 >697 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 330 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB	2x6 SP 1-3: 2x6 2x6 SP 2-12: 2: 2x4 SP 2x6 SP 5-7 2x8	No.2 *Except* 6 SP DSS, 5-7: 2x8 SF DSS *Except* x8 SP No.2, 9-12: 2x8 No.3 No.2 s SP DSS one side	9 DSS SP DSS			BRACING TOP CHOP BOT CHOP WEBS	RD RD	Structu 2-0-0 c Rigid c 1 Row	ral wood s c purlins (eiling dired at midpt	heathing dire 2-7-4 max.): ttly applied o 4-	ectly applied or 3-3-3 3-5. r 9-8-12 oc bracing. ·13, 4-8	oc purlins, except

REACTIONS.	(lb/size)	2=1754/0-3-8, 7=1709/0-3-8
	Max Horz	2=70(LC 16)
	Max Uplift	2=-322(LC 8), 7=-291(LC 9)

4x8 =

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-4257/699, 3-4=-3910/714, 4-5=-4532/804, 5-6=-4804/783, 6-7=-468/94

4x6 =

8x8 =

- BOT CHORD 2-13=-611/3936, 11-13=-754/4868, 8-11=-754/4868, 6-8=-655/4561
- 3-13=0/791, 4-13=-1270/290, 4-8=-645/186, 5-8=0/742 WEBS
- NOTES-
- 1) Attached 13-3-1 scab 5 to 7, front face(s) 2x8 SP DSS with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 0-0-1 from end at joint 5, nail 2 row(s) at 7" o.c. for 2-0-0; starting at 9-0-14 from end at joint 5, nail 2 row(s) at 4" o.c. for 2-0-0; starting at 12-1-3 from end at joint 5, nail 2 row(s) at 3" o.c. for 1-0-0.
- 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-7-5 to 3-8-4, Interior(1) 3-8-4 to 11-7-8, Exterior(2) 11-7-8 to 17-8-8, Interior(1) 17-8-8 to 31-4-8, Exterior(2) 31-4-8 to 37-5-8, Interior(1) 37-5-8 to 42-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	6-10-13 13-7-8		21-6-0 29-4-8			36-1-3			43-0-0	43-0-0	
	6-	10-13	6-8-11	7-10-8	I	7-10-8			6-8-11	6-10-1	3
Plate Offset	ts (X,Y)	[2:Edge,0-2-4], [8:	Edge,0-2-4]								
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip I Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.15 JL 1.15 Incr YES 2015/TPI2014	CSI. TC 0.82 BC 0.87 WB 0.55 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.67 0.18	(loc) 13 13 8	l/defl >999 >762 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 254 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 *Except* 4-6: 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-6-12 max.): 4-6. BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 9-0-4 oc bracing. WEBS 2x4 SP No.3 WEBS 1 Row at midpt 5-15, 5-11											
REACTION	IS. (Ib/size Max H Max U	e) 2=1770/0-3-8 lorz 2=79(LC 12) lplift 2=-324(LC 8)	8=1770/0-3-8 8=-324(LC 9)								
FORCES. TOP CHOR	(lb) - Max. 2-3≕ 7-8≕	Comp./Max. Ten. -4329/717, 3-4=-37 -4329/717	- All forces 250 (lb) or 19/634, 4-5=-3462/62	less except when shown 9, 5-6=-3462/629, 6-7=-3	3719/634,						
BOT CHOR	RD 2-16= 8-10	=-668/4007, 15-16)=-609/4007	=-668/4007, 13-15=-5	38/4133, 11-13=-588/413	3, 10-11=-609/40)7,					
WEBS	EBS 3-16=0/254, 3-15=-582/216, 4-15=-32/753, 5-15=-954/215, 5-13=0/317, 5-11=-954/214, 6-11=-32/753, 7-11=-582/217, 7-10=0/254										
NOTES-											
1) Unbalan	ced roof live	e loads have been	considered for this de	sign.							

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

WWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-5-2, Interior(1) 3-5-2 to 13-7-8, Exterior(2) 13-7-8 to 19-8-8, Interior(1) 19-8-8 to 29-4-8, Exterior(2) 29-4-8 to 35-5-8, Interior(1) 35-5-8 to 43-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I	7-10-13	15-7-8	1	21-6-0	25-4-8	27-4-8	1	35-1-3	43-0-0	
	7-10-13	7-8-11	1	5-10-8	3-10-8	2-0-0	1	7-8-11	7-10-13	3
Plate Offsets (X,Y)	[5:0-2-12,0-3-12], [8:0-2	2-12,0-3-12], [15:0)-5-0,0-0-0], [18:0-5-0,0-0-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/7	2-0-0 1.15 1.15 YES IPI2014	CSI. TC BC WB Matri	0.59 0.75 0.32 ix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Attic	in (loc -0.55 16-17 -0.91 16-17 0.14 1 0.29 16-17	i) l/defl 7 >929 7 >562 1 n/a 7 330	L/d 240 180 n/a 360	PLATES MT20 MT18H Weight: 268 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 5-8: 2x BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max H	 No.2 *Except* 6 SP DSS DSS No.3 a) 2=1812/0-3-8, 11=1 orz 2=-92(LC 13) 	1829/0-3-8		I	BRACING- TOP CHOR BOT CHOR WEBS	D Struc exce 2-0-(D Rigic 1 Ro	ctural wood pt) oc purlins d ceiling dire w at midpt	sheathing di (3-5-15 max ectly applied 3	rectly applied or 2-10-3 .): 5-8. or 10-0-0 oc bracing. 3-19, 10-14	oc purlins,
Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 8-10= BOT CHORD 2-20= 13-1. WEBS 3-20= 5-19=	plift 2=-269(LC 8), 11=- rav 2=1832(LC 2), 11= Comp./Max. Ten All fc 4654/612, 3-5=-4192/45 e-4192/456, 10-11=-465 e-574/4336, 19-20=-574 4=-500/4332, 11-13=-56 e-57/272, 6-17=-353/135 e-66/776, 10-14=-888/37	280(LC 9) 1846(LC 2) orces 250 (lb) or 1 58, 5-6=-3911/45 0/609 /4336, 17-19=-30 00/4332 5, 8-14=-66/776, 1 73, 7-16=-354/13	ess excepi 7, 6-7=-391 12/3918, 16 10-13=-58/ 5	t when shown. 18/455, 7-8=-3911 3-17=-302/3918, 1 272, 3-19=-893/3	/456, 4-16=-302/391 74,	8,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 21-8-8 to for reactions shown; 3) Provide adequate dr 4) All plates are MT20 5) This truss has been 0) * This truss has been	e loads have been consi (ult=130mph (3-second - gable end zone and C- 27-4-8, Exterior(2) 27-4 Lumber DOL=1.60 plat ainage to prevent water plates unless otherwise designed for a 10.0 psf or designed for a 10.0 psf	dered for this des gust) Vasd=103m C Exterior(2) -0-7 -8 to 33-5-8, Inter e grip DOL=1.60 - ponding, indicated. bottom chord live d of 20 0pef on th	ign. hph; TCDL= -5 to 3-8-4, ior(1) 33-5 e load nonc	=6.0psf; BCDL=6. Interior(1) 3-8-4 -8 to 43-10-8 zone concurrent with an	0psf; h=30ft; C to 15-7-8, Exte e;C-C for mem y other live loa	cat. II; Exp B rrior(2) 15-7- bers and for ds. ale 3-6-0 tal	; Enclosed; 8 to 21-8-8 ces & MWF	RS	AUNORTH	CAROLINA SOCIAL

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Ceiling dead load (5.0 psf) on member(s). 5-6, 6-7, 7-8

8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 16-17

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.

a) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 11) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:76.0

L	8-10-13	17-7-8	25-4-8	34-1-3	43-0-0	
1	8-10-13	8-8-11	7-9-0	8-8-11	8-10-13	
Plate Offsets (X,Y	') [2:0-1-11,Edge], [5:0-1-5,	0-5-2], [6:0-1-5,0-5-2], [9:0-1-11,	,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- Plate Grip DOL Lumber DOL * Rep Stress Incr Code IRC2015/TF	2-0-0 CSI. 1.15 TC 0.66 1.15 BC 1.00 YES WB 0.53 Pl2014 Matrix-S	DEFL. i 5 Vert(LL) -0.4 0 Vert(CT) -0.7 3 Horz(CT) 0.1 Attic -0.2	in (loc) I/defl L/d 7 14-16 >999 240 4 14-16 >696 180 7 9 n/a n/a 6 13-14 365 360	PLATES GRIP MT20 244/190 Weight: 266 lb FT = 20%	
LUMBER- TOP CHORD 22 5- BOT CHORD 22 12 WEBS 25	x6 SP No.2 *Except* -6: 2x8 SP No.2 x6 SP No.2 *Except* 2-15: 2x6 SP DSS x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir 2-0-0 oc purlins (4-2-6 max.): Rigid ceiling directly applied o 10-0-0 oc bracing: 13-14. 1 Row at midpt 3-	ectly applied or 2-7-4 oc purlins, except 5-6. r 2-2-0 oc bracing, Except: 14, 8-13	
REACTIONS. (I	lb/size) 2=1793/0-3-8, 9=179	3/0-3-8				

REACTIONS. (b/size) 2=1793/0-3-8, 9=1793/0-3-8 Max Horz 2=-100(LC 17) Max Uplift 2=-271(LC 8), 9=-271(LC 9) Max Grav 2=1813(LC 2), 9=1813(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-4617/611, 3-5=-3816/457, 5-6=-3546/461, 6-8=-3816/457, 8-9=-4617/612

BOT CHORD 2-16=-576/4315, 14-16=-576/4315, 13-14=-261/3546, 11-13=-501/4315, 9-11=-501/4315

WEBS 3-14=-1202/375, 5-14=0/709, 6-13=0/709, 3-16=0/375, 8-11=0/375, 8-13=-1201/376

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-7-5 to 3-8-4, Interior(1) 3-8-4 to 17-7-8, Exterior(2) 17-7-8 to 23-8-8, Interior(1) 23-8-8 to 25-4-8, Exterior(2) 25-4-8 to 31-5-8, Interior(1) 31-5-8 to 43-7-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Ceiling dead load (5.0 psf) on member(s). 5-6

7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 13-14

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:75.8

L	8-10-13	19-7-8	23-4-8	34-1-3	43-0-0
I	8-10-13	10-8-11	3-9-0	10-8-11	8-10-13
Plate Offsets (X,Y)	[6:0-4-0,Edge], [7:0-4-0,E	dge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 1.15 BC YES WB	0.53 DEFL. 0.44 Vert(LL) 0.97 Horz(CT)	in (loc) l/defl -0.45 16-18 >999 -0.69 16-18 >747) 0.13 11 n/a	L/d PLATES GRIP 240 MT20 244/190 180 n/a Wainht 200 lb FT 200/
BCDL 10.0	Code IRC2015/11	12014 Matrix	x-5		Weight: 269 lb FT = 20%
LUMBER- TOP CHORD 2x6 S 6-7: 2	SP No.2 *Except* 2x4 SP No.2		BRACIN TOP CHO	G- ORD Structural wood sh except	neathing directly applied or 2-11-2 oc purlins,
BOT CHORD 2x6 S	SP DSS			2-0-0 oc purlins (6	-0-0 max.): 6-7.
WEBS 2x4 S	SP No.3		BOT CHO WEBS	ORD Rigid ceiling direct 1 Row at midpt	ly applied or 10-0-0 oc bracing. 10-15, 5-8, 3-16
REACTIONS. (Ib/si: Max Max	ze) 2=1754/0-3-8, 11=17 Horz 2=112(LC 12) Uplift 2=-282(LC 8), 11=-28	54/0-3-8 32(LC 9)			

- FORCES.
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-4361/646, 3-5=-3279/499, 5-6=-486/149, 6-7=-440/137, 7-8=-486/149,
- 8-10=-3279/499, 10-11=-4361/647
- BOT CHORD
 2-18=-617/4048, 16-18=-617/4048, 15-16=-298/3025, 13-15=-533/4048, 11-13=-533/4048

 WEBS
 5-16=0/615, 10-15=-1295/373, 8-15=0/615, 5-8=-2607/384, 3-18=0/363, 3-16=-1295/372, 10-13=0/363

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-7-5 to 3-8-4, Interior(1) 3-8-4 to 19-7-8, Exterior(2) 19-7-8 to 29-5-8, Interior(1) 29-5-8 to 43-7-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

 IM	RF	R.

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. 2=294/0-3-0, 4=224/0-1-8 (lb/size) Max Horz 2=88(LC 8) Max Uplift 2=-123(LC 8), 4=-106(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-10-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4 = 106
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=155.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-60, 2-6=-20 Concentrated Loads (lb) Vert: 10=-200(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

	0-2-8 0-2-8	<u>5-0</u> 4-9	0-0 9-8		6-3-8 1-3-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.63 BC 0.52 WB 0.00 Matrix-R	DEFL. in (Vert(LL) 0.04 Vert(CT) -0.04 Vert(CT) -0.00 -0.00 -0.00	(loc) l/defl L 2-7 >999 24 2-7 >999 18 6 n/a n	/d PLATES IO MT20 I/a Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-			

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-7, 4-5.

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. 6=434/0-3-8, 2=372/0-3-0 (lb/size) Max Horz 2=117(LC 12)

Max Uplift 6=-181(LC 8), 2=-172(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-300/183

BOT CHORD 2-7=-257/234

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-1-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-60, 2-6=-20 Concentrated Loads (lb) Vert: 10=-200(F) 11=-37(F) 12=-27(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	[5.0-2-0,0-2-5]			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.09	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 8 >999 240	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.03 WB 0.00	Vert(CT) -0.00 8 >999 180 Horz(CT) -0.00 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R		Weight: 10 lb FT = 20%
LUMBER-			BRACING-	

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 6=47/Mechanical, 8=151/0-3-0

Max Horz 8=33(LC 12) Max Uplift 6=-32(LC 9), 8=-26(LC 9)

Max Grav 6=57(LC 24), 8=151(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-0-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(LL) 0.00 8 >999 240 Vert(CT) -0.00 8 >999 180	MT20 244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00 Matrix B	Horz(CT) -0.00 6 n/a n/a	Weight: 11 lb $ET = 20\%$
		Maultz-K	PRACING-	

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 6=47/Mechanical, 8=151/0-3-0 Max Horz 8=59(LC 12)

Max Uplift 6=-34(LC 9), 8=-14(LC 12)

Max Grav 6=50(LC 3), 8=151(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-0-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-10; Vulter130mpn (3-second gust) Vasd=103mpn; TCDL=6.0psr; BCDL=6.0psr; n=30tr; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-0-0, Exterior(2) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 23-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

8) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1390/161, 3-4=-1284/252, 4-5=-1287/252, 5-6=-1390/161

BOT CHORD 2-10=-163/1205, 8-10=-1/764, 6-8=-39/1073

WEBS 4-8=-155/672, 5-8=-356/251, 4-10=-155/666, 3-10=-356/251

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-0-0, Exterior(2) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 24-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			11-9-0							_
			11-9-0							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.35 BC 0.24 WB 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			-			Weight: 35 lb	FT = 20%	
LUMBER-			BRACING-							

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

REACTIONS. 1=169/11-9-0, 3=169/11-9-0, 4=452/11-9-0 (lb/size) Max Horz 1=28(LC 16) Max Uplift 1=-37(LC 8), 3=-40(LC 13), 4=-37(LC 8) Max Grav 1=175(LC 23), 3=175(LC 24), 4=452(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-4=-308/138 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-11-5 to 3-11-5, Interior(1) 3-11-5 to 5-10-8, Exterior(2) 5-10-8 to 8-10-8, Interior(1) 8-10-8 to 10-9-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

AMALINITIAN IN THE REAL OF THE Summer in SEAL 5844 EW 101 minim March 22,2019

0-0 <u>-12</u> 0-0-12			7-9-0 7-8-4					
Plate Offsets (X,Y)	[2:0-2-0,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.16 BC 0.46 WB 0.00 Matrix-P	DEFL. Vert(LL) u Vert(CT) u Horz(CT) 0.	in (loc) n/a - n/a - 00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2 No.2		BRACING- TOP CHORD BOT CHORD	Struct Rigid o	ural wood	sheathing dir	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins.

REACTIONS. (lb/size) 1=235/7-7-8, 3=235/7-7-8 Max Horz 1=-17(LC 17) Max Uplift 1=-33(LC 8), 3=-33(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-2=-297/195, 2-3=-297/195 TOP CHORD 1-3=-154/260

BOT CHORD

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3		

REACTIONS. (lb/size) 1=170/9-8-0, 5=103/9-8-0, 6=450/9-8-0 Max Horz 1=205(LC 12) Max Uplift 5=-16(LC 12), 6=-174(LC 12) Max Grav 1=170(LC 1), 5=151(LC 19), 6=526(LC 19)

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 8-10-0, Exterior(2) 8-10-0 to 9-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6=174.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 WEBS
 2-6=-357/231

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.12 WB 0.05 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) , - - 5	/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural except en Rigid ceili	l wood sheathing dire id verticals. ing directly applied o	ectly applied or 6-0-0 oc bracing.	oc purlins,

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

REACTIONS. (Ib/size) 1=101/7-8-0, 5=132/7-8-0, 6=330/7-8-0 Max Horz 1=154(LC 12) Max Uplift 5=-28(LC 12), 6=-125(LC 12) Max Grav 1=106(LC 21), 5=132(LC 1), 6=351(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-269/174

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-8-0, Interior(1) 3-8-0 to 6-10-0, Exterior(2) 6-10-0 to 7-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6=125.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-8-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 1=202/5-8-0, 4=202/5-8-0 Max Horz 1=102(LC 12)

Max Uplift 1=-9(LC 12), 4=-53(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-10-0, Exterior(2) 4-10-0 to 5-6-4

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.10 BC 0.08 WB 0.00 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) l/defl L/d a - n/a 999 a - n/a 999 D 4 n/a n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 3-8-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (lb/size) 1=122/3-8-0, 4=122/3-8-0 Max Horz 1=51(LC 12)

Max Uplift 1=-10(LC 12), 4=-23(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	[0:0 E 0;Edgo]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.10 WB 0.05 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	irectly applied or 5-11-0 oc purlins, or 10-0-0 oc bracing.	

REACTIONS. (lb/size) 1=16/5-11-0, 5=139/5-11-0, 6=269/5-11-0 Max Horz 1=103(LC 12) Max Uplift 1=-22(LC 10), 5=-27(LC 12), 6=-94(LC 12) Max Grav 1=57(LC 12), 5=139(LC 1), 6=285(LC 19)

2x4 SP No.3

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-11-8, Exterior(2) 4-11-8 to 5-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[2:0-2-0,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.10 WB 0.00 Matrix-R	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 4 n/a n/a Weight: 14 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2 P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 1=132/3-11-0, 4=132/3-11-0 Max Horz 1=52(LC 12) Max Uplift 1=-11(LC 12), 4=-23(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

