

RE: 140.1445.C 36 MASON POINTE - ROOF Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Lot/Block:	Project Name:	140.1445.C
Address:		
City:		

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

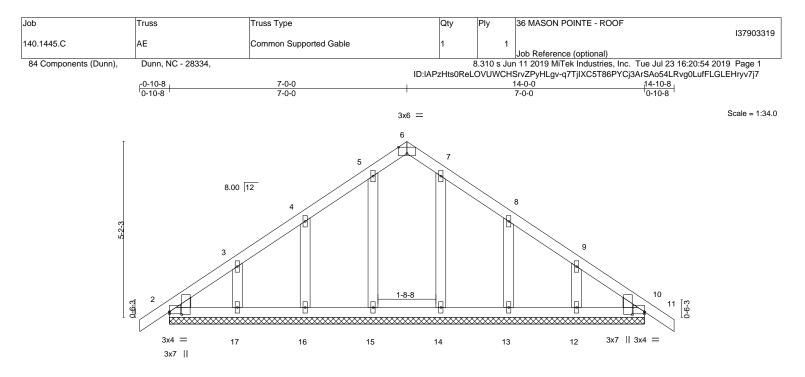
Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

	0 1/	T N			0 1//	T N	
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	137903319	ae	7/24/2019	21	137903339	р	7/24/2019
2	137903320	ag	7/24/2019	22	137903340	p1	7/24/2019
3	137903321	c1	7/24/2019	23	137903341	p2	7/24/2019
4	137903322	c2	7/24/2019	24	137903342	р3	7/24/2019
5	137903323	c3	7/24/2019	25	137903343	pj1	7/24/2019
6	137903324	h1	7/24/2019	26	137903344	pj2	7/24/2019
7	137903325	h2	7/24/2019	27	137903345	рјЗ	7/24/2019
8	137903326	h3	7/24/2019	28	137903346	t5	7/24/2019
9	137903327	h4	7/24/2019	29	137903347	t6	7/24/2019
10	137903328	h5	7/24/2019	30	137903348	t7	7/24/2019
11	137903329	h8	7/24/2019	31	137903349	t7a	7/24/2019
12	137903330	h9	7/24/2019	32	137903350	v1	7/24/2019
13	137903331	h10	7/24/2019	33	137903351	v2	7/24/2019
14	137903332	h11	7/24/2019	34	137903352	v3	7/24/2019
15	137903333	h12	7/24/2019	35	137903353	vp1	7/24/2019
16	137903334	hg1	7/24/2019	36	137903354	vp2	7/24/2019
17	137903335	hg2	7/24/2019	37	137903355	vp3	7/24/2019
18	137903336	j1 [¯]	7/24/2019				
19	137903337	j2	7/24/2019				
20	137903338	j3	7/24/2019				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by 84 Components - #2383.


Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

14-0-0 14-0-0 Plate Offsets (X,Y) [2:0-0-15,0-4-5], [2:0-0-0,0-0-12], [6:0-3-0,Edge], [10:Edge,0-0-12], [10:0-0-15,0-4-5]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.05 BC 0.03 WB 0.04 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	10 10		L/d 120 120 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x4 SF	? No.2		BRACING- TOP CHORD	Structur	al wood si	neathing di	rectly applied or 6-0-0	oc purlins.		

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

Max Horz 2=130(LC 11) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 13, 14, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 2, 10, 12, 13, 14, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

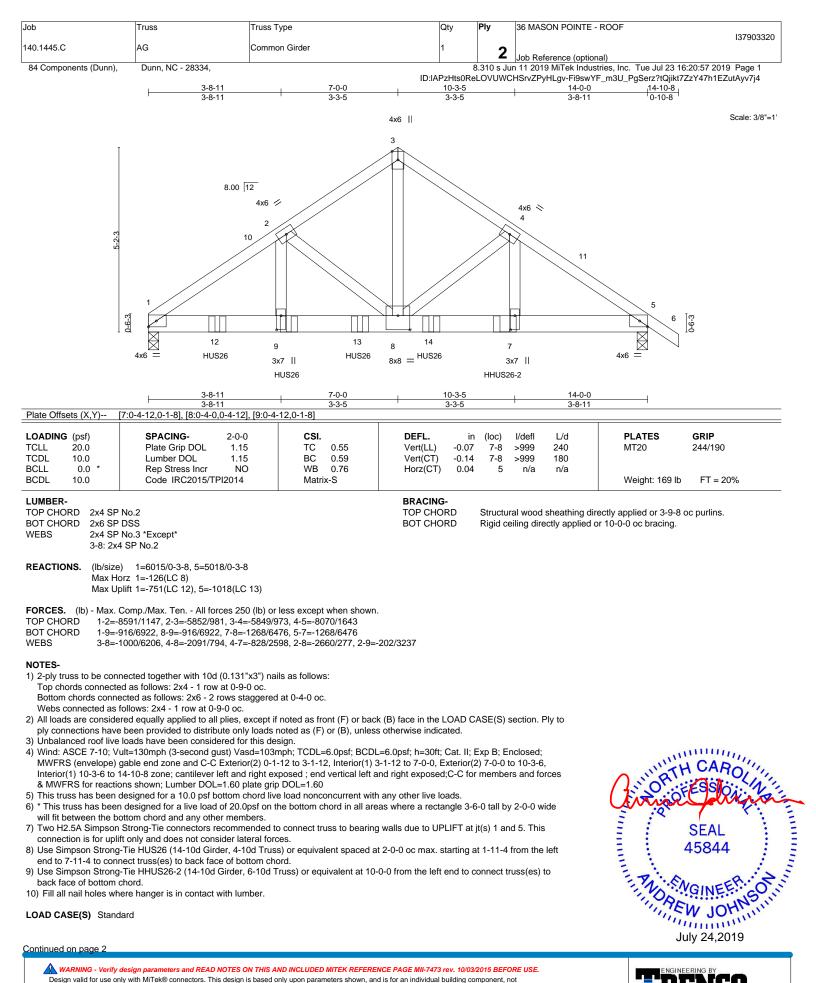
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-0-0, Exterior(2) 2-0-0 to 7-0-0, Corner(3) 7-0-0 to 10-0-0, Exterior(2) 10-0-0 to 14-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.



818 Soundside Road Edenton, NC 27932

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-0-0.

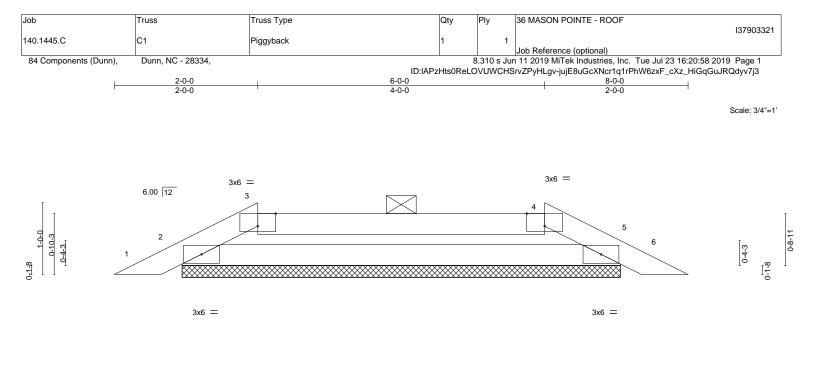
Design valid for use only with with exe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

J	b	Truss	Truss Type	Qty	Ply	36 MASON POINTE - ROOF
						137903320
1.	40.1445.C	AG	Common Girder	1	2	
					2	Job Reference (optional)
	84 Components (Dunn),	Dunn, NC - 28334,		8	3.310 s Jur	n 11 2019 MiTek Industries, Inc. Tue Jul 23 16:20:58 2019 Page 2

ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-jujE8uGcXNcr1q1rPhW6zxFvdXvCHXNqGuJRQdyv7j3

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-2520(B) 9=-1837(B) 12=-1837(B) 13=-1837(B) 14=-1843(B)

	1		8-0-0		1
			8-0-0		1
Plate Offsets (X,Y)	[3:0-3-0,Edge], [4:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.23 BC 0.35 WB 0.00	DEFL. i Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	1 6 n/r 90	PLATES GRIP MT20 244/190
3CDL 10.0	Code IRC2015/TPI2014	Matrix-R			Weight: 22 lb $FT = 20\%$
LUMBER- FOP CHORD 2x4 SI BOT CHORD 2x4 SI			BRACING- TOP CHORD	Structural wood sheathing di 2-0-0 oc purlins (6-0-0 max.)	rectly applied or 6-0-0 oc purlins, except
REACTIONS. (Ib/siz			BOT CHORD	Rigid ceiling directly applied	

Max Horz 2=13(LC 12) Max Uplift 2=-31(LC 9), 5=-31(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-476/265, 3-4=-439/249, 4-5=-476/265

BOT CHORD 2-5=-207/439

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

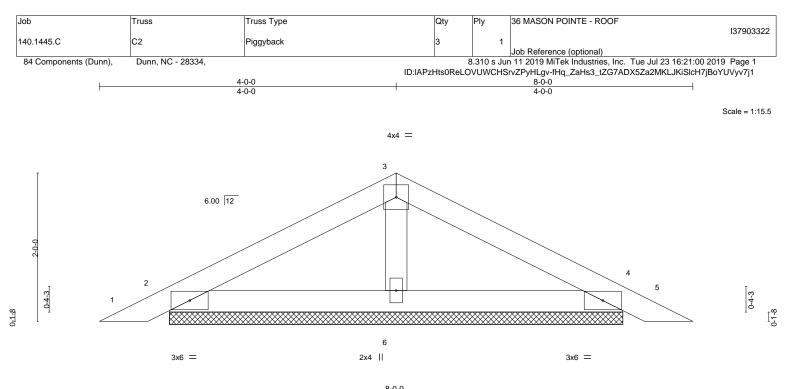
3) Provide adequate drainage to prevent water ponding

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) n/a

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

⊢			8-0-0					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL)	0.00	5	n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT)	0.01	5	n/r	90	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	0.00	4	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 24 lb FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS

REACTIONS. (lb/size) 2=164/6-1-6, 4=164/6-1-6, 6=234/6-1-6 Max Horz 2=31(LC 12)

Max Uplift 2=-44(LC 12), 4=-50(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

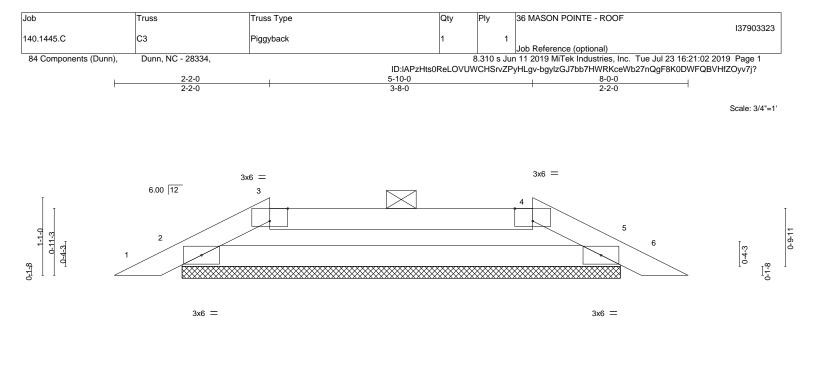
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

			8-0-0						-
			8-0-0						
Plate Offsets (X,Y)	[3:0-3-0,Edge], [4:0-3-0,Edge]								
LOADING (psf) ICLL 20.0 ICDL 10.0 SCLL 0.0 * SCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.34 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.00	(loc) 6 5	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S REACTIONS. (Ib/si Max	SP No.2 SP No.2 ze) 2=282/6-1-6, 5=282/6-1-6 Horz 2=-14(LC 13) Uplift 2=-28(LC 9), 5=-28(LC 8)		BRACING- TOP CHORI BOT CHORI		2-0-0 o	c purlins	(6-0-0 max.):	ectly applied or 6-0-0 3-4. or 10-0-0 oc bracing.) oc purlins, except
FOP CHORD 2-3	k. Comp./Max. Ten All forces 250 (lb) oi =-441/249, 3-4=-401/234, 4-5=-441/249 =-187/401	less except when shown.							
NOTES-	ve loads have been considered for this de	sign.							

8.0.0

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

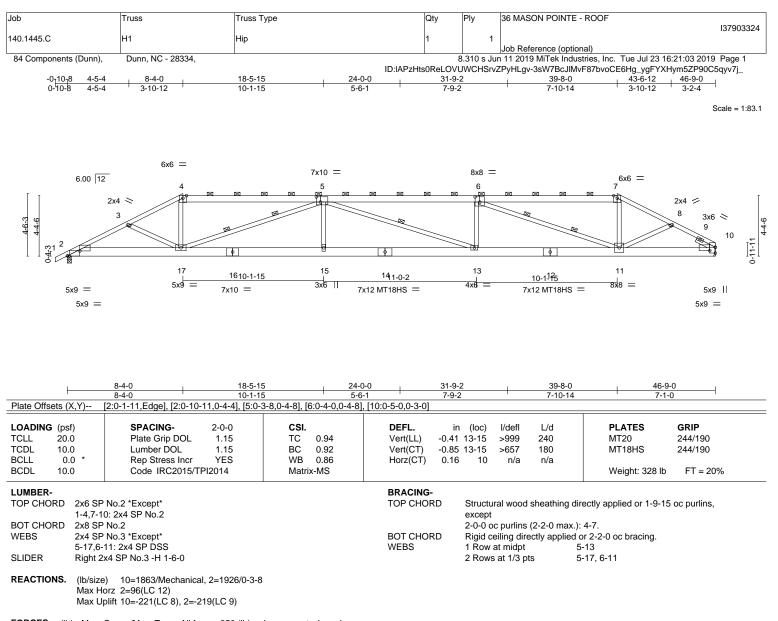
3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) n/a

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-3794/820, 3-4=-3624/757, 4-5=-3201/711, 5-6=-5432/1157, 6-7=-2806/631, 7-8=-3162/664, 8-10=-3114/684

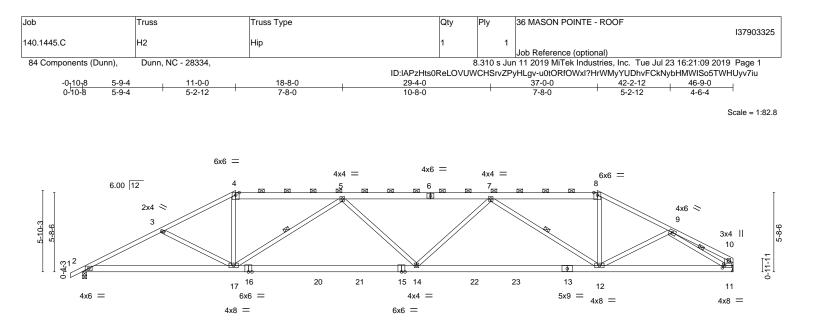
 BOT CHORD
 2-17=-695/3352, 15-17=-1052/5573, 13-15=-1052/5573, 11-13=-1022/5414, 10-11=-550/2671

WEBS 4-17=-147/1193, 5-15=0/420, 5-17=-2615/528, 6-13=0/483, 6-11=-2847/575, 7-11=-101/962, 8-11=-62/319

NOTES-

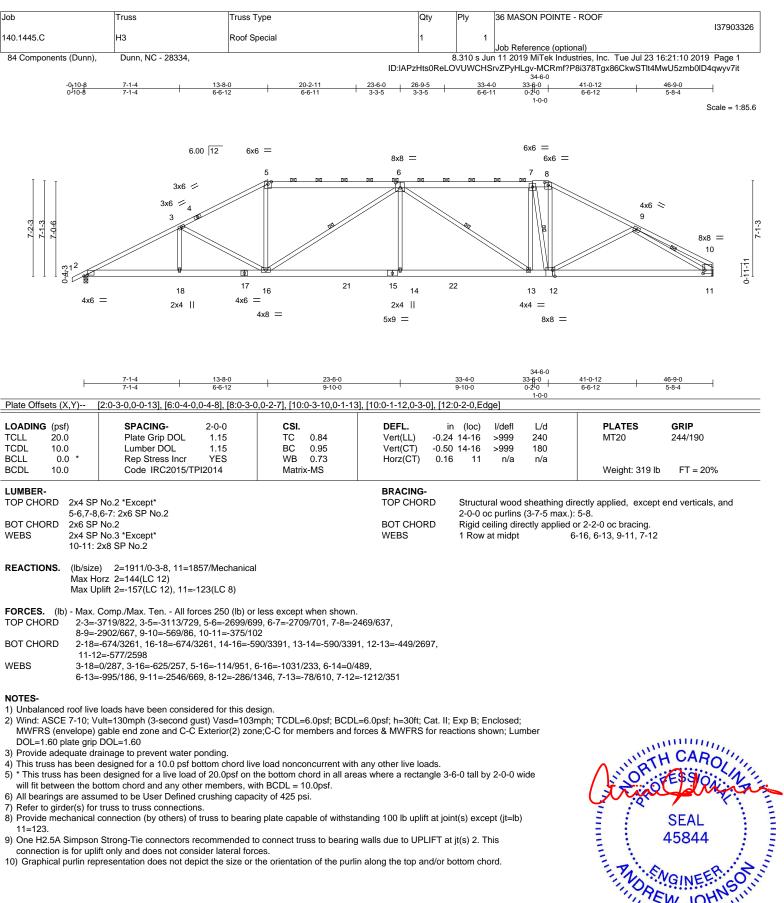
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

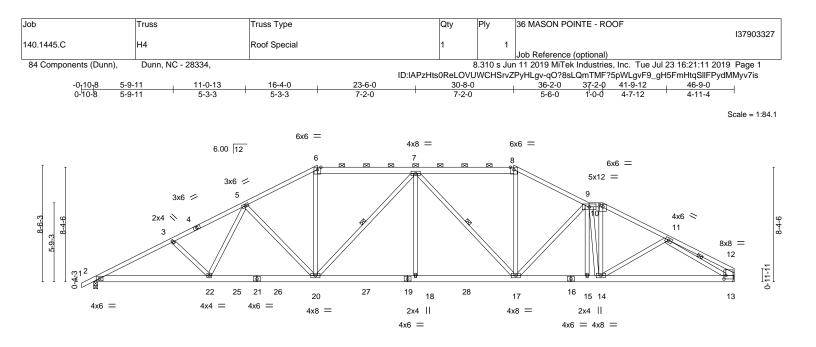
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=221.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



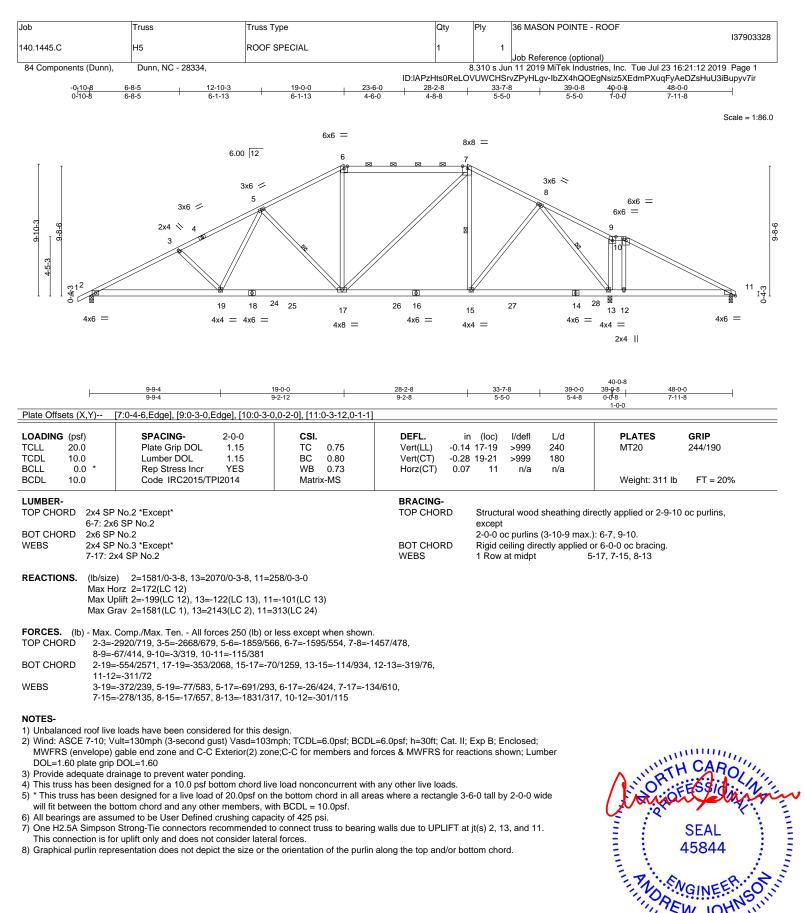
	-9-4 11-0-0 -9-4 5-2-12	24-0-0 13-0-0	37-0-0	46-9-0
Plate Offsets (X,Y)	[11:0-2-0,0-2-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.71 BC 0.88 WB 0.75 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.29 14-17 >999 240 Vert(CT) -0.62 14-17 >900 180 Horz(CT) 0.14 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 295 lb FT = 20%
4-6,6-8 BOT CHORD 2x6 SP 15-16: WEBS 2x4 SP	P No.2 *Except* :: 2x6 SP No.2 P DSS *Except* 2x6 SP No.2 P No.3 *Except* 2x8 SP No.2		BRACING- TOP CHORDStructural wood sheathing except end verticals, and Rigid ceiling directly applie WEBSUNDERS1 Row at midpt	directly applied or 2-7-11 oc purlins, 2-0-0 oc purlins (2-8-12 max.): 4-8. ed or 8-2-15 oc bracing. 5-17, 7-12, 9-11
Max H	e) 2=1911/0-3-8, 11=1857/Mechanica orz 2=122(LC 12) plift 2=-170(LC 9), 11=-174(LC 8)	I		
TOP CHORD 2-3=- 8-9=- BOT CHORD 2-17= WEBS 3-17=	Comp./Max. Ten All forces 250 (lb) of 3697/838, 3-4=-3383/726, 4-5=-2949/6 3017/652, 9-10=-458/101, 10-11=-302/ -706/3275, 14-17=-776/4019, 12-14=-7 -341/240, 4-17=-164/1169, 5-17=-1391 -1591/390, 8-12=-130/996, 9-12=-37/3	37, 5-7=-4089/872, 7-8=-26 93 49/3886, 11-12=-541/2521 /376, 5-14=0/313, 7-14=0/		
 Wind: ASCE 7-10; V MWFRS (envelope) DOL=1.60 plate grip Provide adequate dr This truss has been This truss has been * This truss has been All bearings are assist Refer to girder(s) for Provide mechanical 11=174. One H2.5A Simpsor connection is for upl 	gable end zone and C-Č Exterior(2) zon DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on vottom chord and any other members, w umed to be User Defined crushing capa	mph; TCDL=6.0psf; BCDL= e;C-C for members and for e load nonconcurrent with he bottom chord in all area ith BCDL = 10.0psf. city of 425 psi. Ing plate capable of withstar o connect truss to bearing ces.	as where a rectangle 3-6-0 tall by 2-0-0 wide nding 100 lb uplift at joint(s) except (jt=lb) walls due to UPLIFT at jt(s) 2. This	SEAL 45844

- s) of truss to bearing plate capable of withstanding 100 lb uplift at jease in the second se 8) 11=174.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


EW JOHN JOHN JOHN July 24,2019 818 Soundside Road Edenton, NC 27932

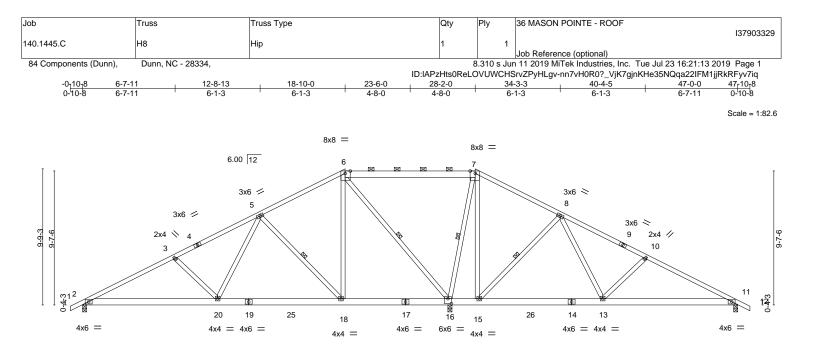
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

EW JOHN "Innon" July 24,2019



L	8-5-4	16-4-0		23-6-0		30-8-0				37-2-0	46-9-0		
Plate Offsets (X,Y)	8-5-4 [10:0-3-0,0-2-0], [12:0-3	<u>7-10-12</u> 3-10.0-1-13]. [12:0)-1-12.0-3-(7-2-0		7-2-0		5-6	6-0	1 ¹ -0-0	9-7-0	•	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES	CSI. TC BC WB Matrix	0.69 0.87 0.62	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.21 1 -0.42 1 0.14	8-20	l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 338 lb	GRIP 244/190 FT = 20%	
BOT CHORD 2x6 SP WEBS 2x4 SP	6 SP No.2				BRACING TOP CHC BOT CHC WEBS	RD S e RD F	except e	end vertica	als, and	2-0-0 oc ed or 8-	/ applied or 2-6-0 ; purlins (3-5-9 ma 7-1 oc bracing. 7-17, 11-13		
Max He	e) 2=1911/0-3-8, 13= orz 2=167(LC 12) plift 2=-184(LC 12), 13=												
8-9=- BOT CHORD 2-22= 14-19 WEBS 3-22= 7-18=	Comp./Max. Ten All f 3723/861, 3-5=-3510/8: 2775/717, 9-10=-2619// -725/3295, 20-22=-555 5=-510/2757, 13-14=-5/ -314/203, 5-22=-65/50/ -0/378, 7-17=-708/148, 3=-2566/639, 9-14=-884	27, 5-6=-2824/732 661, 10-11=-2963 5/2870, 18-20=-45 67/2534 0, 5-20=-583/250, 8-17=-142/888, 9	2, 6-7=-246 /692, 11-12 1/2775, 17- 6-20=-168	3/692, 7-8=-24 2=-503/102, 12 -18=-451/2775 /955, 7-20=-61	-13=-339/104 5, 15-17=-511/2 8/156,	753,							
DOL=1.60 plate grip 3) Provide adequate dr. 4) This truss has been 5) * This truss has been will fit between the b 6) All bearings are assu 7) Refer to girder(s) for 8) Provide mechanical 13=160. 9) One H2.5A Simpson	fult=130mph (3-second gable end zone and C- DOL=1.60 ainage to prevent wate designed for a 10.0 psf n designed for a live loa ottom chord and any ot umed to be User Define truss to truss connection connection (by others) a Strong-Tie connectors ift only and does not co	gust) Vasd=103m C Exterior(2) zone r ponding. bottom chord live d of 20.0psf on th her members, witi d crushing capacions. of truss to bearing recommended to nsider lateral force	ph; TCDL= e;C-C for m load noncc e bottom cl h BCDL = 1 ity of 425 ps g plate capa connect trues.	embers and fo poncurrent with hord in all area 0.0psf. si. ble of withstar uss to bearing	rces & MWFRS any other live lo is where a recta nding 100 lb upl walls due to UF	ads. angle 3-6-0 ift at joint(s PLIFT at jt(s) tall by () excep (s) 2. Th	wn; Lumł 2-0-0 wic ot (jt=lb) is		ī	The	SEAL 45844	In Summannin

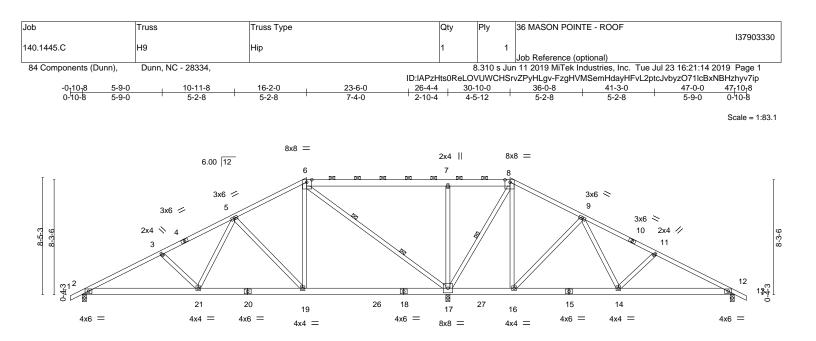
- 11(S) 'Y I 13=160
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


104 "ununu July 24,2019

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

—	9-8-4 9-8-4	<u>18-1</u> 9-1-		26-4-4 7-6-4	28-2-0	<u>37-3-12</u> 9-1-12	47-0-0	
Plate Offsets (X,Y)	9-8-4 [6:0-4-6,Edge], [7:0-4-6,E			7-0-4	1-9-12	9-1-12	9-0-4	
			• · ·]					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d		GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.75	Vert(LL)	0.14 20-22	>999 240		244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.51	Vert(CT)	-0.17 20-22	>999 180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 1.00	Horz(CT	0.02 16	n/a n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matrix-MS				Weight: 312 lb	FT = 20%
LUMBER-				BRACIN	G-			
TOP CHORD 2x4 SF	No.2 *Except*			TOP CH	ORD Struct	ural wood sheat	thing directly applied or 4-7-3	oc purlins, except
	6 SP No.2					oc purlins (10-0		
BOT CHORD 2x6 SF				BOT CHO	- J.		applied or 6-0-0 oc bracing.	
WEBS 2x4 SF	P No.3			WEBS	1 Row	at midpt	5-18, 6-16, 7-16, 8-15	
Max H Max U Max C FORCES. (Ib) - Max. TOP CHORD 2-3≕ 8-10: BOT CHORD 2-20:	 e) 2=795/0-3-8, 16=258 lorz 2=163(LC 16) lplift 2=-187(LC 9), 16=-5 irav 2=866(LC 23), 16=29 Comp./Max. Ten All for -1321/716, 3-5=-1071/665 =-440/214, 10-11=-690/26 =-534/1141, 18-20=-167/6 3=-131/576 	80(LC 9), 11=-13 584(LC 1), 11=5 rces 250 (lb) or le 9, 5-6=-256/156, 60	34(LC 13) 84(LC 24) ess except when sho 6-7=-400/883, 7-8=-	own. 345/773,	486/0-3-8			
	=-369/258, 5-20=-488/591 =-1283/811, 7-15=-434/52	,	, ,	,				
 Wind: ASCE 7-10; MWFRS (envelope) for reactions shown Provide adequate d This truss has been * This truss has been 	a loads have been consid /ult=130mph (3-second g gable end zone and C-C ; Lumber DOL=1.60 plate rainage to prevent water p designed for a 10.0 pst n designed for a live load pottom chord and any othe	ust) Vasd=103m Exterior(2) zone grip DOL=1.60 ponding. ottom chord live of 20.0psf on the	b); TCDL=6.0psf; B ; porch left and right load nonconcurrent e bottom chord in all	exposed;C-C for m	embers and forco	ces & MWFRS	Anna Print	H CAROLINI


6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

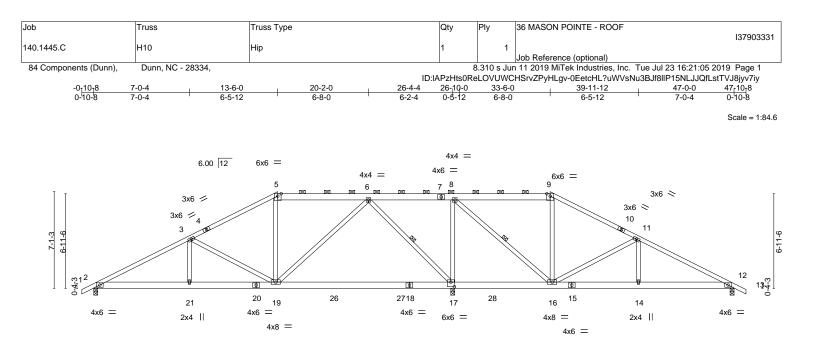
7) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16. This connection is for uplift only and does not consider lateral forces.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

L	8-4-4 16-2-0	21-3-2	26-4-4 30-10-0	38-7-12	47-0-0	
Plate Offsets (X,Y)	8-4-4 7-9-12 [6:0-4-6,Edge], [8:0-4-6,Edge]	5-1-2	5-1-2 4-5-12	7-9-12	8-4-4	·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.72 BC 0.45 WB 0.81 Matrix-MS	Vert(LL) 0.10 21-23 >9 Vert(CT) -0.15 17-19 >9	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%
6-8: 2 BOT CHORD 2x6 S WEBS 2x4 S	P No.2 *Except* tx6 SP No.2 IP No.2 IP No.3 *Except* 2x4 SP No.2		2-0-0 oc p	urlins (10-0-0 max.): ng directly applied or nidpt 8-1	6-0-0 oc bracing. 17	oc purlins, except
Max Max	ze) 2=820/0-3-8, 17=2533/(0-3-8 + H1 Horz 2=-141(LC 13) Uplift 2=-200(LC 9), 17=-677(LC 9), 12= Grav 2=879(LC 23), 17=2533(LC 1), 12	-131(LC 13)	req. 0-4-0), 12=512/0-3-8			
TOP CHORD 2-3	c. Comp./Max. Ten All forces 250 (lb) c =-1409/799, 3-5=-1196/759, 5-6=-523/34 =-159/466, 9-11=-544/317, 11-12=-754/3	1, 6-7=-425/875, 7-8=-424				
BOT CHORD 2-2 WEBS 3-2 7-1	1=-619/1227, 19-21=-292/802, 17-19=-1 1=-318/223, 5-21=-401/476, 5-19=-586/4 7=-573/264, 8-17=-1010/678, 8-16=-433 14=-310/218	01/448, 16-17=-376/458, 1 55, 6-19=-526/665, 6-17=	-1451/958,			
 2) Wind: ASCE 7-10; MWFRS (envelope for reactions show) 3) Provide adequate (4) This truss has bee 5) * This truss has bee 	ve loads have been considered for this d Vult=130mph (3-second gust) Vasd=100 e) gable end zone and C-C Exterior(2) zo n; Lumber DOL=1.60 plate grip DOL=1.6 drainage to prevent water ponding. n designed for a 10.0 psf bottom chord li en designed for a live load of 20.0psf on bottom chord and any other members, v	imph; TCDL=6.0psf; BCD ne; porch left and right ex 0 ve load nonconcurrent witt the bottom chord in all are	posed;C-C for members and forces &	& MWFRS	Auger Part	CAROLINE

 All bearings are assumed to be User Defined crushing capacity of 425 psi.
 H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.


8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

The manual of the second Summer :2 SEAL 45844 EW JOY "HILLING July 24,2019

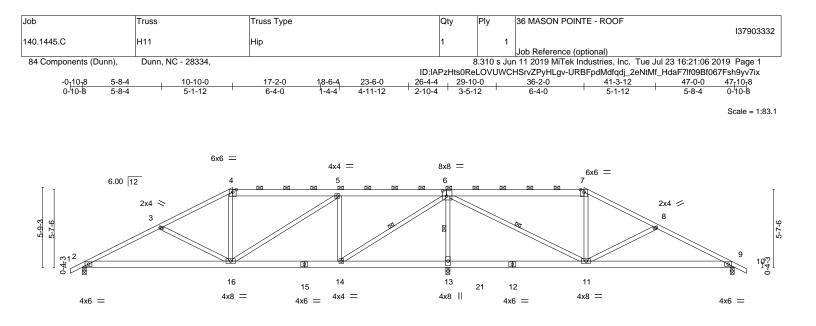
🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

<u> </u>	7-0-4 13-6-0	20-2-0	26-4-4	33-6-0	39-11-12	47-0-0
Plate Offsets (X,Y)	7-0-4 6-5-12 [17:0-3-0,0-4-0]	6-8-0	6-2-4	7-1-12	6-5-12	7-0-4
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.52 BC 0.56 WB 0.94	Vert(CT) -0.	in (loc) l/defl 20 17-19 >999 36 17-19 >883 02 12 n/a		PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS			1	Weight: 302 lb FT = 20%
	P No.2 *Except* 0: 2x6 SP No.2		BRACING- TOP CHORD	Structural wood	sheathing directly ap	oplied or 4-3-12 oc purlins,
BOT CHORD 2x6 SF WEBS 2x4 SF			BOT CHORD WEBS		(6-0-0 max.): 5-9. ctly applied or 6-0-0 6-17. 8-1	
Max U	e) 17=2391/(0-3-8 + H10A Simpson S lorz 2=119(LC 16) plift 17=-735(LC 9), 12=-146(LC 13), 2= irav 17=2391(LC 1), 12=643(LC 24), 2=	=-227(LC 9)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

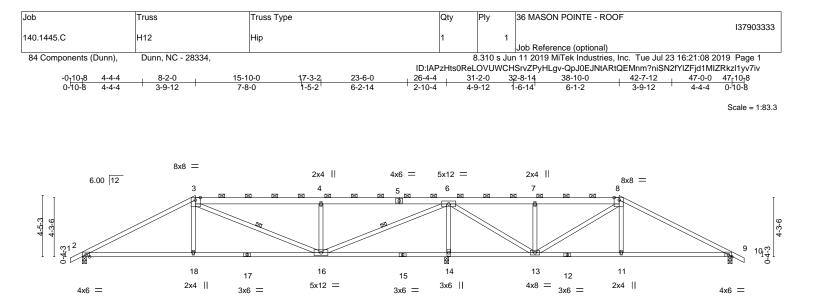
- TOP CHORD 2-3=-1489/893, 3-5=-890/577, 5-6=-718/560, 6-8=-398/826, 11-12=-889/491
- BOT CHORD 2-21=-683/1269, 19-21=-683/1269, 16-17=-826/702, 14-16=-330/733, 12-14=-330/733
- WEBS 3-19=-636/489, 6-19=-559/785, 6-17=-1304/790, 8-17=-1198/687, 8-16=-729/1142,
 - 9-16=-352/129, 11-16=-696/551, 11-14=-210/329


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 2. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

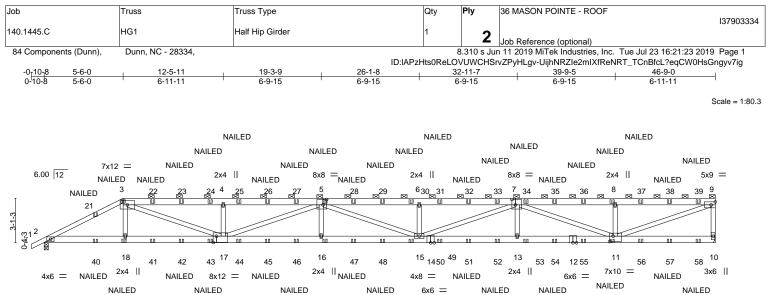
818 Soundside Road Edenton, NC 27932



—	5-8-4 10-10-0	18-6-4	26-4-4	36-2-0	41-3-12 47-0-0
Plate Offsets (X,Y	<u>5-8-4</u> <u>5-1-12</u> ') [6:0-3-4,0-4-8]	7-8-4	7-10-0	9-9-12	5-1-12 5-8-4
Fidle Olisets (A, I) [0.0-3-4,0-4-0]				
LOADING (psf)	SPACING-		SI. DEFL.	in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 T(MT20 244/190
TCDL 10.0 BCLL 0.0		1.15 BC YES W			
BCDL 10.0	Code IRC2015/1	-	atrix-MS	0.02 0 1.04 1.04	Weight: 296 lb FT = 20%
LUMBER-			BRACING		
	x4 SP No.2 *Except*		TOP CHO		directly applied or 4-3-0 oc purlins, except
	-6,6-7: 2x6 SP No.2				
	x6 SP No.2 x4 SP No.3		BOT CHO WEBS		0
WED3 2)	14 JF 110.3		WED3	T Row at midpt	6-14, 6-13, 6-11
	b/size) 2=962/0-3-8, 13=22	10/0-3-8, 9=693/0-3-8			
	/lax Horz 2=-96(LC 13) /lax Uplift 2=-266(LC 9), 13=-`				
	/ax Grav 2=978(LC 23), 13=2		.)		
	Max. Comp./Max. Ten All fo 2-3=-1599/979, 3-4=-1264/84				
	7-8=-680/464, 8-9=-1015/598		13/331, 0-7=-333/433,		
			-13=-619/521, 9-11=-453/882		
	3-16=-379/275, 4-16=-209/29 6-13=-2013/1178, 6-11=-812	, ,	-711/383, 6-14=-933/1483,		
	0-13=-2013/11/0, 0-11=-012	1252, 0-11=-301/270			
NOTES-					
	of live loads have been considered and a second of the loads have been considered at the load of the l		N 6 Opof: PCDI 6 Opof: h 20ft:	Cat. III: Eve B: Englagadi	
			left and right exposed;C-C for me	in (loc) I/defl L/d PLATES GRIP 0.18 16-18 >999 240 MT20 244/190 -0.24 16-18 >999 240 Weight: 296 lb FT = 20% - RD Structural wood sheathing directly applied or 4-3-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-7. RD Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 6-14, 6-13, 6-11 Cat. II; Exp B; Enclosed; mbers and forces & MWFRS ads. ngle 3-6-0 tall by 2-0-0 wide LIFT at jt(s) 2 and 9. This Current state of the second structure of	
for reactions sh	nown; Lumber DOL=1.60 plate	e grip DOL=1.60	3 1 1 1 1 1 1		
	ate drainage to prevent water		nconcurrent with any other live lo	e de	A MARINE AND AND A MARINE AND
					TH CARO
will fit between	the bottom chord and any oth	ner members, with BCDL	= 10.0psf.		ON SELSEN AND
	e assumed to be User Define				(And Aminer
	npson Strong-Tie connectors or uplift only and does not cor		t truss to bearing walls due to UF	LIF I at jt(s) 2 and 9. This	
			t truss to bearing walls due to UF	LIFT at jt(s) 13. This	SEAL
	a unlift and and door not on		5		- · OLAL · ·

- connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

45844



1	8-2-0	17-3-2	. 20	6-4-4	32-8-14	38-10-0	47-0-0	1
	8-2-0	9-1-2	9	9-1-2	6-4-10	6-1-2	8-2-0	1
Plate Offsets (X	(,Y) [3:0-4-6,Edge], [8:0	-4-6,Edge]						
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	O Plate Grip D O Lumber DOI O * Rep Stress I	- 1.15 ncr YES	CSI. TC 0.83 BC 0.84 WB 0.86 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.22 11-24 >9 -0.28 16-18 >9	lefi L/d 199 240 199 180 n/a n/a	PLATES MT20 Weight: 248 lb	GRIP 244/190 FT = 20%
				DRAGING				
BOT CHORD WEBS	2x4 SP No.1 *Except* 3-5,5-8: 2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 8-13: 2x4 SP No.2			BRACING- TOP CHOR BOT CHOR WEBS	2-0-0 oc pu	vood sheathing direct Irlins (5-10-6 max.): 3 g directly applied or 6 Iidpt 3-16	-8.	oc purlins, except
REACTIONS.	(lb/size) 2=994/0-3-8, 1 Max Horz 2=-74(LC 13) Max Uplift 2=-294(LC 9), Max Grav 2=999(LC 23),	14=-812(LC 9), 9=-19	4(LC 8)					
FORCES. (Ib) TOP CHORD	- Max. Comp./Max. Ten 2-3=-1595/1005, 3-4=-12 8-9=-974/614							
BOT CHORD	2-18=-776/1348, 16-18= 9-11=-431/791	-768/1340, 14-16=-66	5/476, 13-14=-665/476,	11-13=-423/783,				
WEBS	3-18=-227/371, 4-16=-6 8-11=-209/329, 7-13=-34			3-13=-473/312,				
 Wind: ASCE MWFRS (en for reactions Provide aded This truss ha 	roof live loads have been c 7-10; Vult=130mph (3-sec velope) gable end zone an shown; Lumber DOL=1.60 quate drainage to prevent v is been designed for a 10.0 nas been designed for a live	ond gust) Vasd=103n d C-C Exterior(2) zono plate grip DOL=1.60 vater ponding. psf bottom chord live	ph; TCDL=6.0psf; BCDI e; porch left and right exp e load nonconcurrent with	posed;C-C for mer h any other live loa	nbers and forces & ds.	MWFRS	A UNIORTH	CAROLIN
 will fit betwee 6) All bearings 7) One H2.5A S connection is 8) Two H2.5A S 	are the bottom chord and ar are assumed to be User De Simpson Strong-Tie connect s for uplift only and does no Simpson Strong-Tie connect for uplift only and does no	y other members. efined crushing capac tors recommended to t consider lateral forc tors recommended to	ity of 425 psi. connect truss to bearing es. connect truss to bearing	g walls due to UPL	IFT at jt(s) 2 and 9	. This	- •	SEAL 45844
					/ou h otto ao oh oud			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED

<u>5-6-0</u> 5-6-0	<u>12-5-11</u> 6-11-11	19-3- 6-9-1	5	26-1-8 6-9-15	32-11-7 6-9-15		39-9-5 6-9-15	46-9 6-11-	
Plate Offsets (X,Y)	[5:0-3-0,0-4-8], [7:0-3-0,0)-4-8], [11:0-3-0,0-4	4-8], [17:0-2-12,0-5·	-4]					
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 NO Pl2014	CSI. TC 0.47 BC 0.98 WB 0.78 Matrix-MS	DEFL. Vert(Ll Vert(C Horz(C	́Г) -1.13 15-16	l/defl >758 >494 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 601 lb	GRIP 244/190 FT = 20%
1-3: 2x BOT CHORD 2x6 SF 14-17: WEBS 2x4 SF	P No.2 *Except* x4 SP No.2 P No.2 *Except* 2x6 SP DSS P No.3 *Except* -17,5-15,7-15,7-11,9-11: 2	2x4 SP No.2		BRACI TOP C BOT C	HORD Structu except	end vertion	als, and 2-0-0	ctly applied or 5-1-15 oc purlins (4-3-11 m 8-9-6 oc bracing.	
Max H	e) 10=2540/Mechanical lorz 2=119(LC 12) Jplift 10=-892(LC 9), 2=-74	,							
TOP CHORD 2-3=- 7-8=- BOT CHORD 2-18: 13-11 WEBS 3-18: 6-15:	Comp./Max. Ten All for -5257/1779, 3-4=-8817/31 -5702/2039, 8-9=-5702/20 =-1632/4647, 17-18=-1622 5=-3357/9380, 11-13=-33 =0/452, 3-17=-1653/4492, =-521/368, 7-15=-627/179 =-2148/6009	148, 4-5=-8815/314)39, 9-10=-2426/94 9/4665, 16-17=-39(53/9389 , 4-17=-658/442, 5-	45, 5-6=-11047/394 43 09/10962, 15-16=-3 -17=-2311/823, 5-1	1, 6-7=-11047/3 3914/10952, 6=0/396,	941,				
 Top chords connect Bottom chords connect Bottom chords connected as 2) All loads are conside ply connections hav 3) Unbalanced roof live 4) Wind: ASCE 7-10; V. MWFRS (envelope) DOL=1.60 plate grip 5) Provide adequate di 6) This truss has been 7) * This truss has been 7) * This truss has been 8) All bearings are ass 9) Refer to girder(s) foi 10) Provide mechanica 10=892. 11) Two H2.5A Simpson 	rainage to prevent water p a designed for a 10.0 psf b on designed for a live load bottom chord and any othe sumed to be User Defined r truss to truss connection al connection (by others) c on Strong-Tie connectors plift only and does not con	at 0-9-0 oc, 2x6 - 2 rows staggered at 0 9-0 oc. plies, except if not ute only loads note ered for this design ust) Vasd=103mph Exterior(2) zone;C bonding. ottom chord live loa of 20.0psf on the b er members. crushing capacity of s. of truss to bearing p recommended to consider lateral forces	2 rows staggered a 0-9-0 oc. ed as front (F) or bi- d as (F) or (B), unle ; TCDL=6.0psf; BC -C for members an ad nonconcurrent w bottom chord in all a of 425 psi. blate capable of witt connect truss to bea	ack (B) face in ti ess otherwise in :DL=6.0psf; h=3 d forces & MWF vith any other liv areas where a re hstanding 100 lk aring walls due t	dicated. Oft; Cat. II; Exp B; E RS for reactions sh e loads. ctangle 3-6-0 tall b uplift at joint(s) ex o UPLIFT at jt(s) 2.	Enclosed; hown; Lum by 2-0-0 wi ccept (jt=lb This	ber de		SEAL 45844 VGINEER VJOHNSUITUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
Design valid for use o a truss system. Before building design. Brac	y design parameters and READ I only with MiTek® connectors. This re use, the building designer must cing indicated is to prevent bucklir r stability and to prevent collapse	s design is based only u t verify the applicability on ng of individual truss we	pon parameters shown, of design parameters and b and/or chord members	and is for an individ d properly incorpora s only. Additional ter	al building component, e this design into the ov nporary and permanent	not rerall			ERING BY A MiTek Affiliate

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

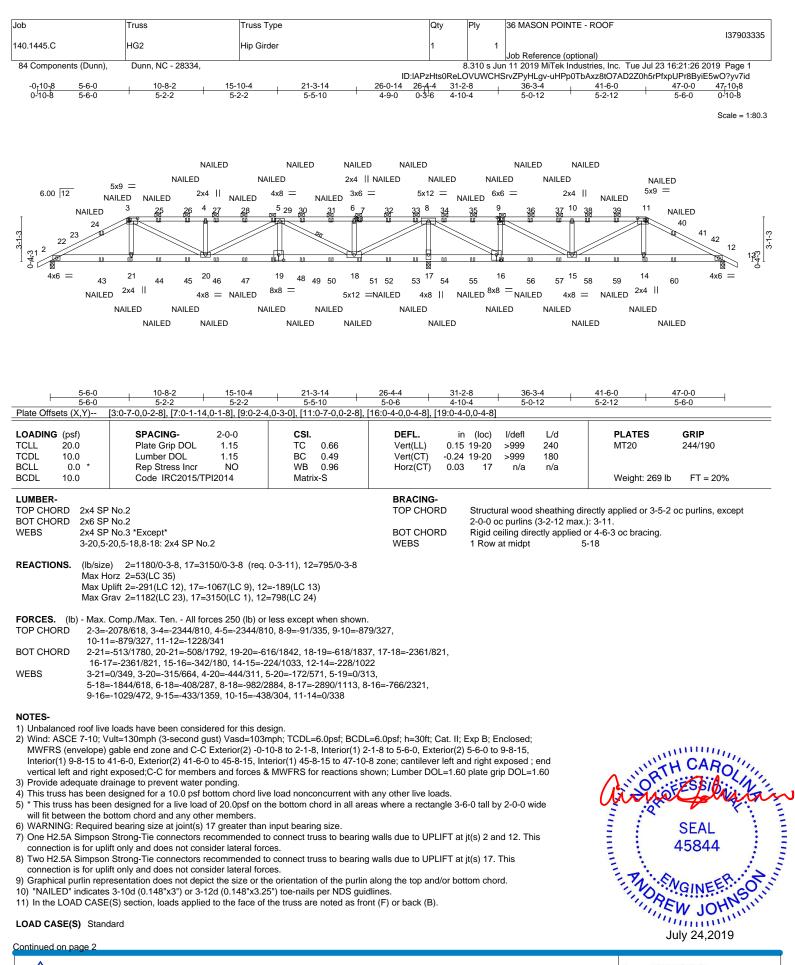
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 MASON POINTE - ROOF
					137903334
140.1445.C	HG1	Half Hip Girder	1	2	
				_	Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,			3.310 s Jur	11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:23 2019 Page 2
		ID:IAPzH	Its0ReLO	VUWCHSr	vZPyHLgv-UijhNRZIe2mIXfReNRT_TCnBfcL?eqCW0HsGngyv7ig

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-9=-60, 2-10=-20

Concentrated Loads (lb)

Vert: 3=-41(B) 18=-17(B) 5=-41(B) 16=-17(B) 8=-41(B) 11=-17(B) 21=-38(B) 22=-41(B) 23=-41(B) 24=-41(B) 25=-41(B) 26=-41(B) 27=-41(B) 28=-41(B) 29=-41(B) 30=-41(B) 31=-41(B) 31=-41(B) 32=-41(B) 32=

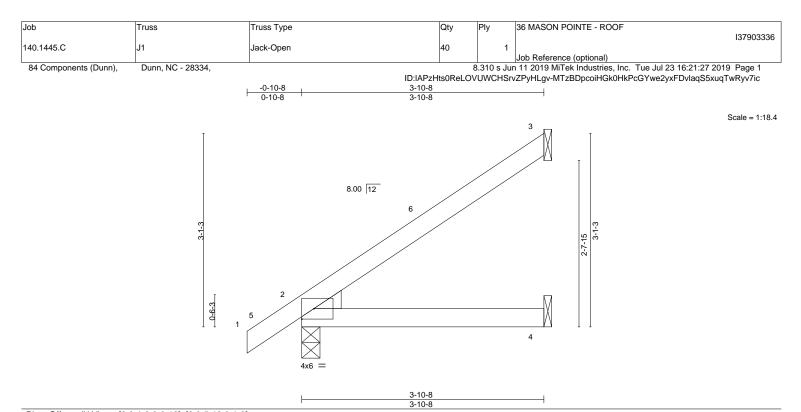
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 MASON POINTE - ROOF
					137903335
140.1445.C	HG2	Hip Girder	1	1	
					Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8	3.310 s Jur	11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:26 2019 Page 2

8.310 s Jun 11 2019 MiTek Industries, Inc. Tue Jul 23 16:21:26 2019 Page 2 ID:IAPzHts0ReLOVUWCHSrvZPyHLgv-uHPp0TbAxz8t07AD2Z0h5rPfxpUPr8ByiE5wO?yv7id

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-11=-60, 11-13=-60, 2-12=-20

Concentrated Loads (lb)

Vert: 3=-41(F) 7=-41(F) 11=-41(F) 21=-17(F) 16=-17(F) 9=-41(F) 14=-17(F) 24=-38(F) 25=-41(F) 26=-41(F) 27=-41(F) 28=-41(F) 29=-41(F) 30=-41(F) 31=-41(F) 32=-41(F) 32=-41(F) 33=-41(F) 33=-41(F) 35=-41(F) 35=-41(F) 36=-41(F) 37=-41(F) 38=-41(F) 39=-41(F) 49=-38(F) 43=-42(F) 44=-17(F) 45=-17(F) 45=-17(F) 45=-17(F) 45=-17(F) 45=-17(F) 45=-17(F) 45=-17(F) 55=-17(F) 55=

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL)	-0.01	2-4	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.16	Vert(CT)	-0.02	2-4	>999	180		
BCLL 0.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 15 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

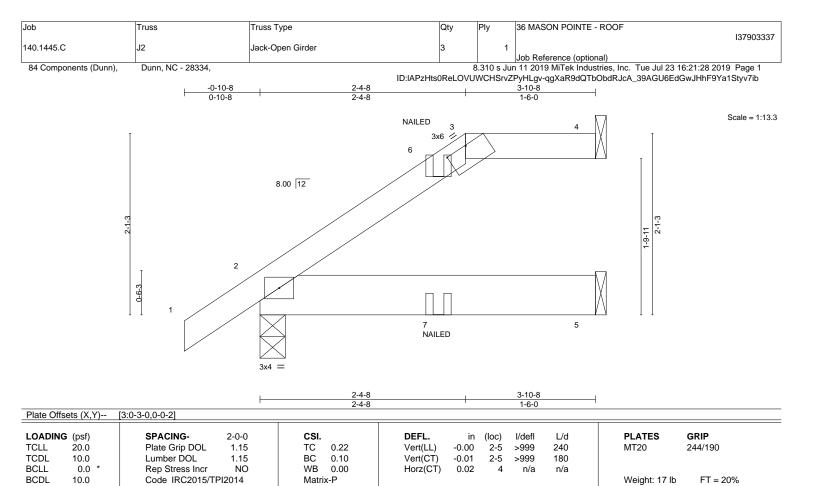
Structural wood sheathing directly applied or 3-10-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=101/Mechanical, 2=216/0-3-8, 4=37/Mechanical Max Horz 2=119(LC 12)

Max Uplift 3=-85(LC 12), 2=-13(LC 12) Max Grav 3=113(LC 19), 2=216(LC 1), 4=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-10-8 oc purlins, except 2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 4=98/Mechanical, 2=237/0-3-8, 5=62/Mechanical Max Horz 2=82(LC 12) Max Uplift 4=-45(LC 9), 2=-37(LC 12)

Max Grav 4=98(LC 1), 2=237(LC 1), 5=88(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
connection is for uplift only and does not consider lateral forces.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
connection is for uplift only and does not consider lateral forces.

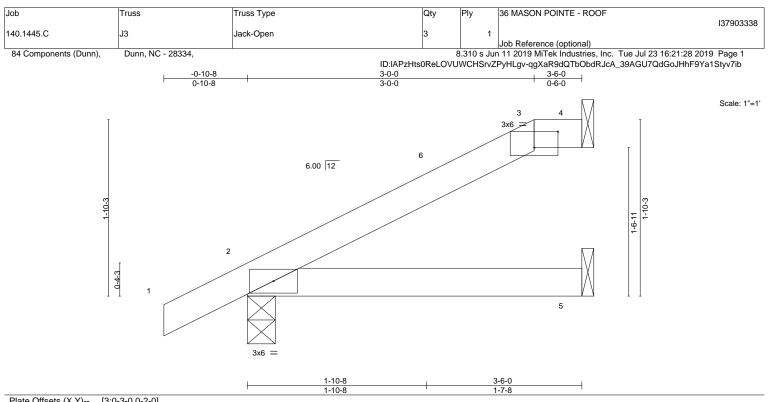
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb)

Vert: 6=-25(F) 7=-17(F)

¹⁾ Unbalanced roof live loads have been considered for this design.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.01 2-5 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.01 2-5 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 4 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 13 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-0 oc purlins, except 2-0-0 oc purlins: 3-4.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=85/Mechanical, 2=202/0-3-8, 5=37/Mechanical Max Horz 2=73(LC 12) Max Uplift 4=-39(LC 12), 2=-35(LC 12) Max Grav 4=85(LC 1), 2=202(LC 1), 5=61(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-0-0, Exterior(2) 3-0-0 to 3-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

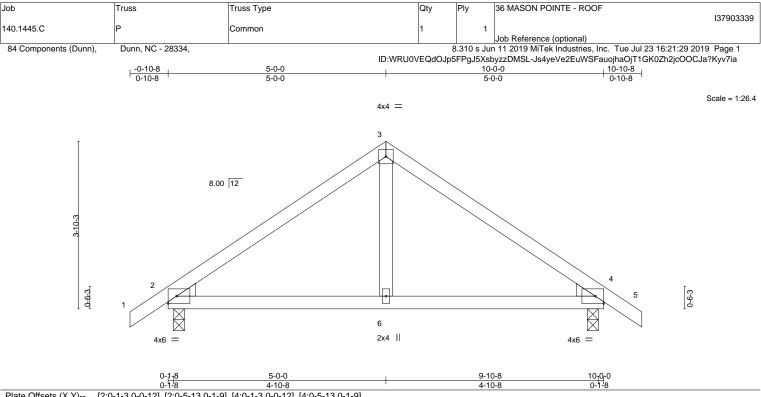
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.


One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
connection is for uplift only and does not consider lateral forces.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.02	6-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	6-9	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	-MS						Weight: 43 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (Ib/size) 2=452/0-3-0, 4=452/0-3-0 Max Horz 2=-87(LC 10) Max Uplift 2=-75(LC 12), 4=-75(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-456/110, 3-4=-456/110

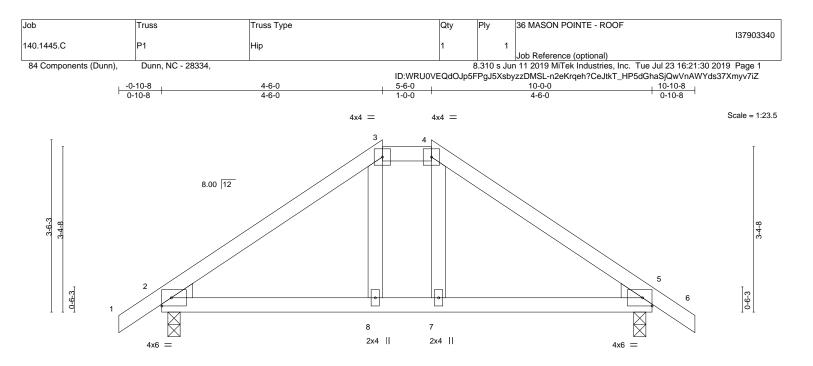
BOT CHORD 2-6=0/322, 4-6=0/322

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 425 psi.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

SEAL 45844 July 24,2019

	0- <u>1-</u> 8 0-1-8	4-6-0 4-4-8		5-6-0 1-0-0			9-10- 4-4-6		10 ₁ 0-0 0-1-8	
Plate Offsets (X,Y)	[2:0-1-3,0-0-12], [2:0-5-1]	3,0-1-9], [5:0-1-3,	0-0-12], [5:0-5-13,0-1-9]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.22 BC 0.22 WB 0.04 Matrix-MS	Vert(CT) -(in 0.02 0.03 0.00	(loc) 7-14 7-14 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER- FOP CHORD 2x4 SF 3OT CHORD 2x4 SF WEBS 2x4 SF WEDGE	PNo.2	i		BRACING- TOP CHORD BOT CHORD		2-0-0 o	c purlins	(6-0-0 max.):	rectly applied or 6-0-0 3-4. or 10-0-0 oc bracing.	oc purlins, except
Left: 2x4 SP No.3 , Rig		0-3-0								

REACTIONS. (lb/size) 2=452/0-3-0, 5=452/0-3-0 Max Horz 2=-78(LC 10) Max Uplift 2=-75(LC 12), 5=-75(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-467/118, 3-4=-351/138, 4-5=-467/118

BOT CHORD 2-8=-2/340, 7-8=-2/336, 5-7=-2/340

NOTES-

1) Unbalanced roof live loads have been considered for this design.

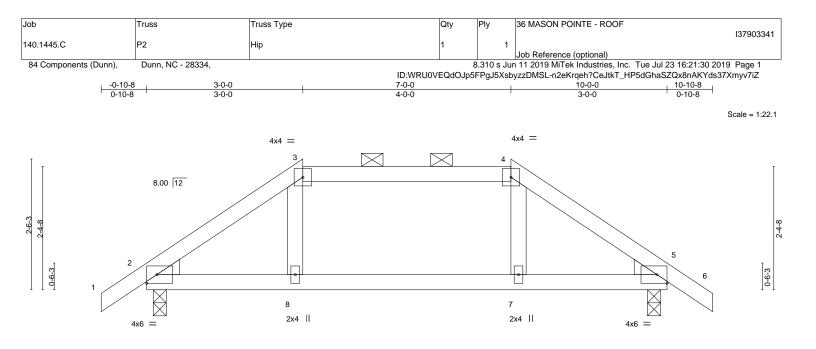
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.


7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

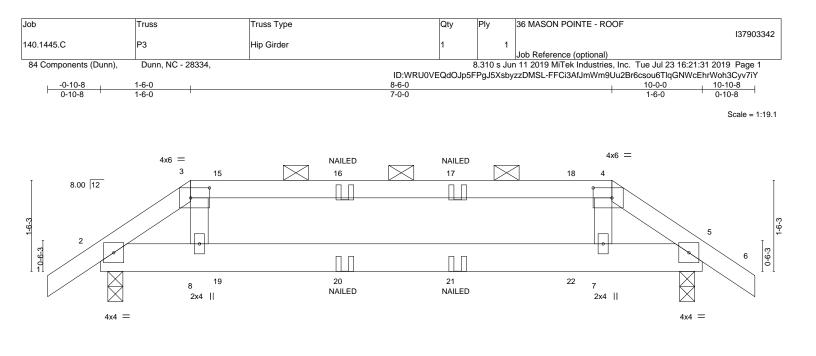
	0- <u>1-8</u> 3-0-0 0-1-8 2-10-8		7-0-0 4-0-0		<u>9-10-8</u> 2-10-8	10 ₁ 0 ₁ 0 0-1-8	
Plate Offsets (X,Y) LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	[2:0-1-3,0-0-12], [2:0-5-13,0-1-9], [5:0-1 SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	-3,0-0-12], [5:0-5-13,0-1-9] CSI. TC 0.23 BC 0.18 WB 0.06 Matrix-MS	DEFL. in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01	8 >999	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
	No.2 No.3 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlin	s (6-0-0 max.): 3		oc purlins, except
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) o 525/140, 3-4=-408/147, 4-5=-525/140 48/413, 7-8=-51/408, 5-7=-48/413	r less except when shown.					
2) Wind: ASCE 7-10; V	loads have been considered for this do ult=130mph (3-second gust) Vasd=103 MWFRS (directional) and C-C Exterior(mph; TCDL=6.0psf; BCDL=					

Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

0- <u>1-8</u> 0-1-8	1-6-0 1-4-8		8-6-0 7-0-0			<u>9-10-8</u> 1-4-8	<u>10_r0_r0</u> 0-1-8
Plate Offsets (X,Y)	[3:0-3-12,0-2-0], [4:0-3-12,0-2-0]						
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.84	DEFL. Vert(LL) -0.0	n (loc) 2 7-8	l/defl L/d >999 240	PLATES MT20	GRIP 244/190
CDL 10.0 CLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.24 WB 0.08	Vert(CT) -0.0 Horz(CT) 0.0	4 7-8	>999 180 n/a n/a	WI 20	244/100
CDL 10.0	Code IRC2015/TPI2014	Matrix-MS				Weight: 45 lb	FT = 20%
UMBER- OP CHORD 2x4 SP OT CHORD 2x6 SP			BRACING- TOP CHORD		ural wood sheathing o oc purlins (4-8-11 ma	directly applied or 6-0-0 o	oc purlins, except
/EBS 2x4 SP			BOT CHORD			d or 10-0-0 oc bracing.	
EACTIONS. (Ib/size) 2=488/0-3-0, 5=488/0-3-0						

Max Horz 2=-36(LC 10) Max Uplift 2=-100(LC 12), 5=-100(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-713/186, 3-4=-646/198, 4-5=-713/186 TOP CHORD

BOT CHORD 2-8=-152/640, 7-8=-138/646, 5-7=-152/640

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

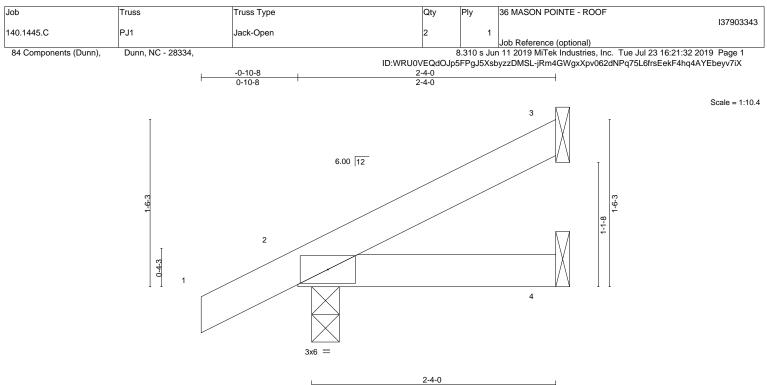
10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 58 lb up at 2-0-12, and 69 lb down and 58 lb up at 7-11-4 on top chord, and 25 lb down and 23 lb up at 2-0-12, and 25 lb down and 23 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-12=-20


Concentrated Loads (lb)

Vert: 15=-3(B) 16=-1(B) 17=-1(B) 18=-3(B) 19=-25(B) 20=-8(B) 21=-8(B) 22=-25(B)

818 Soundside Road

Edenton, NC 27932

				2-2-8								
LOADING	· · · ·	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	-0.00	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.00	7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-MP						Weight: 9 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=53/Mechanical, 4=28/Mechanical, 2=153/0-3-0 Max Horz 2=58(LC 12) Max Uplift 3=-20(LC 12), 2=-39(LC 12) Max Grav 3=53(LC 1), 4=40(LC 3), 2=153(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown;

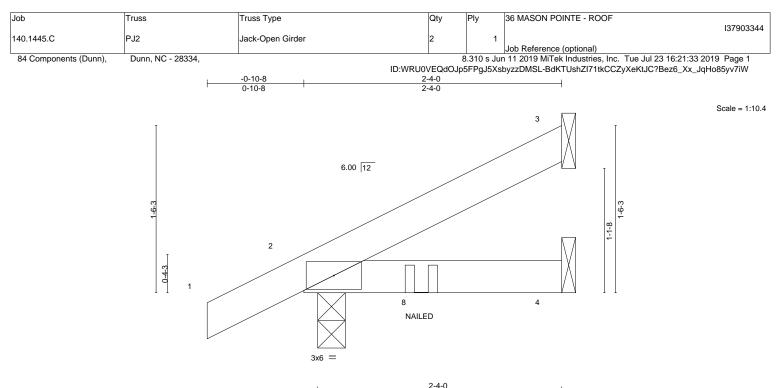
- Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 425 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.


7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

SEAL 45844 July 24,2019

			2-2-8	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.08	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 7 >999 240	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.10 WB 0.00	Ver(LL) -0.00 7 >333 240 Vert(CT) -0.00 4-7 >999 180 Horz(CT) -0.00 3 n/a n/a	10120 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 9 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=61/Mechanical, 4=45/Mechanical, 2=182/0-3-0 Max Horz 2=58(LC 12) Max Uplift 3=-27(LC 12), 4=-7(LC 12), 2=-65(LC 12) Max Grav 3=61(LC 1), 4=45(LC 3), 2=182(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

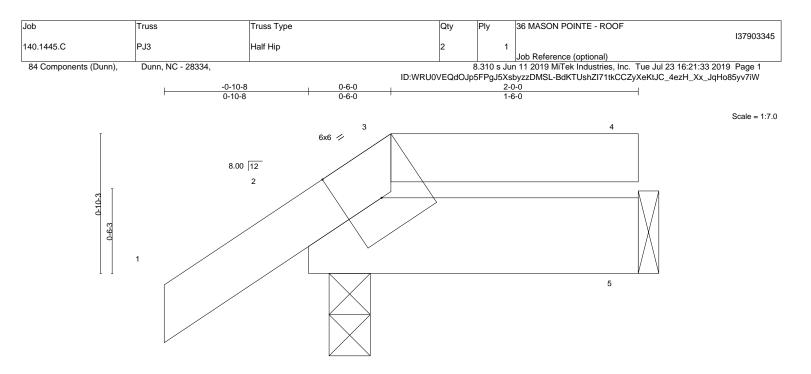
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
- connection is for uplift only and does not consider lateral forces.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-5=-20 Concentrated Loads (lb)


Vert: 8=-54(B)

Structural wood sheathing directly applied or 2-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	[2:0-3-3,0-0-0], [3:0-2-13,Edge], [3:0-1-	0-1-8 0-1-8 0,0-1-7]	0-11-7 0-9-15		2-0-0 1-0-9		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.09 WB 0.00 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 8 -0.00 8 0.00 2	>999 180	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHOR	D Struct	ural wood sheathing dir	ectly applied or 2-0-0	oc purlins, except

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

REACTIONS. (lb/size) 5=69/Mechanical, 2=144/0-3-0 Max Horz 2=40(LC 12) Max Uplift 5=-36(LC 12), 2=-68(LC 12)

Max Grav 5=74(LC 22), 2=144(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

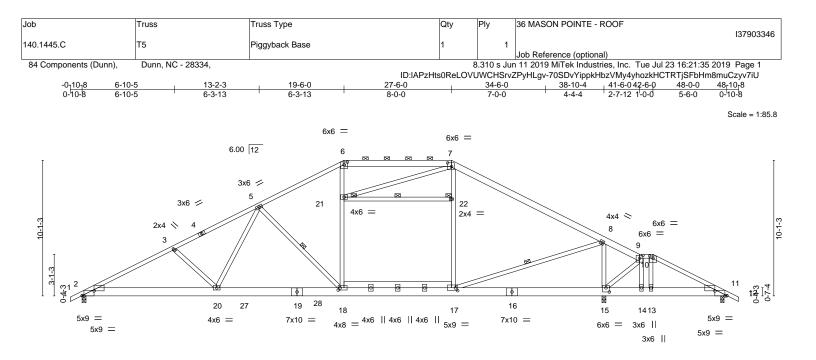
Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.


7) Refer to girder(s) for truss to truss connections.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This
connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

L	10-0-4	19-6-0		27-6-0	34-0-0 J 38-10-4	41-0-042-0-0 47-9-8 48-0-0
	10-0-4	9-5-12		8-0-0	7-0-0 4-4-4	2-7-12 1-0-0 5-3-8 0-2-8
Plate Offsets (X,Y)	[2:0-10-11,0-4-4], [2:0-1	-11,Edge], [6:0-3-0,0-2-	7], [7:0-3-8,0-3-4	4], [9:0-3-0,0-2-8], [10:0-	3-0,0-2-0], [11:0-10-11,0-4-4],	[11:0-1-11,Edge], [15:0-3-0,0-3-12]
(, ,	, [17:0-2-0,0-2-8], [18:0				, , , ,	
		· · ·				
OADING (psf)	SPACING-	2-0-0	SI.	DEFL.	in (loc) l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL	1.15 1	C 0.67		4 18-20 >999 240	MT20 244/190
CDL 10.0	Lumber DOL		C 0.86		6 18-20 >837 180	
CLL 0.0 *		-	VB 0.82	Horz(CT) 0.0		
CDL 10.0	Code IRC2015/	-	latrix-MS			Weight: 382 lb FT = 20%
10.0		112011				
UMBER-				BRACING-		
	4 SP No.2 *Except*			TOP CHORD	Structural wood sheathing	directly applied or 2-11-6 oc purlins,
	7,7-9: 2x6 SP No.2				except	
	8 SP No.2 *Except*				2-0-0 oc purlins (5-0-6 max	2): 6-7 9-10
	-18: 2x6 SP No.2			BOT CHORD	Rigid ceiling directly applie	
	4 SP No.3			BOT CHORD	6-3-1 oc bracing: 2-20	a or ro-o-o oc bracing, Except.
	4 OF 110.0				5	
					7-0-1 oc bracing: 18-20.	
				WEBS	1 Row at midpt	5-18, 8-17, 21-22
				JOINTS	1 Brace at Jt(s): 21, 22	

27-6-0

34-6-0

38-10-4

41-6-042-6-0

47-9-8

48-0-0

REACTIONS. (lb/size) 2=1675/0-3-8, 15=1575/0-3-8, 11=692/0-3-0 Max Horz 2=170(LC 16) Max Uplift 2=-398(LC 9), 15=-460(LC 8), 11=-173(LC 9) Max Grav 2=1675(LC 1), 15=1661(LC 24), 11=692(LC 1)

10-0-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3133/1993, 3-5=-2874/1951, 5-6=-1924/1355, 6-7=-1647/1254, 7-8=-1960/1285, 8-9=-1018/529, 9-10=-1026/594, 10-11=-1144/619

BOT CHORD 2-20=-1665/2741, 18-20=-1251/2201, 17-18=-810/1621, 15-17=-376/944,

- 14-15=-453/1039, 13-14=-455/1026, 11-13=-449/1005

 WEBS
 3-20=-343/240, 5-20=-561/719, 5-18=-840/628, 18-21=-462/539, 6-21=-444/516,
 - 17-22=-238/364, 7-22=-240/366, 8-17=-448/903, 8-15=-1451/875, 10-13=-130/385

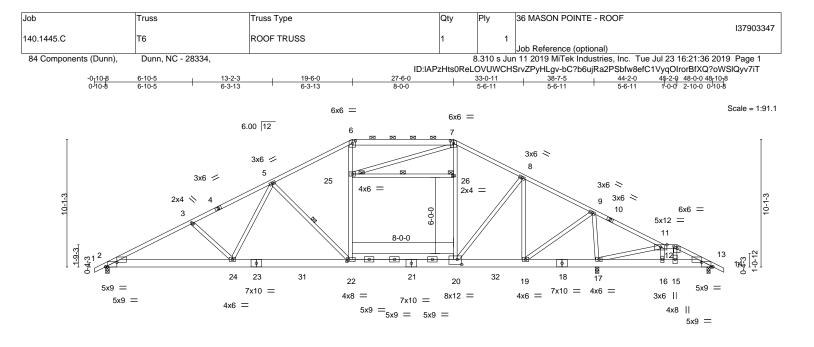
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

19-6-0

3) Provide adequate drainage to prevent water ponding.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 15, and 11. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	,0-2-0]						
Plate Offsets (X,Y)	[2:0-10-11,0-4-4], [2:0-1-12	1,Edge], [6:0-3-0,0-2-7], [7:0-3	3-0,0-2-7], [12:0-3-0,0-2-0],	[13:0-10-11,0-4-4],	[13:0-1-11,Edge]	, [20:0-4-4,0-4-	-12], [22:0-1-12
F	10-0-4	9-5-12	8-0-0	5-6-11	5-9-9	5-3-12	1-0-0 2-7-8 0-2-8
L	10-0-4	19-6-0	27-6-0	33-0-11	38-10-4	44-2-0	45-2-0 47-9-8

LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014	CSI.DEFTC0.60VertBC0.93VertWB0.97HorzMatrix-MSAttice	L) 0.34 22-24 >999 CT) -0.63 22-24 >734	240 180 a n/a	PLATES MT20 Weight: 383 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 *Except* 6-7: 2x6 SP No.2 BOT CHORD 2x8 SP DSS *Except* 21-23: 2x8 SP No.2, 20-22: 2x6 SP No.2 WEBS 2x4 SP No.3	ТОР	2-0-0 oc purli CHORD Rigid ceiling of S 1 Row at mid IS 1 Brace at Jt(ns (4-3-14 max. directly applied of pt 5 s): 25, 26 juires both edge	rectly applied or 2-9-2 d .): 6-7, 11-12. or 2-2-0 oc bracing. 5-22, 25-26 es of the bottom chord l	

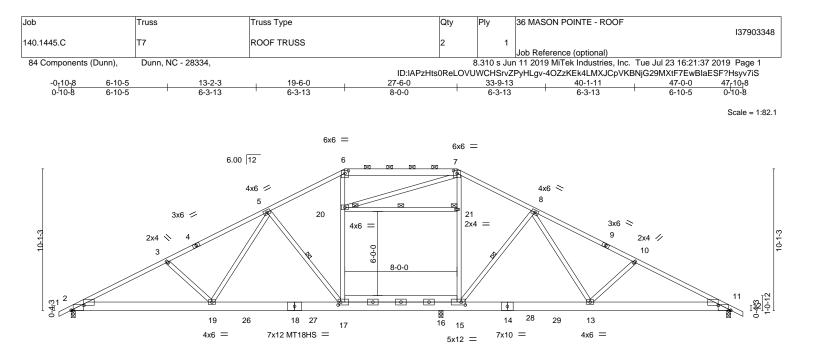
REACTIONS. (lb/size) 2=1766/0-3-8, 17=1916/0-3-8, 13=564/0-3-0 Max Horz 2=-170(LC 13) Max Uplift 2=-228(LC 9), 17=-262(LC 8), 13=-116(LC 9) Max Grav 2=1848(LC 2), 17=2039(LC 27), 13=564(LC 1)

- 8-9=-1868/837, 9-11=-785/261, 11-12=-885/496, 12-13=-948/511
- BOT CHORD 2-24=-1430/3186, 22-24=-1016/2674, 20-22=-575/2114, 19-20=-472/1611, 40-272/1612, 40-472/162, 40-472/100-472/
- 17-19=-130/761, 16-17=-397/846, 15-16=-414/885, 13-15=-389/841

 WEBS
 3-24=-338/237, 5-24=-565/734, 5-22=-849/629, 22-25=-401/744, 6-25=-294/746, 20-26=-336/634, 7-26=-250/679, 8-20=-152/812, 8-19=-1112/389, 9-19=-425/1279, 9-17=-1638/698, 11-17=-404/324, 11-16=-368/161, 12-15=-233/402

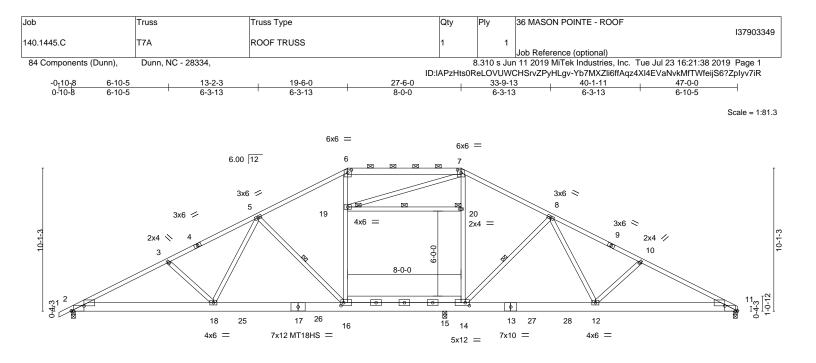
NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

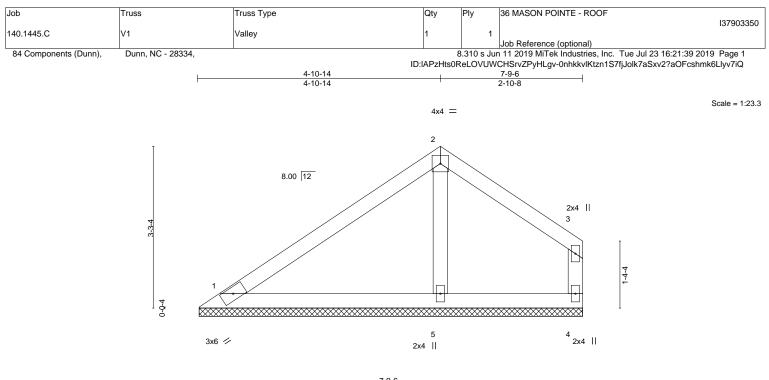
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectarde 2.6.0 the bottom chord 2.6.0 the bottom chord
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Ceiling dead load (5.0 psf) on member(s). 25-26; Wall dead load (5.0 psf) on member(s).22-25, 20-26
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 20-22
- 8) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 9) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 17. This connection is for uplift only and does not consider lateral forces.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
 Crombinal methods are consider at the structure of the structure o
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3622/1732, 3-5=-3409/1691, 5-6=-2464/1091, 6-7=-2133/1027, 7-8=-2401/1071,



		10-0-4	19-6	5-0	26-4-4	27-6-0	36	-11-12		47-0-0		
		10-0-4	9-5-	·12	6-10-4	1-1-12	9	-5-12		10-0-4		_
Plate Offse	ets (X,Y)	[2:0-10-11,0-4-4], [2:0-1	-11,Edge], [6:0-3	3-0,0-2-7], [7:0-3-0,0-2	<u>-7], [11:0-10-11,</u>	0-4-4], [11:	0-1-11,Ed	ge], [15:0-3-	8,0-2-8],	[17:0-2-4,0-2-8]		_
LOADING TCLL TCDL BCLL	20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.67 BC 0.98 WB 0.68	DEFL. Vert(Ll Vert(C Horz(C	-) -0.37 T) -0.71 T) 0.06	17-19 17-19 11	>853 24 >440 18 n/a n	80 /a	PLATES MT20 MT18HS	GRIP 244/190 244/190	
BCDL	10.0	Code IRC2015/T	PI2014	Matrix-MS	Attic	-0.31	16-17	538 36	50	Weight: 362 lb	FT = 20%	
LUMBER- TOP CHOP BOT CHOP WEBS	RD 2x4 SP 6-7: 2x6 RD 2x8 SP 14-18: 2 2x4 SP	No.2 *Except* 5 SP No.2 No.2 *Except* 2x8 SP DSS, 15-17: 2x6 No.3 *Except* 15,20-21: 2x4 SP No.2	5 SP No.2		BRAC TOP C BOT C WEBS JOINT	HORD	2-0-0 oc Rigid cei 1 Row at 1 Brace	purlins (4-1 iling directly t midpt at Jt(s): 20, is requires b	1-11 max. applied or 5- 21	ectly applied or 2-8-6 o .): 6-7. r 2-2-0 oc bracing. 17, 8-15, 20-21 s of the bottom chord t		_
REACTION	Max He Max U) 2=1496/0-3-8, 11=1 prz 2=-170(LC 13) plift 2=-169(LC 12), 11= rav 2=1583(LC 26), 11=	-39(LC 13), 16=	-99(LC 13)								
FORCES. TOP CHOR BOT CHOR	RD 2-3=- 8-10=	Comp./Max. Ten All fc 3062/463, 3-5=-2837/41 -2181/354, 10-11=-2402 -338/2689, 17-19=-133/	8, 5-6=-1794/27 2/400	5, 6-7=-1573/293, 7-8	=-1671/266,							
WEBS	11-13 3-19=	=-251/2117 -380/262, 5-19=-127/86 =-187/340, 7-21=-81/38	6, 5-17=-863/33	3, 17-20=-64/508, 6-20	0=0/489,							
 Wind: A MWFRS DOL=1. Provide All plate All plate This trus This trus This trus This trus Bottom All beat Onel H This cc Graphi 	SCE 7-10; V S (envelope) 60 plate grip adequate dr as are MT20 p as are 5x9 MT ss has been uss has been uss has been etween the b dead load (5, chord live loa arings are ass [2:5A Simpso onnection is f ical purlin rep	loads have been consid ult=130mph (3-second g gable end zone and C-C DOL=1.60 ainage to prevent water olates unless otherwise ind designed for a 10.0 psf l designed for a 10.0 psf designed for a 10.	gust) Vasd=103r Exterior(2) zon ponding. indicated. dicated. dicated. oottom chord live d of 20.0psf on tl ier members, wi 0-21; Wall dead nal bottom chord a recommended s recommended iot consider later ipict the size or t	nph; TCDL=6.0psf; BC e;C-C for members an be bottom chord in all a th BCDL = 10.0psf. load (5.0psf) on memt d dead load (5.0 psf) aj acity of 425 psi. to connect truss to bea ral forces. he orientation of the pi	d forces & MWF with any other liv areas where a re per(s).17-20, 15- oplied only to ro aring walls due t	RS for rea e loads. ectangle 3- 21 pm. 16-17, p UPLIFT a	6-0 tall by 15-16 at jt(s) 2, 1	wn; Lumber 2-0-0 wide 1, and 16.		THE REAL	SEAL 45844	" " " " " " " " " " " " " " " " " " "

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



July 24,2019

 	10-0-4 10-0-4	19-6-0 9-5-12	<u>26-4-4</u> 27-6-0 6-10-4 1-1-12	<u>36-11-12</u> 9-5-12	47-0-0	
Plate Offsets ()	X,Y) [2:0-10-11,0-4-4], [2:0-1-11,E	dge], [6:0-3-0,0-2-7], [7:0-3-0,0-2-7]], [11:0-10-11,0-4-4], [11	:0-1-11,Edge], [14:0-3-8,0-2-8]], [16:0-2-4,0-2-8]	
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	O Plate Grip DOL 1 0 Lumber DOL 1 0 Rep Stress Incr Y	0-0 CSI. 15 TC 0.56 15 BC 0.98 ES WB 0.67 14 Matrix-MS	Vert(LL) -0.3 Vert(CT) -0.7 Horz(CT) 0.0	n (loc) l/defl L/d 6 16-18 >866 240 1 16-18 >444 180 6 11 n/a n/a 1 15-16 538 360	PLATES MT20 MT18HS Weight: 359 lb	GRIP 244/190 244/190 FT = 20%
WEBS	2x4 SP No.2 *Except* 6-7: 2x6 SP No.2 2x8 SP No.2 *Except* 14-16: 2x6 SP No.2, 13-17: 2x8 SP I 2x4 SP No.3 *Except* 6-16,7-14: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing d 2-0-0 oc purlins (5-0-7 max.) Rigid ceiling directly applied 1 Row at midpt 1 Brace at Jt(s): 19, 20 This truss requires both edg the room area.): 6-7. or 2-2-0 oc bracing. 5-16, 8-14, 19-20	
REACTIONS.	(lb/size) 2=1500/0-3-8, 11=1279/0 Max Horz 2=178(LC 12) Max Uplift 2=-170(LC 12), 11=-15(L Max Grav 2=1580(LC 26), 11=1299	C 13), 15=-103(LC 13)				
TOP CHORD	8-10=-2184/354, 10-11=-2407/396	6=-1793/264, 6-7=-1570/294, 7-8=-1	1671/256,			
BOT CHORD WEBS	11-12=-263/2107 3-18=-340/235, 5-18=-106/816, 5-	, 15-16=0/1536, 14-15=0/1551, 12- 6=-894/333, 16-19=-44/471, 6-19= 14=-661/296, 8-12=-90/470, 10-12	0/466,			
 2) Wind: ASCE MWFRS (en DOL=1.60 p 3) Provide adea 4) All plates are 5) All plates are 6) This truss ha 7) * This truss ha 7) * This truss ha 8) Ceiling dead 9) Bottom chore 10) All bearing 11) One H2.5A This conne 12) Graphical p 	I roof live loads have been considered 57-10; Vult=130mph (3-second gust) ivelope) gable end zone and C-C Exte blate grip DOL=1.60 quate drainage to prevent water pond e MT20 plates unless otherwise indicate as been designed for a 10.0 psf bottor has been designed for a live load of 2 sen the bottom chord and any other m d load (5.0 psf) on member(s). 19-20; d live load (40.0 psf) and additional b is are assumed to be User Defined cru A Simpson Strong-Tie connectors reco cotion is for uplift only and does not co purlin representation does not depict t ACE SHOWN IS DESIGNED AS UNIT	for this design. /asd=103mph; TCDL=6.0psf; BCDI rior(2) zone;C-C for members and f ing. ted. d. n chord live load nonconcurrent with 0.0psf on the bottom chord in all are embers, with BCDL = 10.0psf. Wall dead load (5.0psf) on member tom chord dead load (5.0 psf) app ishing capacity of 425 psi. mmended to connect truss to bearin nsider lateral forces. ne size or the orientation of the purl	L=6.0psf; h=30ft; Cat. II; forces & MWFRS for rea h any other live loads. bas where a rectangle 3 r(s).16-19, 14-20 lied only to room. 15-16 ng walls due to UPLIFT	actions shown; Lumber -6-0 tall by 2-0-0 wide , 14-15 at jt(s) 2, 11, and 15.	THE RAD AL	SEAL 45844 GINEER. ON MULTING W JOHNMULTING JUY 24,2019

	F			<u>7-9-6</u> 7-9-6					
L OADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES	CSI. TC 0.38 BC 0.16	DEFL. Vert(LL) Vert(CT)	n/a	- n/a - n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 10.0	Rep Stress Incr Code IRC2015/TF		WB 0.05 Matrix-P	Horz(CT)	0.00	n/a	n/a	Weight: 30 lb	FT = 20%
	No 2					ictural wood	l sheathing (directly applied or 7-9-6	oc purlins

OP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 7-9-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=169/7-9-0, 4=95/7-9-0, 5=308/7-9-0 Max Horz 1=74(LC 12) Max Uplift 1=-26(LC 12), 4=-52(LC 13), 5=-14(LC 12) Max Grav 1=169(LC 1), 4=102(LC 20), 5=310(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

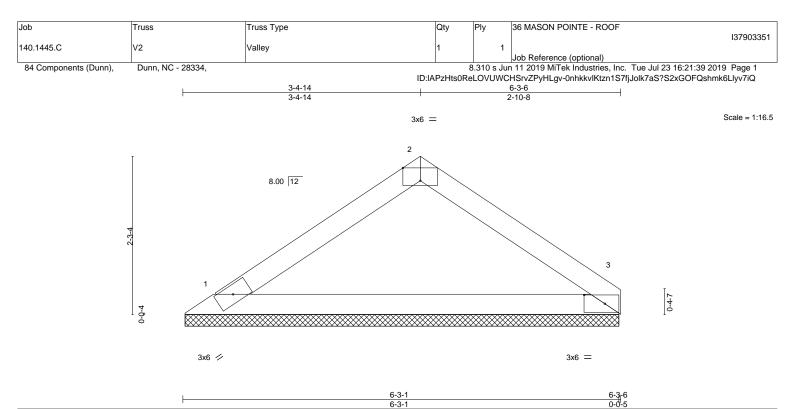
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) n/a

8) n/a

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (lo	c) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL)	n/a	- n/a	999	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT)	n/a	- n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 20 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

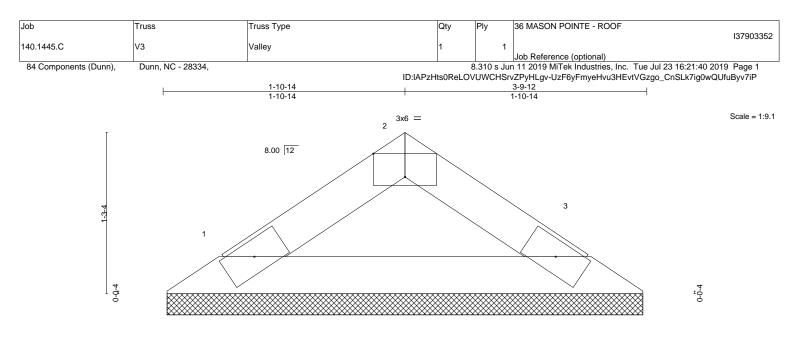
REACTIONS. (lb/size) 1=231/6-2-11, 3=231/6-2-11 Max Horz 1=48(LC 9) Max Uplift 1=-25(LC 12), 3=-24(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) n/a

8) n/a

3x6 🥢

3x6 📎

Structural wood sheathing directly applied or 3-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	0-0 ₁ 6 0-0-6				3-9-12 3-9-6						
Plate Offsets (X,Y) [2:0-3-0,Edge]				-						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
3CDL 10.0	Code IRC2015/TF	912014	Matri	k-P						Weight: 11 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3

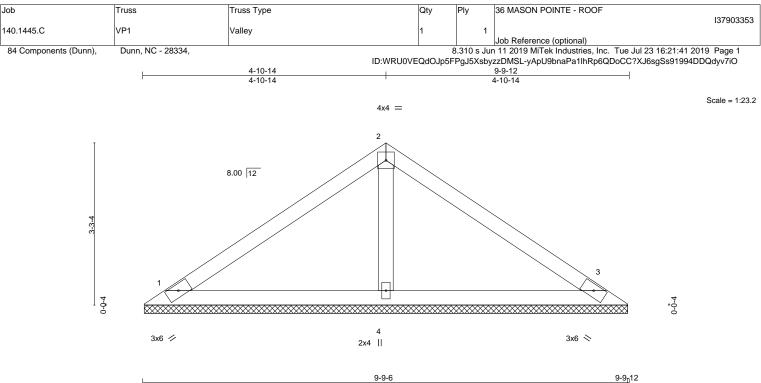
REACTIONS. (Ib/size) 1=114/3-9-0, 3=114/3-9-0 Max Horz 1=-23(LC 8) Max Uplift 1=-12(LC 12), 3=-12(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) n/a

		9-9-6		0-0-6
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. DEFL. TC 0.28 Vert(LL) BC 0.20 Vert(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Horz(CT) Matrix-S	0.00 3 n/a n/a	Weight: 34 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

OTHERS 2x4 SP No.3

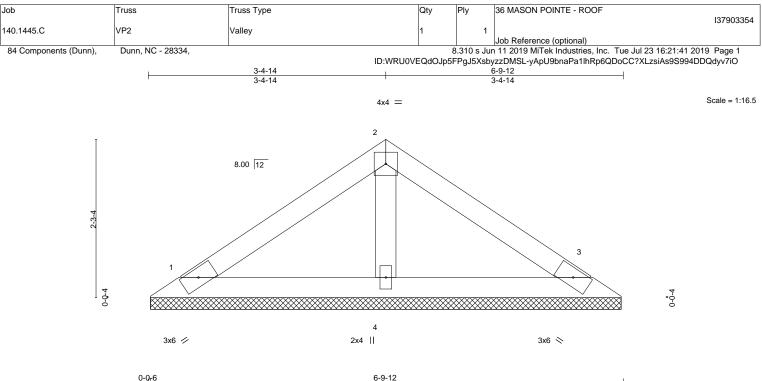
REACTIONS. (Ib/size) 1=174/9-9-0, 3=174/9-9-0, 4=359/9-9-0 Max Horz 1=-73(LC 8) Max Uplift 1=-32(LC 12), 3=-42(LC 13), 4=-12(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) n/a
- 8) n/a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

	0-0-6		6-9-6					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL)	n/a	- n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT)	n/a	- n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	0.00	3 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 23 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SP No.3 OTHERS

REACTIONS. (lb/size) 1=126/6-9-0, 3=126/6-9-0, 4=215/6-9-0 Max Horz 1=48(LC 9) Max Uplift 1=-28(LC 12), 3=-34(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

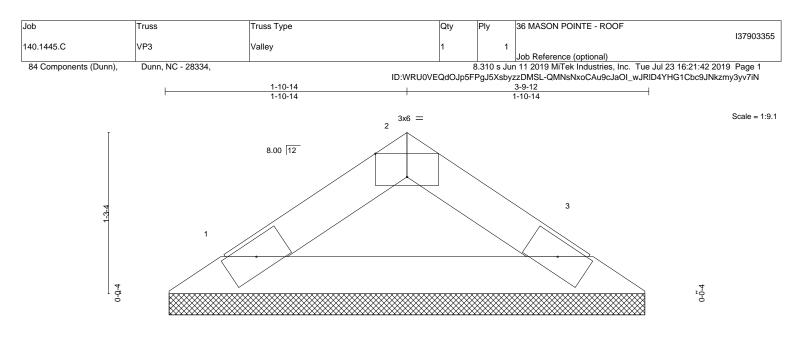
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-Č Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.


7) n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x6 🥢

3x6 📎

Structural wood sheathing directly applied or 3-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-0 ₁ 6 0-0 ¹ 6			<u>3-9-12</u> 3-9-6								
Plate Offsets (X,Y)	[2:0-3-0,Edge]										
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	912014	Matri	x-P						Weight: 11 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3

REACTIONS. (Ib/size) 1=114/3-9-0, 3=114/3-9-0 Max Horz 1=23(LC 11) Max Uplift 1=-12(LC 12), 3=-12(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) n/a

