

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 140_1445_B 140.1445.B

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I40377033 thru I40377058

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

February 26,2020

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

I.	10-3-4	16-0-0 20-0-0	24-0-0	29-8-12	40-0-0	1			
	10-3-4	5-8-12 4-0-0	4-0-0	5-8-12	10-3-4				
Plate Offsets (X,Y)	[4:0-4-0,Edge], [5:0-4-0,0-2-4], [7:0-4-0,	0-2-4], [8:0-4-0,Edge], [13:	:0-4-0,0-3-12], [14:0-4-0	0,0-3-12]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl	L/d PLATES	GRIP			
TCLL 20.0	Plate Grip DOL 1.15	TC 0.89	Vert(LL) -0.31	1 12-13 >999	240 MT20	244/190			
TCDL 10.0	Lumber DOL 1.15	BC 0.89	Vert(CT) -0.44	4 12-13 >999	180				
BCLL 0.0 *	Rep Stress Incr YES	WB 0.93	Horz(CT) 0.11	1 10 n/a	n/a				
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Attic -0.21	1 13-14 459	360 Weight: 283 lb	FT = 20%			
JUMBER- BRACING- TOP CHORD 2x6 SP No.2 *Except* 1-4,8-11: 2x4 SP No.2 TOP CHORD 3OT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=173(LC 12) Max Uplift 2=-184(LC 12), 10=-184(LC 13)									
Max Uplift Z=-184(LC 12), 10=-184(LC 13) Max Grav 2=1811(LC 2), 10=1811(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3458/341, 3-5=-3201/301, 5-6=-490/60, 6-7=-490/60, 7-9=-3201/302, 9-10=-3458/342 BOT CHORD 2-15=-382/3027, 14-15=-78/2555, 13-14=-76/2556, 12-13=-79/2555, 10-12=-210/3027 WEBS 6-16=0/276, 7-12=-195/716, 9-12=-458/280, 5-15=-186/716, 3-15=-458/280, 5-14=-58/718, 5-16=-2184/285, 7-16=-2184/285, 7-13=-58/718									
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 23-0-0 to DOL=1.60	e loads have been considered for this de fult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0- 40-10-8 zone;C-C for members and forc	sign. nph; TCDL=6.0psf; BCDL= 10-8 to 2-1-8, Interior(1) 2- es & MWFRS for reactions	=6.0psf; h=0ft; Cat. II; E 1-8 to 20-0-0, Exterior(s shown; Lumber DOL=	Exp B; Enclosed; 2) 20-0-0 to 23-0-0 =1.60 plate grip		MUUUU			

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Ceiling dead load (5.0 psf) on member(s). 5-16, 7-16
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 13-14
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- 8) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-0-5	10-3-4	20-0-4		29-0-12		40-0-0	
1	7-0-5	3-2-15	10-3-0		9-2-8		10-3-4	
Plate Offsets (X,Y)	[4:0-4-0,Edge], [8:0	-4-0,Edge], [13:0-3-	12,0-3-0], [15:0-3-12,0-3-0]					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/	/defl L/d	PLATES	GRIP
TCU 20.0	Plate Grip D	0 1 15	TC 0.86	Vert(LL)	-0.26 15-16	943 240	MT20	244/190
TCDI 10.0		1 15	BC 0.69	Vort(CT)	-0.36 15-16	673 180	11120	210,100
PCU 0.0 *	Pop Stross I	nor VES	W/P 0.70		0.02 10	n/a n/a		
DOLL 0.0	Cede IDC00		Notrite C	1012(01)	0.03 10	11/a 11/a	Waisht 202 lb	FT 200/
BCDL 10.0	Code IRC20	115/11912014	Matrix-5				weight: 283 lb	FI = 20%
			1. I					
LUMBER-				BRACING-				
TOP CHORD 2x6	SP No.2 *Except*			TOP CHOR	D Structural	wood sheathir	ng directly applied or 3-1-0 c	oc purlins.
1-4,8	3-11: 2x4 SP No.2			BOT CHOR	D Rigid ceili	ing directly app	lied or 6-4-11 oc bracing.	
BOT CHORD 2x6	SP No.2 *Except*			JOINTS	1 Brace a	t Jt(s): 17		
2-15	,10-13: 2x6 SP DSS							
WEBS 2x4	SP No.3							
REACTIONS. (s	size) 2=0-3-8, 10=0-3	3-8. 14=0-3-8						
Max	H_{0} = -173(I C 17)	,						
May	(1012 2 - 100(20 17))	10149(I C 13) 14	L-117(I C 13)					
Mox	$C_{\rm row} = 200(10, 12),$	10-1040(LC 1) 14						
IVIA	Giav 2=1079(LC T),	10=1049(LC 1), 14=						
FURCES. (ID) - IMA	ix. Comp./Max. Ten	All forces 250 (ID) O	less except when shown.	0/004				
TOP CHORD 2-3	3=-1803/375, 3-5=-147	8/336, 6-7=-254/86	7-9=-1394/245, 9-10=-170	8/264				
BOT CHORD 2-2	16=-412/1538, 15-16=-	·107/810, 14-15=-10	5/805, 13-14=-105/805, 12-	-13=-109/812,				
10	-12=-140/1450							
WEBS 3-	16=-465/276, 5-16=-19	0/890, 9-12=-455/2	76, 7-13=-700/278, 7-12=-2	09/847,				
5-1	15=-558/211, 5-17=-62	7/271, 7-17=-627/2	71					
	,							
NOTES-								
1) Unbalanced roof	ive loads have been o	onsidered for this de	sian					
2) Wind: ASCE 7 10	Vult_130mph (2 coc	and quet) Vaed-102	mph: TCDI -6 Opef: PCDI -	6 Opef: h=0ft. Co	t II: Evo B: Epolo	eed.		
2) WINU. ASCE 7-10	, vuit=13011p11 (3-Sect	Jilu gusi) vasu=103	inpri, ICDL=0.0psi, BCDL=		п. п, ехр в, епси	Jacu,		

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 20-0-0, Exterior(2) 20-0-0 to 23-0-0, Interior(1) 23-0-0 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 10, and 14. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 26,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-0-0. (lb) - Max Horz 2=66(LC

Max Horz 2=66(LC 16) Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 7-0-0, Corner(3) 7-0-0 to 10-0-0, Exterior(2) 10-0-0 to 14-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-8-7	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.74 BC 0.51 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 2-4 >999 240 Vert(CT) -0.01 2-4 >999 180 Horz(CT) 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 2=0-4-9, 4=Me

(size) 2=0-4-9, 4=Mechanical Max Horz 2=72(LC 8) Max Uplift 2=-97(LC 8), 4=-29(LC 8)

Max Grav 2=209(LC 1), 4=77(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 2-8-7 oc purlins.

BRACING-TOP CHORD BOT CHORD

H	8-3-4 8-3-4	<u>18-0-0</u> 9-8-12	22-0-0 4-0-0	<u>31-8-12</u> 9-8-12	40-0-0 8-3-4
Plate Offsets (X	(,Y) [3:0-4-0,Edge], [8:0-4-0,E	dge]			
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- D Plate Grip DOL D Lumber DOL D Rep Stress Incr D Code IRC2015/TF	2-0-0 CSI. 1.15 TC 1.15 BC YES WB Pl2014 Matrix	DEFL. 0.96 Vert(LL) 0.64 Vert(CT) 0.52 Horz(CT) x-S Horz(CT)	in (loc) l/defl L/d -0.13 11-13 >999 240 -0.31 11-13 >999 180 0.11 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 265 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Except* 1-3,8-10: 2x4 SP No.1 2x6 SP No.2 2x4 SP No.3		BRACING- TOP CHOF BOT CHOF WEBS	 RD Structural wood sheathing dir 2-0-0 oc purlins (5-2-11 max. Rigid ceiling directly applied of 1 Row at midpt 4 	ectly applied, except): 5-6. or 10-0-0 oc bracing. -14, 6-14, 7-13
REACTIONS.	(size) 2=0-3-8, 9=0-3-8 Max Horz 2=-155(LC 17) Max Uplift 2=-196(LC 12), 9=-1 Max Grav 2=1650(LC 1), 9=165	96(LC 13) 50(LC 1)			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-3075/379, 4-5=-2160/357, 5-6=-1808/381, 6-7=-2157/357, 7-9=-3077/379
- BOT CHORD 2-16=-341/2671, 14-16=-341/2671, 13-14=-76/1805, 11-13=-248/2673, 9-11=-248/2673
- WEBS 4-16=0/393, 4-14=-935/301, 5-14=-39/533, 6-13=-35/530, 7-13=-938/302, 7-11=0/396

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 18-0-0, Exterior(2) 18-0-0 to 26-2-15, Interior(1) 26-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢	10-3-4	15-10-8 17-10-8	20-6-4 22-1-8	29-8-12		40-0-0	
Plate Offecte (X)	10-3-4 Y) [4:0.2.6.0.1.9] [0:0.2.6.0.1.9]	5-7-4 2-0-0	2-7-12 1-7-4	7-7-4		10-3-4	
Fiale Olisels (A,	1) [4.0-3-0,0-1-0], [9.0-3-0,0-1-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Rep Stress Incr YES Code IRC2015/JTPI2014	CSI. TC 0.93 BC 0.93 WB 0.95 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Attic	in (loc) l/defl -0.33 17-19 >730 -0.47 17-19 >515 0.03 11 n/a -0.29 16-17 397	L/d 240 180 n/a 360	PLATES MT20 Weight: 259 lb	GRIP 244/190 FT = 20%
2022 1010			,	0.20 10 11 001		1101g111 200 10	
LUMBER- TOP CHORD 2 BOT CHORD 2 MEBS 2	2x4 SP No.2 2x6 SP No.2 *Except* I4-18: 2x6 SP DSS 2x4 SP No.3		BRACING- TOP CHOR BOT CHOR JOINTS	D Structural woo 2-0-0 oc purlir D Rigid ceiling d 1 Brace at Jt(s	d sheathing dira s (6-0-0 max.): irectly applied o s): 20	ectly applied, except 6-7. r 2-2-0 oc bracing.	
REACTIONS.	(size) 2=0-3-8, 11=0-3-8, 16=0-3-8 Max Horz 2=155(LC 16) Max Uplift 2=-178(LC 12), 11=-130(LC 13), 1 Max Grav 2=1086(LC 24), 11=1023(LC 1), 10	6=-78(LC 13) 6=1622(LC 2)					
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-1853/341, 3-5=-1563/300, 5-6=-454/80 8-10=-1376/253, 10-11=-1670/266 2-19=-369/1591, 17-19=-46/830, 16-17=-52/ 11-13=-136/1426 3-19=-490/289, 5-19=-211/987, 8-13=-216/8 5-17=-726/215, 5-20=-498/265, 20-21=-503/	r less except when shown , 6-7=-341/69, 7-8=-441/9 866, 15-16=-43/868, 13-1 78, 10-13=-490/293, 8-15- 264, 8-21=-501/266	8, 5=-46/830, =-798/264,				
NOTES- 1) Unbalanced rc 2) Wind: ASCE 7 MWFRS (enve Interior(1) 26- DOL=1.60 3) Provide adequ 4) This truss has 5) * This truss has will fit between 6) Ceiling dead la 7) Bottom chord 8) One H2.5A Sin This connectic 9) Graphical purl 10) ATTIC SPAC	pof live loads have been considered for this d 7-10; Vult=130mph (3-second gust) Vasd=102 elope) gable end zone and C-C Exterior(2) -0 4-7 to 40-10-8 zone;C-C for members and for uate drainage to prevent water ponding. been designed for a 10.0 psf bottom chord li as been designed for a live load of 20.0psf on n the bottom chord and any other members, w oad (5.0 psf) on member(s). 5-20, 20-21, 8-2' live load (40.0 psf) and additional bottom cho mpson Strong-Tie connectors recommended on is for uplift only and does not consider later in representation does not depict the size or t E SHOWN IS DESIGNED AS UNINHABITAI	esign. imph; TCDL=6.0psf; BCDI 10-8 to 2-1-8, Interior(1) 2 ces & MWFRS for reaction ve load nonconcurrent with the bottom chord in all are rith BCDL = 10.0psf. rd dead load (0.0 psf) appl to connect truss to bearing al forces. he orientation of the purlin 3LE.	L=6.0psf; h=0ft; Ca 2-1-8 to 17-10-8, E hs shown; Lumber h any other live loa eas where a rectan lied only to room. 7 g walls due to UPL h along the top and	tt. II; Exp B; Enclosed; xterior(2) 17-10-8 to 2 DOL=1.60 plate grip ds. gle 3-6-0 tall by 2-0-0 I6-17, 15-16 IFT at jt(s) 2, 11, and /or bottom chord.	6-4-7, wide 16.	OR THE	SEAL

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	7-9-4	16-0-0	24-0-0	32-2-12	40-0-0
I	7-9-4	8-2-12	8-0-0	8-2-12	7-9-4
Plate Offsets (X,Y)	[3:0-4-0,Edge], [8:0-4-0	Edge], [12:0-4-8,0-3-0], [13:0-4-	8,0-3-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/7	2-0-0 CSI. 1.15 TC 0.9 1.15 BC 0.9 YES WB 0.3 Pl2014 Matrix-S	DEFL. in Vert(LL) -0.23 Vert(CT) -0.45 Horz(CT) 0.16	(loc) I/defl L/d 12-13 >999 240 12-13 >999 180 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 226 lb FT = 20%
LUMBER- TOP CHORD 2x6 S 1-3,8- BOT CHORD 2x4 S WEBS 2x4 S	P No.2 *Except* 10: 2x4 SP No.1 P No.2 P No.3	i	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct 2-0-0 oc purlins (4-7-12 max.): 5 Rigid ceiling directly applied or 1 2-2-0 oc bracing: 11-12.	ly applied, except -6. 0-0-0 oc bracing, Except:
REACTIONS. (siz	ze) 2=0-3-8, 9=0-3-8		WEBS	1 Row at midpt 4-13	6, 6-13, 7-12

Max Horz 2=138(LC 12) Max Uplift 2=-180(LC 12), 9=-180(LC 13) Max Grav 2=1650(LC 1), 9=1650(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-3018/396, 4-5=-2294/372, 5-6=-1955/392, 6-7=-2293/372, 7-9=-3019/396

BOT CHORD 2-14=-297/2631, 13-14=-297/2631, 12-13=-117/1954, 11-12=-264/2631, 9-11=-264/2631

WEBS 4-14=0/338, 4-13=-750/265, 5-13=0/556, 6-12=-14/557, 7-12=-752/265, 7-11=0/338

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-0-0, Exterior(2) 16-0-0 to 20-2-15, Interior(1) 20-2-15 to 24-0-0, Exterior(2) 24-0-0 to 28-2-15, Interior(1) 28-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 044925 February 26,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

	10-3-4	16-0-0	20-6-4	24-0-0	29-8-12		40-0-0				
		5-8-12	4-6-4	3-5-12	5-8-12	401 10:0 4 44 0	10-3-4	1			
Plate Offsets (X,Y)	[3:0-1-14,0-0-0], [4:0-4-8,Edge], [4:0-0-0),0-1-12], [5:0-2-0,Edg	gej, [6:0-2-0,E	.agej, [7:0-4-8,E	-age], [7:0-0-0,0-	1-12], [8:0-1-14,0	-0-0]				
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*PCDL	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2015//TPI2014	CSI. TC 0.94 BC 0.76 WB 0.81	DE Ve Ve Ho	in rt(LL) -0.26 rt(CT) -0.37 rrz(CT) 0.03	(loc) l/defl 15-17 >959 15-17 >666 9 n/a	L/d 240 180 n/a 260	PLATES MT20	GRIP 244/190			
BCDL 10.0	Code IRC2015/1F12014	Matrix-5	A	-0.22	14-15 509	300		F1 = 2078			
BRACING- TOP CHORD 2x6 SP No.2 *Except* 5-6: 2x8 SP No.2, 1-4,7-10: 2x4 SP No.2 BOT CHORD 2x6 SP No.2 *Except* 12-16: 2x6 SP DSS WEBS 2x4 SP No.3											
EACTIONS. (size) 2=0-3-8, 9=0-3-8, 14=0-3-8 Max Horz 2=138(LC 12) Max Uplift 2=-174(LC 12), 9=-139(LC 13), 14=-34(LC 13) Max Grav 2=1112(LC 24), 9=1059(LC 1), 14=1547(LC 2)											
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-17= 9-11= 9-11= WEBS 5-17= 8-11= 8-11=	Comp./Max. Ten All forces 250 (lb) or 1888/319, 3-5=-1608/286, 5-6=-863/277 330/1619, 15-17=-36/881, 14-15=-40/ 163/1482 184/916, 5-15=-628/160, 6-13=-719/20 461/290	less except when sho 8, 6-8=-1458/268, 8-9= 123, 13-14=-35/925, 1 11, 6-11=-195/841, 3-1	own. =-1739/282 1-13=-39/884 17=-466/288,	ļ,							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 20-2-15 tc MWFRS for reaction 3) Provide adequate dr 4) This truss has been will fit between the b 6) Ceiling dead load (5. 7) Bottom chord live loa 8) One H2.5A Simpson connection is for upil	e loads have been considered for this de ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0- 24-0-0, Exterior(2) 24-0-0 to 28-2-15, I s shown; Lumber DOL=1.60 plate grip I ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on 1 ottom chord and any other members, w .0 psf) on member(s). 5-6 ad (40.0 psf) and additional bottom chor I Strong-Tie connectors recommended t ift only and does not consider lateral for	sign. mph; TCDL=6.0psf; B4 10-8 to 2-1-8, Interior(nterior(1) 28-2-15 to 4 DOL=1.60 e load nonconcurrent he bottom chord in all th BCDL = 10.0psf. d dead load (0.0 psf) a p connect truss to bea p o connect truss to bea	CDL=6.0psf; 1) 2-1-8 to 16 0-10-8 zone; with any othe areas where applied only t aring walls du	h=0ft; Cat. II; E; i-0-0, Exterior(2 C-C for member ir live loads. a rectangle 3-6 o room. 14-15, e to UPLIFT at	xp B; Enclosed;) 16-0-0 to 20-2-1 rs and forces & 6-0 tall by 2-0-0 w 13-14 jt(s) 2, 9, and 14.	5, ide This	THE REAL	CARO ESSION SEAL 44925			

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	L	7-3-4	14-0-0	1	20-0-0	1 2	6-0-0		1	32-8-12	40-0-0	
	I	7-3-4	6-8-12		6-0-0	I	6-0-0			6-8-12	7-3-4	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOI Lumber DOL Rep Stress Inc Code IRC201	2-0-0 - 1.15 1.15 r YES 5/TPI2014	CSI. TC BC WB Matri:	0.81 0.97 0.54 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.67 0.10	(loc) 12-15 2-15 10	l/defl >999 >707 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS REACTION	D 2x4 SP 2x6 SP 2x4 SP 3 2x4 SP 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No.2 No.2 No.3) 2=0-3-8, 10=0-3- orz 2=123(LC 16) olift 2=-162(LC 12), 1 av 2=1650(LC 1), 10	8 0=-162(LC 13) =1650(LC 1)			BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structu 2-0-0 o Rigid c 1 Row	iral wood oc purlins eiling dire at midpt	sheathing dir (3-6-8 max.): ectly applied c 6	ectly applied, except 5-7. or 2-2-0 oc bracing. -15, 6-12	
FORCES. TOP CHOR	(lb) - Max. (D 2-3=-2 9-10=	Comp./Max. Ten Al 2967/469, 3-5=-2492/ -2967/469	l forces 250 (lb) or 368, 5-6=-2130/37	less except 78, 6-7=-213	when shown. 0/378, 7-9=-2	492/368,						

 BOT CHORD
 2-15=-331/2578, 12-15=-188/2325, 10-12=-339/2578

 WEBS
 3-15=-494/300, 5-15=-22/742, 6-15=-434/177, 6-12=-434/177, 7-12=-22/742, 9-12=-494/300

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2) 14-0-0 to 18-2-15, Interior(1) 18-2-15 to 26-0-0, Exterior(2) 26-0-0 to 30-2-15, Interior(1) 30-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	 	6-6-5	10-3-4	14-0-0	20-6-4		26-0-0		29-8-12		33-5-11	40-0	-0
Plate Offset	s (X,Y)	[5:0-4-10,Edge], [6	6:0-4-10,Edge]	3-0-12	0-0-4		5-5-12		3-0-12		3-0-13	0-0-	5
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip I Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.15 DL 1.15 Incr YES 2015/TPI2014	CSI TC BC WB Mat	0.60 0.44 0.53 .rix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.18 0.01	(loc) 9-11 9-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 234 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS	D 2x4 SI 5-6: 2x D 2x6 SI 2x4 SI 5-13: 2	P No.2 *Except* x6 SP DSS P No.2 P No.3 *Except* 2x4 SP No.2			1	BRACING TOP CHO BOT CHO WEBS	- RD RD	Structu 2-0-0 o Rigid c 1 Row	iral wood sh oc purlins (1 eiling direct at midpt	heathing 0-0-0 m tly applie	directly ax.): 5-6 ed or 6-0 5-13, 0	applied or 5-7-3 d I-0 oc bracing. 6-13	oc purlins, except
REACTION	S. (siz Max H Max U Max C	ze) 2=0-3-8, 13=0 Horz 2=122(LC 12) Jplift 2=-119(LC 12 Grav 2=685(LC 23))-3-8, 9=0-3-8) !), 13=-88(LC 12),), 13=2102(LC 1),	, 9=-134(LC 13) 9=634(LC 24))								
FORCES. TOP CHOR BOT CHOR WEBS	(lb) - Max D 2-3= D 2-15 5-15 6-13	. Comp./Max. Ten. -940/198, 3-5=-594 =-213/777, 9-11=-1 =-44/630, 5-13=-12 =-1253/261	- All forces 250 (I I/130, 5-6=-6/845 I22/671 292/260, 6-11=-5(b) or less excep , 6-8=-474/162 3/599, 3-15=-43	ot when shown. , 8-9=-822/233 36/269, 8-11=-43	39/268,							
NOTES- 1) Unbaland 2) Wind: AS MWFRS Interior(1 MWFRS 3) Provide a 4) This truss 5) * This tru will fit bet	ed roof liv CE 7-10; ¹ (envelope)) 18-2-15 t for reaction adequate d s has been ss has been ss has been ween the l	e loads have been Vult=130mph (3-se) gable end zone ar to 26-0-0, Exterior(2 ns shown; Lumber Irainage to prevent to designed for a 10. en designed for a lin bottom chord and a	considered for th cond gust) Vasd= nd C-C Exterior(2 2) 26-0-0 to 30-2- DOL=1.60 plate (water ponding. .0 psf bottom choo ve load of 20.0psi any other member	is design. :103mph; TCDI) -0-10-8 to 2-1 15, Interior(1) 3 grip DOL=1.60 rd live load non i on the bottom s, with BCDL =	_=6.0psf; BCDL: -8, Interior(1) 2- 0-2-15 to 40-10 concurrent with chord in all area 10.0psf.	=6.0psf; h=0ft; C 1-8 to 14-0-0, E -8 zone;C-C for any other live lo as where a recta	cat. II; E: xterior(2 membe ads. ngle 3-6	xp B; En 2) 14-0-0 rs and fo 6-0 tall b	uclosed; to 18-2-15, prces & y 2-0-0 wide	e		(VIORT)	CAROLIN

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, and 9. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Contraction of the State Manna Marina SEAL 044925 S M. M. February 26,2020

TEREERING BY A MITEK ATFILIATE 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	6-9-4 12-0-0		20-0-0	28-0	-0	33-2-12	40-0-0)	
	6	6-9-4	5-2-12	8-0-0	8-0-	0	5-2-12	6-9-4	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip D Lumber DOL Rep Stress I Code IRC20	2-0-0 OL 1.15 - 1.15 ncr YES)15/TPI2014	CSI. TC 0.69 BC 0.78 WB 0.39 Matrix-S	DEFL. ir Vert(LL) -0.18 Vert(CT) -0.41 Horz(CT) 0.11	i (loc) l/defl 2-14 >999 2-14 >999 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 244 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS REACTION	D 2x4 SP 4-6: 2x6 D 2x6 SP 2x4 SP S. (size Max Ho Max Up Max Gr	No.2 *Except* 5 SP No.2 No.2 No.3 b) 2=0-3-8, 8=0-3 prz 2=106(LC 12) olift 2=-142(LC 12), rav 2=1650(LC 1),	-8 , 8=-142(LC 13) 8=1650(LC 1)		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except 2-0-0 oc purlins Rigid ceiling din 1 Row at midpt	d sheathing dire s (4-5-4 max.): rectly applied o 5-	ectly applied or 2-5-10 4-6. r 10-0-0 oc bracing. 14, 5-10	oc purlins,
FORCES. TOP CHOR BOT CHOR WEBS	(lb) - Max. (D 2-3=-3 7-8=-3 D 2-14= 3-14= 6-10=	Comp./Max. Ten 3010/467, 3-4=-264 3010/467 -333/2617, 12-14= -358/239, 4-14=-29 -29/800, 7-10=-358	All forces 250 (lb) or 19/396, 4-5=-2300/39 -266/2806, 10-12=-26 0/800, 5-14=-758/211 3/239	less except when shown. 4, 5-6=-2300/394, 6-7=-2 56/2806, 8-10=-341/2617 , 5-12=0/301, 5-10=-758/	649/396, /211,				
NOTES- 1) Unbalani 2) Wind: AS MWFRS Interior(1 MWFRS 3) Provide a 4) This trus 5) * This trus 5) * This trus 6) One H2 connection	ced roof live SCE 7-10; Vu (envelope) () 16-2-15 to for reactions adequate dra s has been o iss has been tween the bo 5A Simpson on is for upli	loads have been c ult=130mph (3-sec gable end zone and 28-0-0, Exterior(2) s shown; Lumber D ainage to prevent w designed for a 10.0 n designed for a live ottom chord and an Strong-Tie connec ft only and does no	onsidered for this des ond gust) Vasd=103n d C-C Exterior(2) -0-1 (28-0-0 to 32-2-15, Ir)OL=1.60 plate grip D vater ponding. psf bottom chord live e load of 20.0psf on ti y other members, wit tors recommended to t consider lateral forc	sign. nph; TCDL=6.0psf; BCDL 0-8 to 2-1-8, Interior(1) 2 tterior(1) 32-2-15 to 40-1(0OL=1.60 e load nonconcurrent with the bottom chord in all are th BCDL = 10.0psf. o connect truss to bearing res.	L=6.0psf; h=0ft; Cat. II; E -1-8 to 12-0-0, Exterior(D-8 zone;C-C for membe n any other live loads. has where a rectangle 3- g walls due to UPLIFT at	2 B; Enclosed; 2) 12-0-0 to 16-2 rs and forces & 6-0 tall by 2-0-0 v jt(s) 2 and 8. Thi	-15, wide	South	CAROLIN

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	6-0-5 12-0-0			20-6-4	1	28-0	-0	1	33-11-11 40-0-0			0 1		
	6	-0-5	5-1	1-11		8-6-4		7-5-1	12	1	5-11-11	T	6-0-5	5
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPAC Plate Lumb Rep S Code	CING- Grip DOL er DOL Stress Incr IRC2015/TF	2-0-0 1.15 1.15 YES VI2014	CSI. TC BC WB Matrix	0.76 0.56 0.56 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.31 0.02	(loc) 8-10 8-10 8	l/defl >999 >760 n/a	L/d 240 180 n/a	PLATES MT20 Weight: :	3 232 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOP	RD 2x4 SF 4-6: 2x	P No.2 *Exce 4 SP No.1	pt*				BRACING- TOP CHOR	D	Structu 2-0-0 o	ral wood	sheathing dire (10-0-0 max.):	ctly applied or 4-6.	⁻ 5-5-3 oc	c purlins, except
BOT CHOP WEBS	RD 2x6 SF 2x4 SF	P No.2 P No.3					BOT CHOR WEBS	D	Rigid c 1 Row	eiling dire at midpt	ectly applied or 4-	10-0-0 oc bra 12, 6-12	icing.	
REACTION	NS. (siz Max H	e) 2=0-3-8 lorz 2=106(L	, 12=0-3-8, 8 .C 16)	=0-3-8										

Max Upit 2=-105(LC 12), 12=-169(LC 9), 8=-117(LC 13) Max Grav 2=714(LC 23), 12=1945(LC 1), 8=708(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-985/187, 3-4=-557/78, 4-5=-3/526, 5-6=-3/526, 6-7=-543/84, 7-8=-956/213

BOT CHORD 2-14=-190/823, 12-14=0/432, 10-12=0/398, 8-10=-107/811

WEBS 3-14=-446/263, 4-14=0/547, 4-12=-1076/143, 5-12=-555/250, 6-12=-1066/143, 6-10=0/545, 7-10=-448/263

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-0-0, Exterior(2) 12-0-0 to 16-2-15, Interior(1) 16-2-15 to 28-0-0, Exterior(2) 28-0-0 to 32-2-15, Interior(1) 32-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 12, and 8. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ENGINEERING BY AliTek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-0-0	20-0-0	1	30-0-0	1	40-0-0	
l	10-0-0	10-0-0		10-0-0	I	10-0-0	
Plate Offsets (X,Y)	[5:0-4-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code JRC2015/TPI2014	CSI. TC 0.65 BC 0.74 WB 0.77 Matrix-S	DEFL. i Vert(LL) -0.22 Vert(CT) -0.44 Horz(CT) 0.13	n (loc) l/defl 2 12 >999 4 10-12 >999 3 8 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190 FT = 20%
BODE 10.0							11 = 2070
LUMBER- TOP CHORD 2x4 4-5, BOT CHORD 2x6 WEBS 2x4	SP No.2 *Except* 5-6: 2x6 SP No.2 SP No.2 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s 2-0-0 oc purlins (3 Rigid ceiling direc 1 Row at midpt	heathing directly 3-8-15 max.): 4-6 tly applied or 10- 5-14, 5	applied or 2-6-9 o .0-0 oc bracing. 5-10	oc purlins, except
REACTIONS. (S May May May	size) 2=0-3-8, 8=0-3-8 < Horz 2=89(LC 16) < Uplift 2=-131(LC 9), 8=-131(LC 8) < Grav 2=1650(LC 1), 8=1650(LC 1)						
FORCES. (lb) - Ma TOP CHORD 2-3 7-1 BOT CHORD 2-3 WEBS 4-3	ax. Comp./Max. Ten All forces 250 (lb) c 3=-3059/462, 3-4=-2806/419, 4-5=-2469/4 3=-3059/462 14=-332/2659, 12-14=-408/3466, 10-12=- 14=-37/843, 5-14=-1217/283, 5-10=-1217/	r less except when shown. 05, 5-6=-2469/405, 6-7=-280 408/3466, 8-10=-339/2659 283, 6-10=-37/843, 5-12=0/3	96/419, 185				
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-10 MWFRS (envelop Interior(1) 14-2-19 MWFRS for react 3) Provide adequate 4) This truss has be 5) * This truss has be will fit between the	live loads have been considered for this d ; Vult=130mph (3-second gust) Vasd=102 be) gable end zone and C-C Exterior(2) -0 5 to 30-0-0, Exterior(2) 30-0-0 to 34-2-15, ions shown; Lumber DOL=1.60 plate grip e drainage to prevent water ponding. en designed for a 10.0 psf bottom chord li een designed for a live load of 20.0psf on e bottom chord and any other members.	esign. mph; TCDL=6.0psf; BCDL=6 10-8 to 2-1-8, Interior(1) 2-1- Interior(1) 34-2-15 to 40-10-8 DOL=1.60 ve load nonconcurrent with a the bottom chord in all areas	5.0psf; h=0ft; Cat. II; I 8 to 10-0-0, Exterior(8 zone;C-C for memb ny other live loads. where a rectangle 3	Exp B; Enclosed; 2) 10-0-0 to 14-2-15 ers and forces & -6-0 tall by 2-0-0 wid	;, le	AL ORTH	CAROL

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	10-0-0	15-3-2	20-6-4	1		30-0-0		1	40-0-0	1
l.	10-0-0	5-3-2	5-3-2	I		9-5-12		1	10-0-0	1
Plate Offsets (X,Y)	[4:0-4-10,Edge], [6:0-4-4,0-2-8], [7	:0-4-10,Edge]								
LOADING (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC	0.75	Vert(LL)	-0.07	9-11	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC	0.43	Vert(CT)	-0.15	9-11	>999	180		
BCLL 0.0 *	Rep Stress Incr YES	WB	0.68	Horz(CT)	0.03	9	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-	-S						Weight: 243 lb	FT = 20%
LUMBER-		·		BRACING-						
TOP CHORD 2x4 S	P No.2 *Except*			TOP CHOR	D	Structu	ral wood	sheathing di	irectly applied or 5-2-5 o	c purlins, except
4-6,6-	7: 2x6 SP No.2					2-0-0 o	c purlins	(10-0-0 max	.): 4-7.	
BOT CHORD 2x6 S	P No.2			BOT CHOR	D	Rigid c	eiling dire	ectly applied	or 10-0-0 oc bracing.	
WEBS 2x4 S	P No.3			WEBS		1 Row	at midpt	4	4-13, 7-13	
	70) 2-0 2 8 12-0 2 8 0-0 2 8									
May	2=0.3-6, 13=0.3-6, 9=0.3-6									
Max	lolift 2 = -105(1 C 12) 13 = -210(1 C 0)	0 = -113(1 - 13)								
Max	Grav 2=747(C 23) 13=1844(C 1)	9=742(I C 24)								
Max		, 0=1 12(20 2 1)								
FORCES. (Ib) - Max	. Comp./Max. Ten All forces 250 (lb) or less except v	vhen shown.							
TOP CHORD 2-3=	-1100/194. 3-4=-786/125. 4-5=0/35	0. 5-7=0/350. 7-8=	-772/122. 8-9=-1	087/191						
BOT CHORD 2-15	5=-157/924, 13-15=-12/642, 11-13=0)/629, 9-11=-107/9	13							
WEBS 3-15	5=-316/199, 4-15=0/491, 4-13=-1059	/148, 7-13=-1047/	148, 7-11=0/488	,						
8-11	=-318/199, 5-13=-720/321									
NOTES										
1) Unhalanced roof liv	ve leade have been considered for th	vic docian								

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-0-0, Exterior(2) 10-0-0 to 14-2-15, Interior(1) 14-2-15 to 30-0-0, Exterior(2) 30-0-0 to 34-2-15, Interior(1) 34-2-15 to 40-10-8 zone;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 13, and 9. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:70.8

1	8-0-0	16-0-9	23-11-7	32-0-0	40-0-0	
	8-0-0	8-0-9	7-10-13	8-0-9	8-0-0	
Plate Offsets (X,	Y) [3:0-4-10,Edge], [4:0-4-0	,0-4-12], [5:0-4-10,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL * Rep Stress Incr Code IRC2015/T	2-0-0 CSI. 1.15 TC 0.7 1.15 BC 0.7 YES WB 0.4 Pl2014 Matrix-S	DEFL. in 7 Vert(LL) -0.27 4 Vert(CT) -0.55 9 Horz(CT) 0.11	l (loc) l/defl L/d 10 >999 240 8-10 >865 180 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 232 lb FT = 20%	
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2 3	2x4 SP DSS *Except* 3-4,4-5: 2x6 SP DSS 2x6 SP No.2 2x4 SP No.3 *Except* 3-10,5-10: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dire except 2-0-0 oc purlins (3-2-10 max.): Rigid ceiling directly applied or 1 Row at midpt 3-1	ctly applied or 3-0-11 oc purlins, 3-5. 10-0-0 oc bracing. 10, 5-10	

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=72(LC 16) Max Uplift 2=-167(LC 9), 6=-167(LC 8) Max Grav 2=1650(LC 1), 6=1650(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3130/418, 3-4=-4467/692, 4-5=-4467/692, 5-6=-3130/418

BOT CHORD 2-12=-312/2718, 10-12=-316/2708, 8-10=-282/2708, 6-8=-278/2718

WEBS 3-12=0/450, 3-10=-426/1980, 4-10=-906/392, 5-10=-427/1980, 5-8=0/450

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 12-2-15, Interior(1) 12-2-15 to 32-0-0, Exterior(2) 32-0-0 to 36-2-15, Interior(1) 36-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

12

13

11

4x8 =

10

2x4 ||

14

4x8 =

F	8-0-0	16	-0-0	2	0-8-0	23-4-0		26-3-8	-	32-0-0	40-0-0	
Plata Offecte (X	8-0-0 V) [2:0.4.10 Edgo] [/	8	10 Edgo]	4	-8-0	2-8-0		2-11-8	·	5-8-8	8-0-0	·
Fiale Olisels (A	, i) [3.0-4-10,∟uge], [4	1.0-3-12,0-4-0 <u>]</u> , [0.0-2	- io,∟ugej									
LOADING (psf	SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip I	DOL 1.15	TC	0.86		Vert(LL)	-0.14	13-15	>999	240	MT20	244/190
TCDL 10.0	Lumber DC	L 1.15	BC	0.57		Vert(CT)	-0.30	13-15	>809	180		
BCLL 0.0) * Rep Stress	Incr YES	WB	0.79		Horz(CT)	0.03	7	n/a	n/a		
BCDL 10.0	Code IRC2	015/TPI2014	Matrix	x-S							Weight: 238 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SP No.2 *Except*					TOP CHOR	D	Structu	ral wood	sheathing d	irectly applied or 3-1-9 c	c purlins, except
	3-4,4-6: 2x6 SP No.2							2-0-0 o	c purlins	(6-0-0 max.)): 3-6.	
BOT CHORD	2x6 SP No.2					BOT CHOR	D	Rigid c	eiling dire	ectly applied	or 10-0-0 oc bracing.	
WEBS	2x4 SP No.3 *Except*					WEBS		1 Row	at midpt	:	3-13	
	3-13: 2x4 SP No.2											
				•								
REACTIONS.	All bearings 0-3-8 exce	ot (jt=length) 10=5-11	-0, 10=5-11-	0.								
(ID) -	Max Horz 2=72(LC 12)		40 47									
	Max Uplift All uplift 100	Ib or less at joint(s) 2	, 10 except /	=-104(LC 13	3), 12=-	207(LC 9)	4005			-		
	Max Grav All reactions	250 lb or less at joint	(s) except 2=	857(LC 23),	10=10	25(LC 1), 10	=1025	o(LC 1),	7=514(L0	5		
	24), 12=916(L	C 23)										
FORCES (Ib)	- Max Comp /Max Ten	All forces 250 (lb) o	less excent	when showr	,							
TOP CHORD	2-3=-1340/170 4-5=0/3	60 5-6=0/363 6-7=-	520/109									
BOT CHORD	2-15=-66/1110 13-15=	71/1099 9-10=-1/36	1 7-9=0/369									
WEBS	3-15-0/474 3-13-947	157 4-13380/302	4-10636/2	9 6-10850	/141 6	-9-0/353						
LDO	5-10=-255/116	107, 1 10- 000/002,	1 10= 000/2	0, 0, 10= 000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0=0,000,						
	0.10 200/110											

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-0-0, Exterior(2) 8-0-0 to 12-2-15, Interior(1) 12-2-15 to 32-0-0, Exterior(2) 32-0-0 to 36-2-15, Interior(1) 36-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2x4 ||

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 10, 7, and 12. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		6-0-0	15-4-9	1	24-7-7		1		34-0-0	40-0	0-0
	I	6-0-0	9-4-9	1	9-2-13		1		9-4-9	6-0	-0
Plate Offsets	s (X,Y)	[3:0-4-10,Edge], [7:0-4-10,Edg	e], [11:0-5-8,0-5-0], [12:	:0-2-8,0-5-4]							
LOADING (F TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IRC2015/TPI201-	-0 CSI. 15 TC 0 15 BC 0 15 WB 0 4 Matrix-S	0.60 0.64 0.99 S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.84 0.13	(loc) 11-12 11-12 8	l/defl >999 >564 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 239 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS	D 2x4 SP 3-5,5-7 D 2x6 SP 11-12∷ 2x4 SP 3-12,7-	No.2 *Except* : 2x6 SP DSS No.2 *Except* 2x6 SP DSS No.3 *Except* 11: 2x4 SP No.2			BRACING- TOP CHOR BOT CHOR WEBS	D	Structu except 2-0-0 o Rigid co 1 Row a	ral wood s c purlins (eiling dire at midpt	sheathing direc (3-1-8 max.): 3 ctly applied or 6-1	otly applied or 2-7-12 -7. 9-2-13 oc bracing. 2	oc purlins,
REACTIONS	5. (size Max H Max U Max G	e) 2=0-3-8, 8=0-3-8 orz 2=56(LC 16) plift 2=-203(LC 9), 8=-203(LC rav 2=1650(LC 1), 8=1650(LC	8) 1)								
FORCES. (TOP CHORE BOT CHORE	(lb) - Max. D 2-3=- D 2-13=	Comp./Max. Ten All forces 2 3272/454, 3-4=-5588/933, 4-6: -384/2872, 12-13=-389/2861,	50 (lb) or less except wł =-5557/919, 6-7=-5590/9 11-12=-860/5559, 10-11	hen shown. 934, 7-8=-3271 1=-357/2861, 8	/454 -10=-353/2872						

- WEBS 3-13=0/361, 3-12=-580/2925, 4-12=-651/277, 6-11=-666/283, 7-11=-582/2928,
- VVEDS 3-13=0/361, 3-12=-580/2925, 4-12=-651/277, 6-11=-666/283, 7-11=-582/2928 7-10=0/361

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2) 6-0-0 to 10-2-15, Interior(1) 10-2-15 to 34-0-0, Exterior(2) 34-0-0 to 38-2-15, Interior(1) 38-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	000	' I	1000	200	-	2011	~		0400		40 0	
Г	6-0-0) '	7-0-0	7-6-4	1	5-7-8		1	7-10-4	1	6-0	-0
Plate Offsets ()	X,Y) [3:0-3	3-0,0-0-12], [5:0	-3-12,0-4-8], [7:0-4-10,	Edge]								
LOADING (psi TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) 0 0 * 0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ind Code IRC201	2-0-0 PL 1.15 1.15 cr YES 5/TPI2014	CSI. TC 0.39 BC 0.37 WB 0.53 Matrix-S	DEI Veri Veri Hor	FL. i t(LL) -0.09 t(CT) -0.11 z(CT) 0.03	n (loc) 5 16 1 14-16 3 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLA MT2 Weig	TES 0 ght: 243 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2 3-5.5-7: 2x6	*Except* SP No.2			BR/ TOF	ACING- P CHORD	Structo	ural wood	sheathing dire	ectly applie 3-7.	d or 4-7-2 d	oc purlins, except
BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.3				BOT	CHORD	Rigid (6-0-0 (ceiling dire	ctly applied o : 13-14,11-13	r 10-0-0 oc	bracing, I	Except:
REACTIONS.	All bearing	s 0-3-8.			WE	BS	1 Row	at midpt	4-	14, 7-11		

26-1-12

34-0-0

20-6-4

(lb) - Max Horz 2=56(LC 12)

6-0-0

Max Uplift All uplift 100 lb or less at joint(s) 2, 8 except 11=-147(LC 8), 13=-183(LC 9) Max Grav All reactions 250 lb or less at joint(s) except 2=819(LC 23), 11=878(LC 24), 8=523(LC 24), 13=1087(LC 23)

- TOP CHORD 2-3=-1338/203, 3-4=-1242/227, 5-6=-34/327, 6-7=-33/330, 7-8=-675/106
- BOT CHORD 2-17=-115/1131, 16-17=-119/1122, 14-16=-184/1239, 10-11=-19/526, 8-10=-15/535

13-0-0

- WEBS 3-17=0/281, 4-16=0/282, 4-14=-1586/260, 5-14=-343/154, 6-11=-469/212,
 - 7-11=-901/145, 7-10=0/318

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-0-0, Exterior(2) 6-0-0 to 10-2-15, Interior(1) 10-2-15 to 34-0-0, Exterior(2) 34-0-0 to 38-2-15, Interior(1) 38-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, 8, and 13. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

40-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Job		Truss	Tru	iss Type		Qty	Ply	140.1445.B			
											I40377052
140_1445_B		HG	Hip	Girder		1	1				
								Job Reference (opti	onal)		
84 Components (D	unn),	Dunn, NC - 28334,				8	330 s Feb	13 2020 MiTek Indu	stries, Inc. Tue Feb	25 09:00:11 20	20 Page 1
					ID:BITD	F1mp8o7VH	DtnYyQ8bz	zeFIK-jA_uqGQEFM	6GMsmAwUf5wwE9	LwCcr7NNEAN	//2JFzhee2
-0 _r 10-8 4-0	-0	8-8-2	13-2-7	17-8-13	22-3-3	26	9-9	31-3-14	36-0-0	40-0-0	40-10-8
0-10-8 4-0	-0	4-8-2	4-6-6	4-6-6	4-6-6	4-	6-6	4-6-6	4-8-2	4-0-0	0-10-8

Scale = 1:68.7

1	4-0-0	4-8-2	4-6-6	4-6-6	4-6-6	4-6-6	4-6-6	4-8-2	4-0-0
Plate Offsets ()	X,Y)	[2:0-4-0,0-1-15], [3:0-5-12	2,0-2-12], [12:0	-3-0,0-2-7], [13:0-4-0,0-1	-15], [15:0-3-8,0-2	-8], [17:0-6-0,0	-5-0], [20:0-6-0,0-4	-8]	
LOADING (psf TCLL 20.0 TCDL 10.0 BCLL 0.1 BCDL 10.0	f) 0 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 NO PI2014	CSI. TC 0.89 BC 0.88 WB 0.99 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 1.01 18-19 -1.80 18-19 0.24 13	l/defl L/d >471 240 >265 180 n/a n/a	PLATES MT20 MT18H Weight: 250 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD	2x6 SP 1-3,12- ⁻ 2x6 SP	DSS *Except* 14: 2x4 SP No.2 DSS No.3 *Except*			BRACING- TOP CHOR	2D Structu except 2-0-0 c	ral wood sheathing c purlins (2-1-14 m	g directly applied or 2-3-1	2 oc purlins,
REACTIONS.	3-21,5-2 (size Max Ho Max Ur	 21,5-19,8-19,8-17,11-17, 2=0-3-8, 13=0-3-8 prz 2=40(LC 35) olift 2=-518(I C 9) 13=-5 	11-15: 2x4 SP	No.2	WEBS	1 Row	at midpt	5-21, 11-15	

22-3-3

26-9-9

31-3-14

36-0-0

40-0-0

13-2-7

18-19=-2932/11364, 17-18=-2932/11364, 16-17=-1967/7755, 15-16=-1967/7755, 13-15=-968/4068 WEBS 3-22=0/281, 3-21=-1087/4038, 4-21=-417/236, 5-21=-2613/701, 5-20=0/254,

5-19=-339/1292, 7-19=-364/209, 8-18=0/255, 8-17=-1297/352, 10-17=-377/209, 11-17=-693/2628, 11-16=0/250, 11-15=-4113/1115, 12-15=-334/1684

NOTES-

4-0-0

8-8-2

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-0, Exterior(2) 4-0-0 to 8-2-15, Interior(1) 8-2-15 to 36-0-0, Exterior(2) 36-0-0 to 40-2-15, Interior(1) 40-2-15 to 40-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

17-8-13

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This
connection is for uplift only and does not consider lateral forces.

- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1445.B	
					1403	377052
140_1445_B	HG	Hip Girder	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Feb	13 2020 MiTek Industries, Inc. Tue Feb 25 09:00:11 2020 Page	e 2

ID:BITDcF1mp8o7VHDtnYyQ8bzeFIK-jA_uqGQEFM6GMsmAwUf5wwE9LwCcr7NNEAM2JFzhee2

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-12=-60, 12-14=-60, 2-13=-20

Concentrated Loads (lb)

Vert: 3=-46(B) 6=-46(B) 12=-46(B) 22=-18(B) 15=-18(B) 9=-46(B) 23=-44(B) 24=-46(B) 25=-46(B) 26=-46(B) 27=-46(B) 28=-46(B) 29=-46(B) 30=-46(B) 31=-46(B) 32=-46(B) 32=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Hug Hig Girder 1 <		Truss	Truss Type		Qty	Ply	140.1445.B			14027705
B4 Components (Dunn), Dunn, NC - 28334, -0,10-3 + 4-0-0 + 8-2:14 + 12:4-0 + 16:5-2 + 20:64 + 26:1-12 + 31:0-0 + 36:0-0 + 40:0-	40_1445_B	HGS	Hip Girder		1	1				14037705
84 Components (Dunn), Dunn, NC - 28334, 330 = 5eb 13 2020 MTek Industries, Inc. Tue Feb 25 09:00:14 2020 Page 1 ID:BITDeFImpBo7VHDnYyQ8bzeFiK-8kg1SHS6VHUDKViccDoXYsiT8K52V1pwDivazhee? $0-10-8 = 4-0-0 = 8-2\cdot14 = 12-4-0 = 16-5\cdot2 = 20-6.4 = 26\cdot1\cdot12 = 31-0-0 = 36-0.0 = 40-0-0 = 40-0-0 = 40-10-8 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0 = 40-0 = 0^{-1}10-8 = 20-0-0 = 20-0 = 20-0 = 20-0 = 20-0-0 = 20-0-0 = 20-0-0 = $							Job Reference (op	tional)		
$\begin{array}{c} 0.10-8 & 4-0-0 \\ 0.10-8 & 4-0-0 \\ 0.10-8 & 4-0-0 \\ 0.10-8 & 4-0-0 \\ 0.10-8 & 4-0-0 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 12 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ 0.10-8 \\ 0.00 \\ $	84 Components (Dunn),	Dunn, NC - 28334,			8	3.330 s Feb	13 2020 MiTek Ind	ustries, Inc. Tue Fel	b 25 09:00:14 20	20 Page 1
$\begin{array}{c} -0.10 + 3 + 4 - 0 & 8 + 2 + 14 & 12 + 4 - 12 & 20 + 6 + 4 & 26 + 1 + 12 & 3 + 0 - 0 & 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 40 + 10 + 36 + 0 & 0 & 10 + 0 & 10 + 0 & 10 & 0 & 10 + 0 & 10 & 0 & 10 + 0 & 10 & 0 & 10 & 0 & 10 & 0 & 10 & 0 & $					D:BITDcF1mp8	Bo7VHDtn1	yQ8bzeFIK-8kg1SF	IS6YHUrDKVIccDo	KYsiT8K52V1pw	7bivazhee?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-10-8 4-0-0	8-2-14 12-4	-0 16-5-2	20-6-4	26-1-12		31-0-0	36-0-0	40-0-0	40-10-8
Scale = 1:61 Scale = 1:61 S	0-10-8 4-0-0	4-2-14 4-1	-2 4-1-2	4-1-2	0-7-6		4-10-4	5-0-0	4-0-0	0-10-8
NAILED N										Scale = 1:68
$\begin{array}{c} 224\\ \hline \\ \hline$	6.00 12 5x NAIL NAILED	9 = NAILED NAILE ED NAILED $2x4$ 3 23 4 24	$\frac{10 \text{ NAILED NAILED N}}{4x8} = \frac{5}{100} \frac{25}{100} \frac{100}{100}$	AILED NAILED NAILED I 6x6 = 5x12 626 27 728 026 27 728	NAILED = NAILE 29 30 0	NAILED	5x	9 =	6x6 = 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										11
NAILED LAT INVESTIGATION AND LAT IN AND LAT	2-4-3 2-4-3 2-4-3 2-4-3		QQ		WF	۲. The second				
NAILED	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	21 35 20 36	19 1937 2x4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 41 16	15 4x8	= 1	4 4 4	13 1x4 =	4x6 =
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	21 35 20 36 2x4 II NAILED NAILED NAILED	19 37 2x4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 41 16	15 4x8 4x8	$=$ $\frac{1}{2x}$	4 4 4	13 Ix4 =	4x6 =
	$\frac{c_1}{4} \sum_{i=1}^{n} \frac{c_2}{4} \sum_{i=1}^{n} \frac{c_1}{4}$ $4x6 = \frac{c_1}{34}$ NAILED	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 37 2x4 D NAILED NAILED N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40 41 16 11 4x8 NAILED NAILE	15 4x8 3 = 50 NAILEC	$=$ $\frac{1}{2x}$	4 4 4	13 1x4 =	4x6 =
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	21 35 20 36 2x4 II NAILED 4x8 = AILED NAILED NAILED	19 37 2x4 D NAILED NAILED N	18 38 39 17 8x16 = 2x4 AILED NAILED NAILED I	40 41 16 II 4x8 NAILED NAILE	15 4x8 5 =	$=$ $\frac{1}{2x}$	4 4 4	13 Ix4 =	<u>₩</u> 4x6 =
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 37 2x4 D NAILED NAILED N	18 38 39 17 8x16 = 2x4 AILED NAILED NAILED I	40 41 16 II 4x8 NAILED NAILE	5 15 4x8 5 =	$=$ $\frac{1}{2x}$	4 4 4	13 lx4 =	<u>₩</u> <u>4</u> x6 =

F	4-0-0	8-2-14	12-4-0	16-5-2		20-6-4	26	-1-12	31-	0-0	36-0-0	40-0-0
Plate Offse	4-0-0	4-2-14	<u>4-1-2</u> 3.0-3-0]. [10:0-3-0	4-1-2	0-4-0.0-	4-1-2		-7-8	4-1	0-4	5-0-0	4-0-0
		[0:0 : 0,0 = 0], [0:0 : 0	.,	,• _ •], [· •·	,.	<u> </u>						
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 NO TPI2014	CSI. TC BC WB Matrix	0.71 0.45 0.93 <-S		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo 0.10 19-2 -0.18 19-2 0.02 1	c) l/defl 0 >999 0 >999 7 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 224	GRIP 244/190 H b FT = 20%
LUMBER- TOP CHOI BOT CHOI WEBS	RD 2x4 SP RD 2x6 SP 2x4 SP	No.2 No.2 No.3					BRACING- TOP CHOF BOT CHOF	2D Stru 2-0- 2D Rigi 5-10 5-10	ctural wood 0 oc purlins d ceiling dir)-5 oc bracir)-6 oc bracir	sheathing dir (3-6-13 max.) ectly applied o ng: 17-18 ng: 15-17.	rectly applied or 4-1): 3-10. or 10-0-0 oc bracing	I-3 oc purlins, except g, Except:
REACTIO	NS. All be (lb) - Max Ho Max Up Max Gi	arings 0-3-8. brz 2=41(LC 12) blift All uplift 100 lb or rav All reactions 250 11=493(LC 24)	less at joint(s) 1 lb or less at joint(I except 2=- s) except 2=	199(LC :1028(L0	12), 17=- C 23), 17:	507(LC 9), 15 =1923(LC 23)	=-140(LC 8) , 15=718(LC	24),			
FORCES. TOP CHOI BOT CHOI	(lb) - Max. RD 2-3=- 7-8=- RD 2-21=	Comp./Max. Ten All 1 1785/415, 3-4=-2164/5 144/709, 8-9=-144/709 -345/1533, 20-21=-340	forces 250 (lb) or 69, 4-5=-2164/56 9-10=-566/174, 0/1546, 19-20=-4	less except 9, 5-6=-564/ 10-11=-686/ 76/1881, 18-	when sł /189, 6- /164 ·19=-476	hown. 7=-564/18 6/1881, 1 [:]	39, 7-18=-1468/3	93,				
WEBS	15-17 3-21= 6-18= 9-15=	7=-1468/393, 14-15=-1 0/269, 3-20=-231/705, -299/174, 7-18=-576/2 -1188/212	52/482, 13-14=-1 4-20=-349/203, 2252, 7-17=-1692	52/482, 11- 5-20=-66/31 571, 7-15=-	13=-81/! 5, 5-19= -213/81!	563 =0/262, 5- 5, 8-15=-4	18=-1462/374 10/221,	;				
NOTES- 1) Unbalar 2) Wind: A MWFRS Interior(for react 3) Provide 4) This trus 5) * This tr will fit be 6) One H2 This cor 7) Graphic 8) "NAILEI	nced roof live SCE 7-10; V S (envelope) 1) 8-2-14 to 3 tions shown; adequate dra ss has been uss has been tween the bu .5A Simpson nection is fo al purlin repr. D" indicates 3	loads have been cons ult=130mph (3-second gable end zone and C- 36-0-0, Exterior(2) 36-0 Lumber DOL=1.60 pla ainage to prevent wate designed for a 10.0 psf to designed for a 10.0 psf to designed for a live loa ottom chord and any of Strong-Tie connectors r uplift only and does n esentation does not de 3-10d (0.148"x3") or 3-	idered for this de gust) Vasd=103r C Exterior(2) -0-7 -0 to 40-2-15, Int te grip DOL=1.60 r ponding. bottom chord liv ad of 20.0psf on t ther members. r recommended t to t consider latera pict the size or th 12d (0.148"x3.25	sign. nph; TCDL= 0-8 to 2-1-8 erior(1) 40-2 e load noncc he bottom ch b connect tru il forces. e orientatior ') toe-nails p	6.0psf; , Interio 2-15 to 4 oncurrer nord in a uss to be n of the er NDS	BCDL=6.0 r(1) 2-1-8 lo-10-8 zc nt with any all areas v earing wa purlin alou guidlines	Dpsf; h=0ft; C. to 4-0-0, Extended of the construction of the construction of the construction of the construction of the construction of the construction of the cons	at. II; Exp B; prior(2) 4-0-(embers and dds. ngle 3-6-0 ta IFT at jt(s) 2 l/or bottom o	Enclosed;) to 8-2-14, forces & M ¹ Il by 2-0-0 w 2, 17, 15, an hord.	WFRS vide rd 11.		SEAL 044925

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 17, 15, and 11. This connection is for uplift only and does not consider lateral forces.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	140.1445.B
					140377053
140_1445_B	HGS	Hip Girder	1	1	
					Job Reference (optional)
84 Components (Dur	nn), Dunn, NC - 28334,		8.	330 s Feb	13 2020 MiTek Industries, Inc. Tue Feb 25 09:00:14 2020 Page 2

ID:BITDcF1mp8o7VHDtnYyQ8bzeFlK-8kg1SHS6YHUrDKVlccDoXYsiT8K52V1pw7bivazhee?

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-10=-60, 10-12=-60, 2-11=-20

Concentrated Loads (lb)

Vert: 3=-46(F) 21=-18(F) 20=-18(F) 4=-46(F) 5=-46(F) 19=-18(F) 8=-54(F) 15=-18(F) 16=-18(F) 22=-44(F) 23=-46(F) 24=-46(F) 25=-46(F) 26=-46(F) 27=-46(F) 28=-46(F) 30=-46(F) 30=-46(F) 35=-18(F) 36=-18(F) 35=-18(F) 35=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ł	4	0-0	1
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 100	CSI. DEFI TC 0.23 Vert(BC 0.17 Vert(WB 0.00 Horz Matrix-P Horz Horz	in (loc) l/defl L/d L) -0.01 2-4 >999 240 CT) -0.02 2-4 >999 180 CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=91(LC 12) Max Uplift 3=-67(LC 12), 2=-32(LC 12)

Max Grav 3=106(LC 1), 2=32(LC 12)Max Grav 3=106(LC 1), 2=221(LC 1), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			4-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.17 WB 0.00 Matrix-P	DEFL. in (loc) Vert(LL) -0.01 2-4 Vert(CT) -0.02 2-4 Horz(CT) -0.00 3	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=91(LC 12) Max Uplift 3=-67(LC 12), 2=-32(LC 12)

Max Grav 3=106(LC 1), 2=32(LC 12)Max Grav 3=106(LC 1), 2=221(LC 1), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			4-0-0 4-0-0		1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.27 BC 0.17 WB 0.00	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) -0.00	(loc) l/defl 1-3 >999 1-3 >999 2 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/1PI2014	Matrix-P	BRACING-			Weight: 13 lb F1 = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 1=78(LC 12)

Max Uplift 1=-7(LC 12), 2=-71(LC 12) Max Grav 1=152(LC 1), 2=114(LC 1), 3=76(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

0-4-3

3x6 =

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-11-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

2-4-3 1-11-8

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		2-0-0						
LOADING TCLL	(psf) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.06	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 2 >999 240	PLATES GRIP MT20 244/190			
TCDL	10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 2-4 >999 180				
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.00 3 n/a n/a	Weight: 8 lb FT = 20%			

BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 3=Mechanical, 2=0-3-8, 4=Mechanical (size)

Max Horz 2=53(LC 12)

Max Uplift 3=-31(LC 12), 2=-29(LC 12) Max Grav 3=46(LC 1), 2=145(LC 1), 4=39(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Ploto Offoo	ata (X X)			2-0- 2-0-	0 ·0					4-0-0 2-0-0		
Plate Olise	ets (X, Y)	[3:0-3-0,0-2-0]		-								
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	0.02	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.03	2-5	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	<-P						Weight: 14 lb	FT = 20%
						BRACINC						

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 4-0-0 oc purlins, except 2-0-0 oc purlins: 3-4.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=54(LC 12) Max Uplift 4=-46(LC 9), 2=-68(LC 12), 5=-4(LC 9) Max Grav 4=104(LC 1), 2=246(LC 1), 5=76(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- Hanger (s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 49 lb down and 54 lb up at
 A a statistic device (s) shall be provided sufficient to support concentrated load(s) 49 lb down and 54 lb up at
- 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (Ib)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

