

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21916A 240.3174.C.10x10

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I38341901 thru I38341936

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

August 29,2019

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Fiale OI		[2.0-0-3,0-0-8], [2.0-0-11	,0-4-0], [0.0-0	-3,0-0-8], [8.0	-0-11,0-4-0]								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	8	n/r	120	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	9	n/r	120			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	8	n/a	n/a			
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 58 lb	FT = 20%	
LUMBE	R-					BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

Max Horz 2=108(LC 11) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-8-0, Corner(3) 5-8-0 to 8-8-0, Exterior(2) 8-8-0 to 12-2-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 11-4-0.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174.C.10x10	
						I38341902
21916A	AG	Common Girder	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.3	310 s Jun	11 2019 MiTek Industries, Inc. Wed Aug 28 10:27:50 201	9 Page 2

ID:B_Q7f7Biu7XIherXjarx6dzmHHa-dBpZ3MThoFftJJ8WQ9mpYI3KFfTXsNIpTJkzPCyjLW7

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 10=-2533(F) 11=-1626(F) 12=-1626(F) 13=-1631(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174.C.10x10	
					13834	41903
21916A	BE	Common Structural Gable	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.3	310 s Jun 1	1 2019 MiTek Industries, Inc. Wed Aug 28 10:27:51 2019 Page	2

ID:B_Q7f7Biu7XlherXjarx6dzmHHa-5ONxGiTKZZnkxTiiztH24WcQe3m6bspyizUWxeyjLW6

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-8=-60, 2-7=-20, 3-15=-10(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MII let® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of or design parameters and properly incorporate this design into the overall building designer must verify the possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	240.3174.C.10x10	
						138341904
21916A	BG	Common Girder	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.3	310 s Jun	1 2019 MiTek Industries, Inc. Wed Aug 28 10:27:53 2019	9 Page 2
		ID:E	8 Q7f7Biu	7XlherXjar	x6dzmHHa-1mVihOVa5A1SAns55IJW9xhiusZ93INF9Hzd	I0XyjLW4

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 9=-1626(F) 10=-1626(F) 11=-1626(F) 12=-1626(F) 13=-1626(F) 14=-1626(F) 15=-1626(F) 16=-2533(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0-4 0-0-4	5-0 4-11	-0 -12				9-11- 4-11-	12 12	<u> 10-</u> 0- 0-0-4	0 4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.36 BC 0.54 WB 0.09 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.04 0.01	(loc) 4-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 8-1-3 oc bracing.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=450/0-3-8, 4=450/0-3-8 Max Horz 2=33(LC 16) Max Uplift 2=-186(LC 8), 4=-186(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-699/592, 3-4=-699/589

 BOT CHORD
 2-6=-501/615, 4-6=-501/615

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-0-0, Exterior(2) 5-0-0 to 8-0-0, Interior(1) 8-0-0 to 10-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

SEAL 044925 August 29,2019

	<u> </u>		10-0-0						
			10-0-0						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL)	0.00	7	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT)	0.00	7	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT)	0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 38 lb	FT = 20%
LUMBER-	· ·		BRACING-					-	

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-11-12.

Max Horz 2=33(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-0-0, Corner(3) 5-0-0 to 8-0-0, Exterior(2) 8-0-0 to 10-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.

8) Non Standard bearing condition. Review required.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-11-5 11-2-13	20-10-0	1	30-5-3	35-8-11 41	-4-8
	5-11-5 5-3-8	11:2:13 20:00 30:5:3 35:8:11 41:4:4:8 -0:0-4:8] 97:3 97:3 5:3:8 5:7:13 2:0-0 CSI. Vert(LI) 0.39 11:13 >999 240 MT20 244/190 1.15 BC 0.83 Vert(LI) 0.39 11:13 >999 240 MT20 244/190 xr YES WB 0.73 Horz(CT) 0.16 8 n/a Weight: 244 lb FT = 20% STPI2014 Matrix-S BRACING- 2:0-0 oc purlins (3:4-15 max): 4:6. BOT CHORD Rigid ceiling directly applied or 2:3-7 oc purlins, except 2:-0:0 oc purlins (3:4-15 max): 4:6. BOT CHORD Rigid ceiling directly applied or 4:11:3 oc bracing. WEBS 1 Row at midpt 5-13, 5-9 cal, 2=1709/0-3:8 -587(LC 8) I If forces 250 (lb) or less except when shown. 9/1951, 4:5=:3006/1829, 5:6=:2972/1804, 6:7=:3283/1924, 2172/3979, 9:11=:2172/3979, 8:9=:1802/3263 ////////////////////////////////////				
Plate Offsets (X,Y)	[2:0-2-5,Edge], [5:0-4-0,0-4-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.83 WB 0.73 Matrix-S	DEFL. ir Vert(LL) 0.39 Vert(CT) -0.58 Horz(CT) 0.16	n (loc) l/defl L/d 9 11-13 >999 240 8 11-13 >853 180 6 8 n/a n/a	PLATES MT20 Weight: 244 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 4-5,5-6 BOT CHORD 2x6 SP WEBS 2x4 SP	No.2 *Except* : 2x6 SP No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathi 2-0-0 oc purlins (3-4-15 Rigid ceiling directly ap 1 Row at midpt	ng directly applied or 2-3-7 max.): 4-6. blied or 4-11-3 oc bracing. 5-13, 5-9	oc purlins, except
REACTIONS. (Ib/size Max H Max U	e) 8=1646/Mechanical, 2=1709/0-3-8 orz 2=89(LC 16) plift 8=-558(LC 9), 2=-587(LC 8)					
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- 7-8=- BOT CHORD 2-13= WEBS 3-13=	Comp./Max. Ten All forces 250 (lb) of 3698/2065, 3-4=-3319/1951, 4-5=-3006 3615/2010 1871/3356, 11-13=-2172/3979, 9-11=- -364/245, 4-13=-567/830, 5-13=-1218/ 302/248, 5-11=-100/346	less except when shown. /1829, 5-6=-2972/1804, 6- 2172/3979, 8-9=-1802/326 588, 5-9=-1250/605, 6-9=-5	7=-3283/1924, 33 562/816,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 17-1-0 to members and forces	loads have been considered for this de ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2)-0- 30-5-3, Exterior(2) 30-5-3 to 36-3-7, Inte & MWFRS for reactions shown; Lumbe	sign. mph; TCDL=6.0psf; BCDL= 10-8 to 3-3-2, Interior(1) 3- rior(1) 36-3-7 to 41-3-12 z r DOL=1.60 plate grip DO	=6.0psf; h=30ft; Cat. II; 3-2 to 11-2-13, Exterior one; porch left and righ L=1.60	Exp B; Enclosed; (2) 11-2-13 to 17-1-0, t exposed;C-C for		

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=558, 2=587.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:73.3

L	7-6-8	14-5-3		20-10-0		27-2-13		34-1-8	41-4-8		
1	7-6-8	6-10-11		6-4-13	1	6-4-13	·	6-10-11	7-3-0	1	
Plate Offsets (X,Y)	[2:0-2-5,Edge], [11:0-3	3-8,0-4-8], [13:0-2·	0,0-4-8]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incl Code IRC2015	2-0-0 . 1.15 1.15 r YES 5/TPI2014	CSI. TC BC WB Matrix	0.93 0.79 0.78 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.30 12-13 -0.46 12-13 0.14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 S 7-9: 2 BOT CHORD 2x6 S WEBS 2x4 S	P No.2 *Except* 2x4 SP No.1 3P No.2 3P No.3				BRACING TOP CHOI BOT CHOI WEBS	RD Structu 2-0-0 c RD Rigid c 1 Row	ural wood oc purlins ceiling dir at midpt	I sheathing dire (2-10-3 max.) ectly applied o 6-	ectly applied, except : 5-7. ir 5-4-2 oc bracing. -13, 6-11		
REACTIONS. (lb/si Max Max	ze) 9=1646/Mechanic Horz 2=112(LC 16) Uplift 9=-520(LC 9), 2=-	al, 2=1709/0-3-8 550(LC 8)									
FORCES. (lb) - Max TOP CHORD 2-3 8-9 BOT CHORD 2-1 10- WEBS 3-1 6-1	c. Comp./Max. Ten All =-3674/2012, 3-5=-294C =-3617/1976 4=-1803/3315, 13-14=-1 11=-1758/3254, 9-10=-1 4=-170/302, 3-13=-748/ 12-617/274, 7-11=-502/	forces 250 (lb) or //1674, 5-6=-2626/ 803/3315, 12-13= 758/3254 447, 5-13=-499/74 746 8-11=-697/41	less except (1577, 6-7=-2 -1553/2953, -7, 6-13=-59! 6, 8-10=-16	when shown. 2606/1562, 7 [,] 11-12=-1553 5/261, 6-12=- 5/292	-8=-2928/1665, 3/2953, 140/284,						
NOTES- 1) Unbalanced roof li 2) Wind: ASCE 7-10; MWFRS (enveloped Interior(1) 18-8-2 t members and forc 3) Provide adequate 4) This truss has bee 5) * This truss has bee will fit between the 6) Refer to girder(s) f 7) Provide mechanice 9=520. 8) One RT7A USP co and does not cons 9) Graphical purlin re	ve loads have been con Vult=130mph (3-second a) gable end zone and Co o 27-2-13, Exterior(2) 27 es & MWFRS for reaction drainage to prevent wate in designed for a 10.0 pc bottom chord and any co or truss to truss connect al connection (by others) onnectors recommended ider lateral forces. presentation does not d	sidered for this de d gust) Vasd=103r -C Exterior(2) -0-7 -2-13 to 31-5-11, ons shown; Lumbe er ponding. sf bottom chord liv ad of 20.0psf on t bother members, wi ions.) of truss to bearin d to connect truss epict the size or th	sign. mph; TCDL= 10-8 to 2-1-8 Interior(1) 3' r DOL=1.60 e load noncc he bottom ch th BCDL = 1 g plate capa to bearing wa	6.0psf; BCDL , Interior(1) 2 I-5-11 to 41-5 plate grip DC oncurrent with nord in all are 0.0psf. ble of withsta alls due to UF n of the purlin	L=6.0psf; h=30ft; -1-8 to 14-5-3, E) 3-12 zone; porch DL=1.60 n any other live lo as where a recta anding 100 lb uplit PLIFT at jt(s) 2. T along the top and	Cat. II; Exp B; E tterior(2) 14-5-3 left and right ex ads. ngle 3-6-0 tall b it at joint(s) exc his connection i d/or bottom cho	Enclosed; s to 18-8- sposed;C y 2-0-0 v ept (jt=lb) is for upli rd.	; -C for vide) ft only	A STORTH	SEAL 44925	A A A A A A A A A A A A A A A A A A A

SEAL 044925 MGINEER M. SEVILITION August 29,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

H	10-8-14	17-7-10	24-0-6	<u>30-11-2</u> 6-10-12	41-4-8	
Plate Offsets (X,Y)	[2:0-2-5,Edge]	0-10-12	0-4-10	0-10-12	10-5-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.82 BC 0.87 WB 0.53 Matrix-S	DEFL. ii Vert(LL) 0.28 Vert(CT) -0.44 Horz(CT) 0.12	n (loc) l/defl L/ 3 2-17 >999 24 4 14-15 >999 18 2 11 n/a n/	d PLATES 0 MT20 a Weight: 250 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 6-7,9-1 BOT CHORD 2x6 SP WEBS 2x4 SP	No.2 *Except* 1: 2x4 SP No.1 No.2 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood shea 2-0-0 oc purlins (2-10 Rigid ceiling directly 1 Row at midpt	athing directly applied, except)-13 max.): 6-7. applied or 5-2-14 oc bracing. 7-15	
REACTIONS. (Ib/size Max Ho Max Up) 2=1709/0-3-8, 11=1646/Mechanica prz 2=134(LC 16) blift 2=-512(LC 8), 11=-482(LC 9)					
FORCES. (lb) - Max. TOP CHORD 2-3 8-10= 8-10= BOT CHORD 2-17= 11-12 3-17= WEBS 3-17= 8-14= 8-14=	Comp./Max. Ten All forces 250 (lb) or 3627/1911, 3-5=-3250/1857, 5-6=-2542 -3211/1831, 10-11=-3570/1880 -1712/3278, 15-17=-1364/2621, 14-15= =-1667/3216 -471/254, 5-17=-405/598, 5-15=-616/3 -4595/353, 8-12=-396/568, 10-12=-441/2	less except when shown. /1504, 6-7=-2308/1410, 7 -1162/2300, 12-14=-1345 35, 6-15=-432/661, 7-14=- 258	-8=-2533/1496, 5/2602, -437/686,			
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 21-10-8 to members and forces 3) Provide adequate dr. 4) This truss has been will fit between the built 6) Refer to girder(s) for 7) Provide mechanical of 11=482. 8) One RT7A USP conn and does not conside 9) Graphical purlin representation 	loads have been considered for this de ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0- 24-0-6, Exterior(2) 24-0-6 to 28-3-5, In & MWFRS for reactions shown; Lumbe ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv o designed for a live load of 20.0psf on to bottom chord and any other members, w truss to truss connections. connection (by others) of truss to bearin nectors recommended to connect truss er lateral forces. esentation does not depict the size or th	sign. mph; TCDL=6.0psf; BCDL 10-8 to 2-1-8, Interior(1) 2 terior(1) 28-3-5 to 41-3-12 r DOL=1.60 plate grip DC e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. g plate capable of withsta to bearing walls due to UF he orientation of the purlin	2=6.0psf; h=30ft; Cat. II; -1-8 to 17-7-10, Exterio 2 zone; porch left and rig DL=1.60 n any other live loads. as where a rectangle 3- anding 100 lb uplift at joi PLIFT at jt(s) 2. This cor along the top and/or bo	Exp B; Enclosed; r(2) 17-7-10 to 21-10-8, th exposed;C-C for -6-0 tall by 2-0-0 wide nt(s) except (jt=lb) nection is for uplift only ottom chord.	AND RTH	SEAL 044925

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	10-8-14	15-10-0	17-7-10	24-0-6	25-10-0	30-11-2		41-4-8	
I	10-8-14	5-1-2	'1-9-10 '	6-4-13	'1-9-10 '	5-1-2	1	10-5-6	1
Plate Offsets (X,Y)	[2:0-2-5,Edge]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC BC WB Matri	0.83 0.91 0.52 ix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.39 17-19 -0.60 17-19 0.11 11	l/defl >999 >830 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 267 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF 6-7: 2x BOT CHORD 2x6 SF 15-16: WEBS 2x4 SF	P No.2 *Except* 6 SP No.2, 9-11: 2x4 SP No.1 P No.2 *Except* 2x8 SP No.2 P No.3	-		BRACING- TOP CHOF BOT CHOF	RD Structo 2-0-0 RD Rigid	ural wood oc purlins ceiling dire	sheathing diru (4-4-8 max.): ectly applied o	ectly applied, except 6-7. r 2-2-0 oc bracing.	
REACTIONS. (Ib/size Max H Max U	e) 2=1709/0-3-8, 11=1646/Mechanica lorz 2=134(LC 16) lplift 2=-512(LC 8), 11=-482(LC 9)	al							
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-10: BOT CHORD 2-19: 11-12 WEBS 3-19: 10-12	Comp./Max. Ten All forces 250 (lb) c -3626/1965, 3-5=-3250/1910, 5-6=-267 -3209/1881, 10-11=-3567/1926 =-1764/3277, 17-19=-1406/2626, 14-17 2=-1714/3212 =-466/248, 5-19=-424/724, 5-17=-736/3 2=-432/252, 6-17=-486/733, 7-14=-478	r less except 8/1623, 6-7=- =-1176/2290 95, 8-14=-70 722	t when shown. -2290/1416, 7 1, 12-14=-1386 02/376, 8-12=-	8=-2673/1616, 5/2613, 396/679,					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 23-5-13 tk for members and foi 3) Provide adequate di 4) This truss has been will fit between the b 6) Refer to girder(s) foi 7) Provide mechanical 11=482. 8) One RT7A USP corr 	e loads have been considered for this d /ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0 o 24-0-6, Exterior(2) 24-0-6 to 29-10-10 rces & MWFRS for reactions shown; Lu rainage to prevent water ponding. designed for a 10.0 psf bottom chord li in designed for a live load of 20.0psf on pottom chord and any other members, v r truss to truss connections. connection (by others) of truss to beari unectors recommended to connect truss	esign. Bmph; TCDL= -10-8 to 3-3-2 , Interior(1) 2 mber DOL=1 ve load nonc the bottom c vith BCDL = 2 ng plate capa ; to bearing w	=6.0psf; BCDL 2, Interior(1) 3 29-10-10 to 41 1.60 plate grip oncurrent with thord in all are 10.0psf. able of withsta valls due to UF	=6.0psf; h=30ft; (-3-2 to 17-7-10, E -3-12 zone; porch DOL=1.60 a any other live loa as where a rectar Inding 100 lb uplif PLIFT at jt(s) 2. TI	Cat. II; Exp B; I ixterior(2) 17-7 i left and right of ads. ngle 3-6-0 tall I it at joint(s) exc his connection	Enclosed; -10 to 23- exposed;C by 2-0-0 w cept (jt=lb) is for uplif	5-13, C ide t only	A UNRTH	CARO ESSION 12 SEAL 944925

and does not consider lateral forces. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

SEAL 044925 VGINEEP, HTT

ENGINEERING BY EREENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	240.3174.C.10x10	
						13834	1911
	21916A	HG	Half Hip Girder	2	2		
					-	Job Reference (optional)	
	84 Components (Dunn),	Dunn, NC - 28334,		8.3	10 s Jun 1	1 2019 MiTek Industries, Inc. Wed Aug 28 10:28:04 2019 Page	2

8.310 s Jun 11 2019 MiTek Industries, Inc. Wed Aug 28 10:28:04 2019 Page 2 ID:B_Q7f7Biu7XIherXjarx6dzmHHa-Dufs?9dTVZPu?TCCE6056FecEIEM8msthU7iuOyjLVv

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-10=-60, 2-11=-20

Concentrated Loads (lb)

Vert: 4=-66(B) 16=-24(B) 17=-24(B) 6=-66(B) 14=-24(B) 8=-66(B) 19=-60(B) 20=-57(B) 21=-57(B) 22=-66(B) 23=-66(B) 24=-66(B) 25=-66(B) 25=-24(B) 45=-24(B) 45=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Fiale Oil	sets (X, T)	[2.0-0-0,0-0-5], [2.0-4-0,0	-0-11]									
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.35	Vert(LL)	-0.02	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.05	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P						Weight: 18 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-7-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=126/Mechanical, 2=246/0-3-8, 4=44/Mechanical Max Horz 2=139(LC 12) Max Uplift 3=-104(LC 12), 2=-9(LC 12) Max Grav 3=140(LC 19), 2=246(LC 1), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=104.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CDL 10.0	Lumber DOL 1.15	BC 0.21	Vert(CL) -0.02 2-5 >999 240 Vert(CT) -0.04 2-5 >999 180	WI120 244/190
3CLL 0.0 * 3CDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.04 4 n/a n/a	Weight: 17 lb FT = 20%

BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

BOT CHORD

except 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=117/Mechanical, 2=246/0-3-8, 5=54/Mechanical Max Horz 2=104(LC 12) Max Uplift 4=-50(LC 12), 2=-29(LC 12)

Max Grav 4=117(LC 1), 2=246(LC 1), 5=84(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-4-12, Exterior(2) 3-4-12 to 4-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-7-12 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=117/Mechanical, 2=246/0-3-8, 5=53/Mechanical Max Horz 2=72(LC 12) Max Uplift 4=-47(LC 9), 2=-35(LC 12)

Max Grav 4=117(LC 1), 2=246(LC 1), 5=83(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1	2-2-10	1	4-7-12	1	
	Γ	2-2-10	I	2-5-2	1	
Plate Offsets (X,Y)	[2:0-4-8,0-0-11], [2:0-0-8,0-0-5], [3:0-2-	0,0-2-3]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.23 WB 0.00 Matrix-P	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.03	n (loc) l/defl L/d 2 2-5 >999 240 4 2-5 >999 180 3 4 n/a n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEDGE Left: 2x4 SP No.3	P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied	irectly applied or 4-7-1: or 10-0-0 oc bracing.	2 oc purlins,

Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=119/Mechanical, 2=246/0-3-8, 5=52/Mechanical

Max Horz 2=45(LC 8) Max Uplift 4=-50(LC 5), 2=-34(LC 8) Max Grav 4=120(LC 20), 2=246(LC 1), 5=83(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (lb) Vert: 7=-0(F)

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-0-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2 >999 240 Vert(CT) -0.00 2-4 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 8 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=38/Mechanical, 2=151/0-3-8, 4=18/Mechanical Max Horz 2=44(LC 12) Max Uplift 3=-25(LC 12), 2=-37(LC 8) Max Grav 3=38(LC 1), 2=151(LC 1), 4=36(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-0-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.03 WB 0.00 Matrix-P	Vert(CT) -0.00 Horz(CT) 0.00) 2-6) 5	>999 n/a	180 n/a	Weight: 10 lb	FT = 20%	
LUMBER TOP CHO BOT CHO	- ORD 2x4 SP ORD 2x4 SP	No.2 No.2		BRACING- TOP CHORD	Structu 2-0-0 c	ral wood	sheathing di : 3-5.	rectly applied or 2-0-0	oc purlins, except	

TOP CHORD2x4 SP No.2TOP CHORDStructural wood sheathing directly applied or 2-0-0 oc purlBOT CHORD2x4 SP No.22-0-0 oc purlins: 3-5.SLIDERLeft 2x4 SP No.3 -H 1-3-7BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=69/Mechanical, 2=196/0-3-8, 6=23/Mechanical Max Horz 2=73(LC 12) Max Uplift 5=-32(LC 9), 2=-35(LC 12) Max Grav 5=69(LC 1), 2=196(LC 1), 6=36(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

Plate Offsets (X,Y)	[5:0-4-4,0-1-8]	1	F	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.08 BC 0.04	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 5 >999 240 Vert(CT) -0.00 5 >999 180	PLATES GRIP MT20 244/190
BCDL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-R	Horz(C1) 0.00 3 n/a n/a	Weight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4	SP No.2		BRACING- TOP CHORD Structural wood sheathing directly	applied or 2-0-0 oc purlins,

2x4 SP No.2 ЗОТ СНОКИ WEBS 2x6 SP No.2 BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=157/0-3-8, 3=38/Mechanical, 4=12/Mechanical Max Horz 5=70(LC 12) Max Uplift 5=-14(LC 12), 3=-35(LC 12)

Max Grav 5=157(LC 1), 3=44(LC 19), 4=30(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u>5-10-0</u> 5-10-0								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.54 BC 0.37 WB 0.00	DEFL. Vert(LL) 0.0 Vert(CT) -0.1 Horz(CT) 0.0	n (loc) 9 2-6 0 2-6 0	l/defl >687 >633 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
	Code IRC2015/1PI2014	Matrix-P	PRACINC				vveight: 22 ib	F1 = 20%

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-10-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 6=222/Mechanical, 2=283/0-3-8 (lb/size) Max Horz 2=89(LC 8) Max Uplift 6=-102(LC 8), 2=-120(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-10-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=102.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Of	sets (X, Y)	[3:0-2-0,0-2-13]				-					1	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	0.06	2-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.06	2-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-R						Weight: 21 lb	FT = 20%
LUMBE	२-					BRACING						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 7=223/Mechanical, 2=283/0-3-0 Max Horz 2=79(LC 8)

Max Uplift 7=-94(LC 8), 2=-123(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-0-0, Exterior(2) 5-0-0 to 5-10-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-10-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-60, 2-6=-20 Concentrated Loads (lb)

Vert: 9=-200(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

<u>4-4-0</u> <u>4-4-0</u>							<u></u>		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.31 BC 0.14 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 -0.00	(loc) 1 1 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-10-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-7, 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=246/5-10-0, 6=42/5-10-0, 2=219/5-10-0 Max Horz 2=85(LC 12) Max Uplift 7=-10(LC 8), 6=-31(LC 9), 2=-68(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 6, and 2. This connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. (lb/size) 2=323/0-3-8, 6=263/Mechanical Max Horz 2=102(LC 8) Max Uplift 2=-75(LC 8), 6=-63(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	[2.0 0 0,Euge], [0.0 0 0,0 2 0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.63 BC 0.30 WB 0.03	DEFL. ir Vert(LL) 0.03 Vert(CT) -0.06 Horz(CT) 0.00	n (loc) l/defl L/d 3 2-7 >999 240 5 2-7 >999 180 0 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 30 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x6 SI	P No.2 P No.2	1	BRACING- TOP CHORD	Structural wood sheathing dir 2-0-0 oc purlins: 3-5.	rectly applied or 6-0-0 oc purlins, except

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (Ib/size) 2=329/0-3-8, 7=268/Mechanical Max Horz 2=80(LC 4)

Max Uplift 2=-87(LC 4), 7=-55(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-5=-20, 2-6=-20

Concentrated Loads (lb)

Vert: 8=-9(B) 9=-4(B) 10=2(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-8-14 10-8-14	20-10-0 10-1-2	<u>30-11-2</u> 10-1-2	41-8-0 10-8-14
OADING (psf) TCLL 20.0 TCDL 10.0 3CLL 0.0 * 3CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.88 BC 0.86 WB 0.54 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.24 14-16 >999 240 Vert(CT) -0.49 14-16 >999 180 Horz(CT) 0.13 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 237 lb FT = 20%
LUMBER-	P No.2		BRACING- TOP CHORD Structural wood sheathing di	rectly applied or 2-1-10 oc purlins.

BOT CHORD

WEBS

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=1716/0-3-8, 10=1716/0-3-8 Max Horz 2=151(LC 12) Max Uplift 2=-223(LC 12), 10=-223(LC 13)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-3646/459, 3-5=-3280/382, 5-6=-2264/330, 6-7=-2264/330, 7-9=-3280/382, 9-10=-3646/460

 BOT CHORD
 2-16=-489/3293, 14-16=-290/2653, 12-14=-170/2653, 10-12=-339/3293

WEBS 6-14=-97/1307, 7-14=-859/272, 7-12=-32/646, 9-12=-444/241, 5-14=-859/272, 5-16=-31/646, 3-16=-444/241

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 20-10-0, Exterior(2) 20-10-0 to 23-10-0, Interior(1) 23-10-0 to 42-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 7-14, 5-14

	10-8-14 1:	5-6-9	26-1-7		30-11-2	41-4-8	
Plate Offsets (X,Y)	[6:0-1-4,0-1-8], [7:0-3-0,Edge], [8:0-1-4,	9-11 0-1-8], [12:0-1-5,0-0-3]	10-0-14		4-9-11	10-5-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.84 BC 0.95 WB 0.59 Matrix-S	DEFL. in Vert(LL) -0.43 Vert(CT) -0.63 Horz(CT) 0.11	(loc) l/c 18-20 >9 18-20 >7 12	defi L/d)99 240 782 180 n/a n/a	PLATES MT20 Weight: 272 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 10-12: 2 BOT CHORD 2x6 SP 16-17: 2 WEBS 2x4 SP	No.2 *Except* 2x4 SP No.1 No.2 *Except* 2x8 SP No.2 No.3	<u> </u>	BRACING- TOP CHORD BOT CHORD WEBS	Structural v Rigid ceilin 1 Row at m	wood sheathing directly g directly applied or 2- nidpt 6-8	/ applied. 2-0 oc bracing.	
REACTIONS. (Ib/size Max Ho Max Up) 2=1709/0-3-8, 12=1646/Mechanica prz 2=158(LC 16) plift 2=-223(LC 12), 12=-199(LC 13)						
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9=- 8-9=- BOT CHORD 2-20= WEBS 8-15= 5-18= 5-18=	Comp./Max. Ten All forces 250 (lb) or 3625/476, 3-5=-3250/396, 5-6=-2724/4 2715/416, 9-11=-3209/391, 11-12=-356 -511/3276, 18-20=-254/2628, 15-18=-1 -97/821, 9-15=-812/293, 9-13=-134/69 -848/300, 5-20=-138/740, 3-20=-465/24	less except when shown. 1, 6-7=-296/113, 7-8=-299/ 6/471 52/2238, 13-15=-183/2619, 5, 11-13=-429/248, 6-18=-10 17, 6-8=-1994/305	/113, 12-13=-364/3211 03/839,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope), Interior(1) 24-11-10 DOL=1.60 3) All plates are 4x6 MT 4) This truss has been will fit between the biological for the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust will fit between the biological for the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of the trust of trust of the trust of trust of the trust	loads have been considered for this de ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0- to 41-3-12 zone;C-C for members and '20 unless otherwise indicated. designed for a 10.0 psf bottom chord liv or designed for a live load of 20.0psf on to ottom chord and any other members, w truss to truss connections. connection (by others) of truss to bearing nectors recommended to connect truss or lateral forces.	sign. mph; TCDL=6.0psf; BCDL= 10-8 to 3-3-2, Interior(1) 3-3 forces & MWFRS for reacti e load nonconcurrent with a he bottom chord in all areas th BCDL = 10.0psf. g plate capable of withstand to bearing walls due to UPL	6.0psf; h=25ft; Cat. II; -2 to 20-10-0, Exterior ons shown; Lumber D(any other live loads. s where a rectangle 3-6 ding 100 lb uplift at joir .IFT at jt(s) 2. This con	Exp B; Enclo (2) 20-10-0 t DL=1.60 plat 6-0 tall by 2-0 ht(s) except (nection is for	osed; o 24-11-10 te grip 0-0 wide (jt=lb) r uplift only	Junet H	CAROL ESSION N SEAL

9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L		5-5-8				
			5-5-8			I	
Plate Offsets (X,Y)	[2:0-2-0,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.28 BC 0.22 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (le n/a n/a 0.00	oc) I/c - - 3	defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R					Weight: 20 lb $FT = 20\%$
LUMBER-	l		BRACING-				

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-5-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=193/5-5-2, 3=193/5-5-2 Max Horz 4=-99(LC 13)

Max Uplift 4=-52(LC 13), 3=-8(LC 13)

Max Grav 4=194(LC 20), 3=193(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-9-4, Interior(1) 3-9-4 to 4-11-12 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towards BEFORE OSE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

¹⁾ Unbalanced roof live loads have been considered for this design.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-2-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=143/4-2-2, 3=143/4-2-2 Max Horz 4=-67(LC 13) Max Uplift 4=-33(LC 13), 3=-9(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-11-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=93/2-11-2, 3=93/2-11-2 Max Horz 4=-35(LC 13) Max Uplift 4=-15(LC 13), 3=-9(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MANDER IN HILLING WINDOW SEAL 044925 S Μ. //////// August 29,2019

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 9-0-4, Exterior(2) 9-0-4 to 12-0-4, Interior(1) 12-0-4 to 13-11-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.

 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 8. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 1=116(LC 9) (lb) -

2-8=-304/179

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 7 except 8=-131(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=339(LC 20), 8=439(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 7-9-4, Exterior(2) 7-9-4 to 10-9-4, Interior(1) 10-9-4 to 12-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6, 7, and 8. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	sf)).0).0).0 *).0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.18 0.13 0.06 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	2 2 3				BRACING- TOP CHORI BOT CHORI	D	Structur except e Rigid ce	al wood s and vertic iling dire	sheathing dire als. ctly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 11-7-8.

Max Horz 1=98(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7 except 8=-105(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=308(LC 20), 8=323(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-7-8, Interior(1) 3-7-8 to 6-6-4, Exterior(2) 6-6-4 to 9-6-4, Interior(1) 9-6-4 to 11-5-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 8. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCH CHERKING PAGE MITCH 2143 TeV. 100/32010 BECORE 052. Design valid for use only with MITCK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

CHIMAN AND 4925 //////// August 29,2019

Plate Offsets (X, Y)	[3:0-2-0,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.13 WB 0.05 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a Weight: 37 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 10-4-8.

(lb) -Max Horz 1=-79(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=331(LC 20), 7=259(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-3-4, Exterior(2) 5-3-4 to 8-3-4, Interior(1) 8-3-4 to 10-0-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

- will fit between the bottom chord and any other members.
- 6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 7. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (Ib/size) 1=153/7-11-12, 3=153/7-11-12, 4=261/7-11-12 Max Horz 1=-58(LC 10) Max Uplift 1=-34(LC 12), 3=-42(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-0-4, Exterior(2) 4-0-4 to 7-0-4, Interior(1) 7-0-4 to 7-6-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0'-6		5-6-2						
Plate Offsets (X,Y) [2:0	0-2-0,Edge]		001						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.26	Vert(CT)	n/a	-	n/a	999		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 16 lb	FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=183/5-5-12, 3=183/5-5-12 Max Horz 1=-38(LC 8) Max Uplift 1=-20(LC 12), 3=-20(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-6-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 🥢

2x4 📎

Structural wood sheathing directly applied or 3-0-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	0-0 <u>-6</u> 0-0 ¹ 6 [2:0-2-0,Edge]		3-0-8 3-0-2	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.03 BC 0.08 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L Vert(LL) n/a - n/a 9 Vert(CT) n/a - n/a 9 Horz(CT) 0.00 3 n/a r	/d PLATES GRIP 99 MT20 244/190 99 √a Weight: 8 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3

REACTIONS. (Ib/size) 1=83/2-11-12, 3=83/2-11-12 Max Horz 1=17(LC 11) Max Uplift 1=-9(LC 12), 3=-9(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

