Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

0.4

25% ned

0.4

Available Space (.1945)

System Type(s)

Site LTAR

Sheet: Property ID:

Lot #: File#: SFD 1902-0007

LOT 60

Code:

CROSS UNK

Locati Water Evalua	r: 93 Coo sed Facility: on of Site: Supply: ation Method of Wastewate	481 5	Pub Boring	Desig	gn Flow (erty Reco ndividual	(.1949): 30	Vell	☐ Sprin		8 AC	_	60	
P R O F I L E	.1940 Landscape Position/ Slope %	Horizon Depth (In.)	.1 Stru Ter	941 acture/ exture	1941 Con Min	1941 sistence eralogy	335	.1942 Soil Vetness/ Color	OTH PROFILE F .194 So. Depth	ACTORS 13 il	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
l	L3%	0-36	62	L5/5L	va	NSM							PS
		30-48	31	Su	ra	15 M			48		788		0.4
								1000 10 1000					
2,3	L3/0	0-16	on!	USISL	VIZ	25118							PS
	L370	16-48	gr	Su	rn	1550			48				PS 0.4-
							2017						
Descrip	tion	100	itial /stem	Rep	air Syste			etors (.1946): cation (.1948)	i: Provi	siona	ال خورا	culp Le	
Availabl System	e Space (.194 Γype(s)	5)	5% M	ed 25	% M	-		Evaluated By hers Present:	: And	rew	Currin	whole.	

Others Present:

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	TEXTURES	. <u>1955 LTAR</u>	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	I	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	II	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	Ш	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC

IV SIC-SILTY CLAY 0.4 - 0.1 C-CLAY

SC-SANDY CLAY

MINERALOGY SLIGHTLY EXPANSIVE

STRUCTURE SG-SINGLE GRAIN M- MASSIVE CR-CRUMB GR-GRANULAR SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY

EXPANSIVE

PL-PLATY PR-PRISMATIC Show profile locations and other site features (dimensions, references or benchmark, and North) 2 = /cost LGW 141164 301

CROSS LINK DR.