

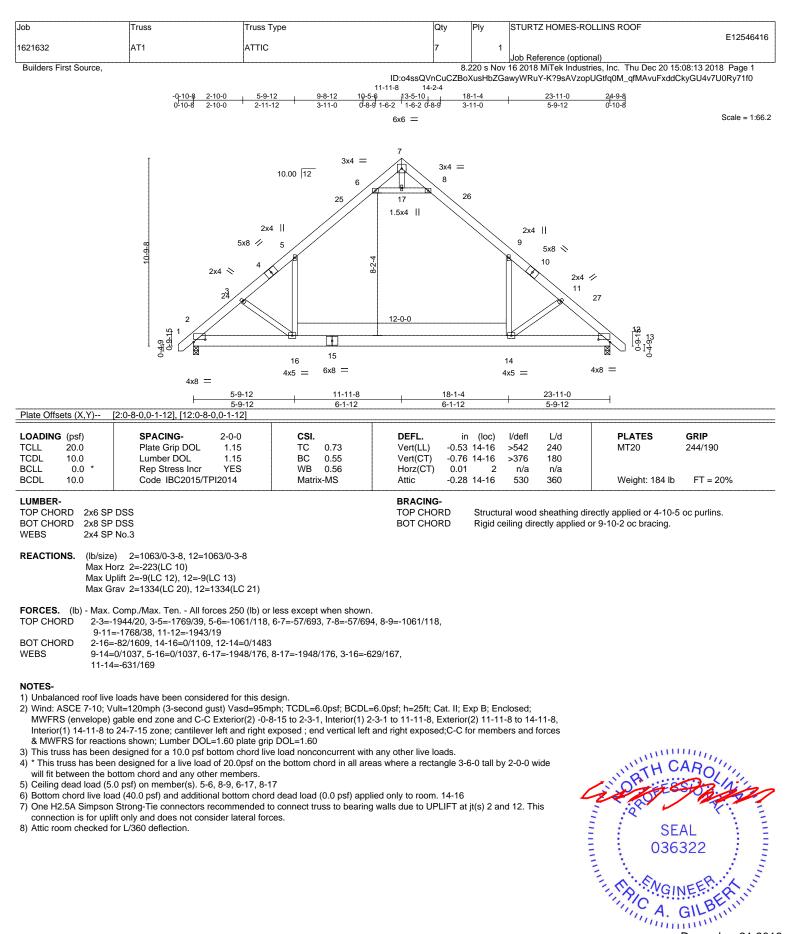
Trenco 818 Soundside Rd Edenton, NC 27932

Re: 1621632 STURTZ HOMES-ROLLINS ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

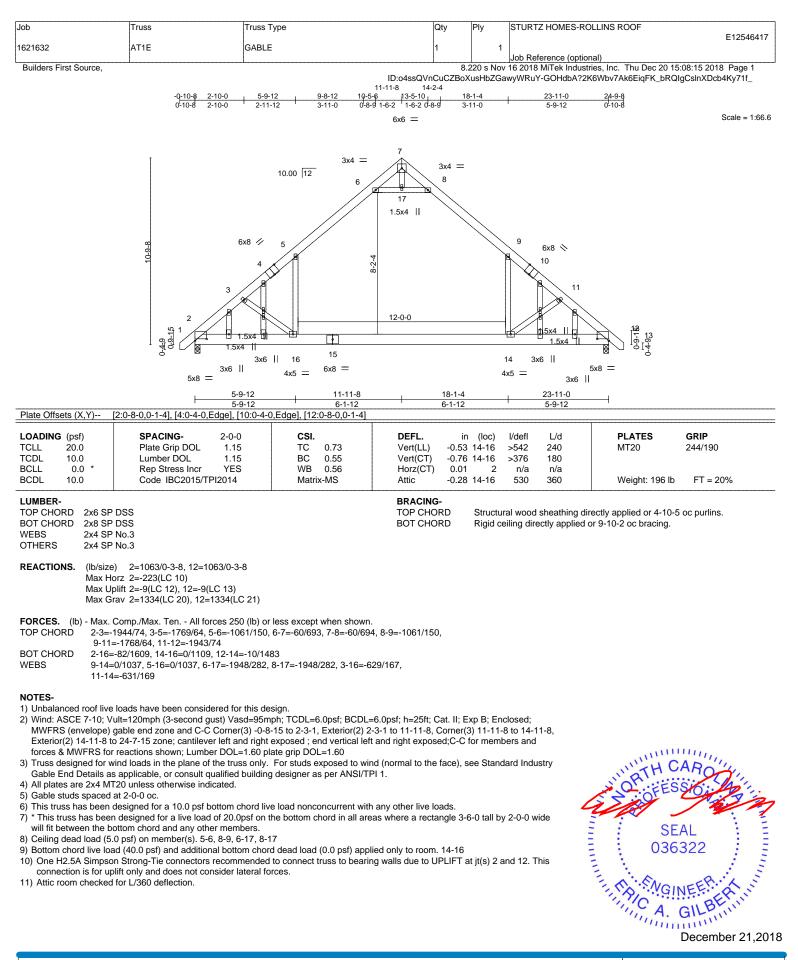
Pages or sheets covered by this seal: E12546416 thru E12546478

My license renewal date for the state of North Carolina is December 31, 2018.

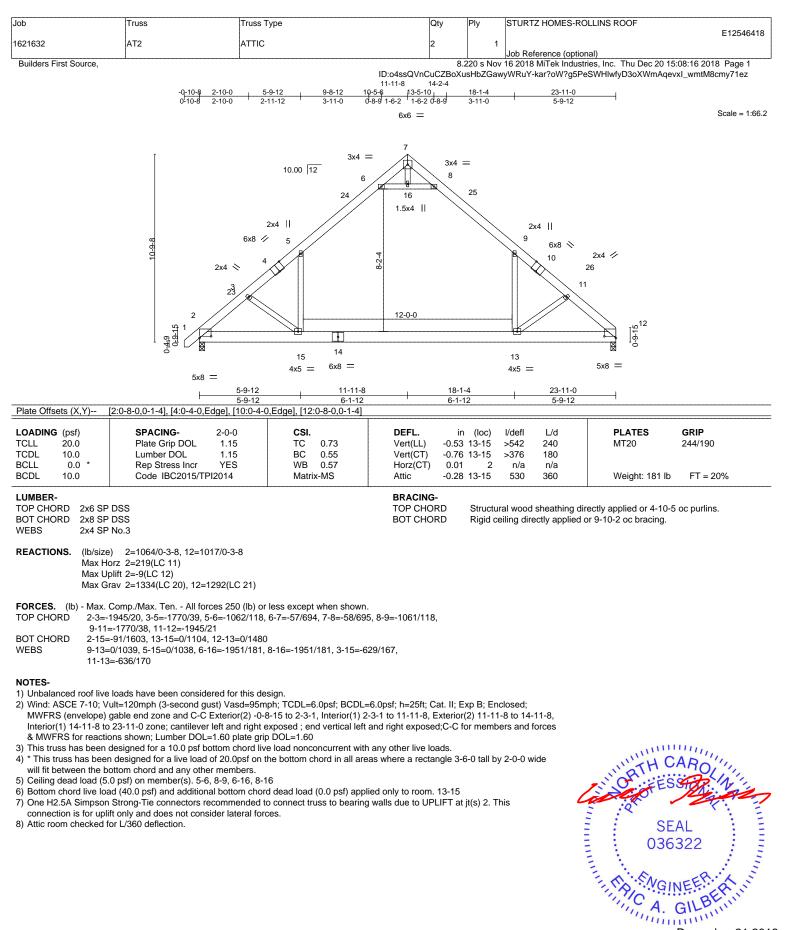

North Carolina COA: C-0844

December 21,2018

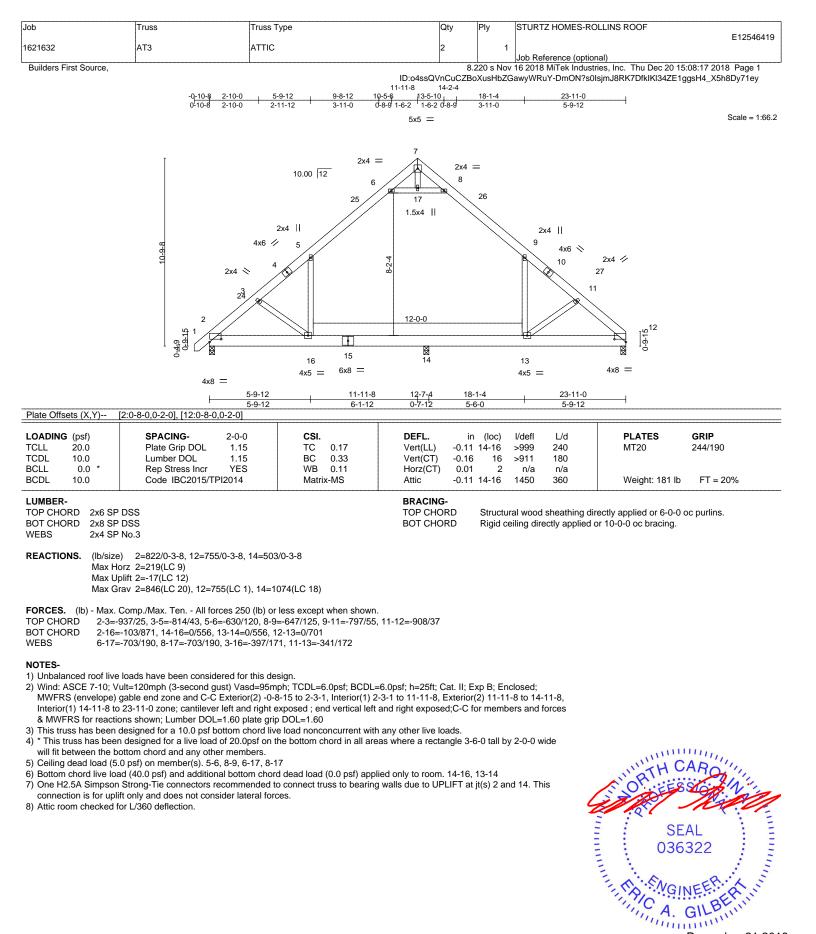
Gilbert, Eric


IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

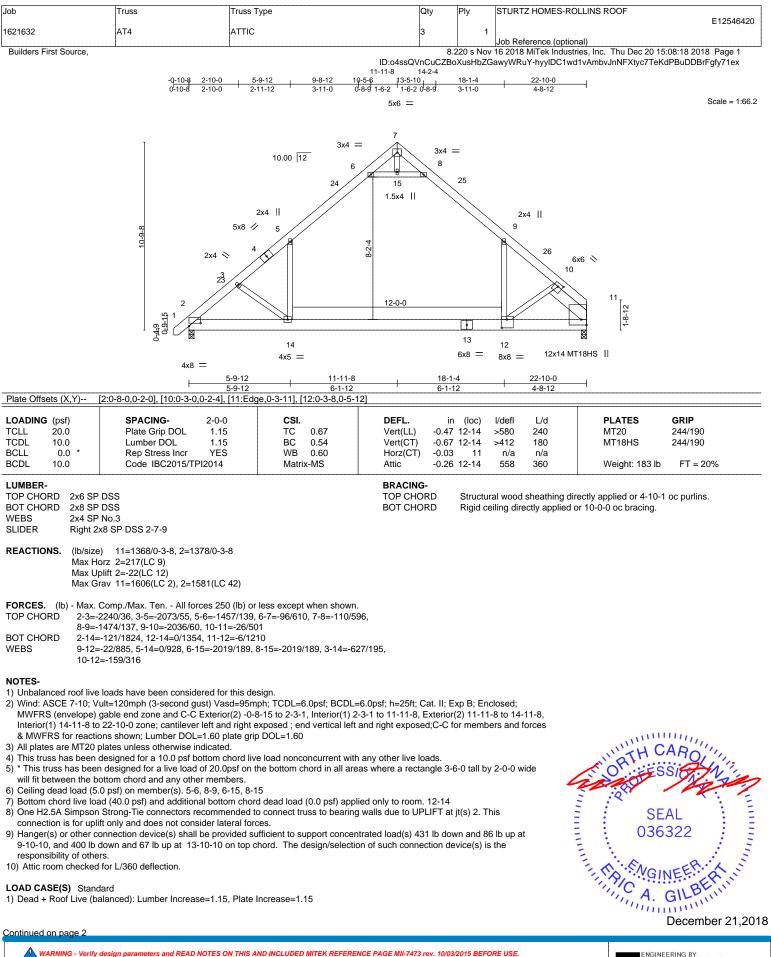
December 21,2018


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Edenton, NC 27932


December 21,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 216 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 21,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. IGINEERING BY

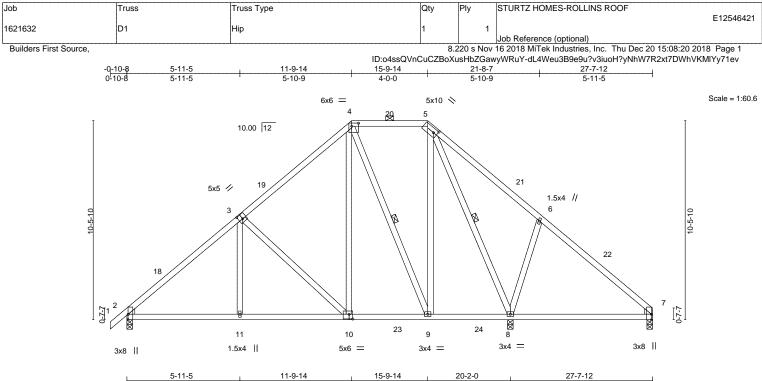
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILEK REFRENCE PAGE MII-74/3 rev. 10/03/2013 BEFURE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

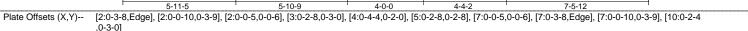
Job		Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
						E12546420
162163	2	AT4	ATTIC	3	1	
						Job Reference (optional)
Builde	rs First Source,			8.2	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:18 2018 Page 2

ID:o4ssQVnCuCZBoXusHbZGawyWRuY-hyyIDC1wd1vAmbvJnNFXtyc7TeKdPBuDDBrFgfy71ex

LOAD CASE(S) Standard

Uniform Loads (plf)


Vert: 1-5=-60, 5-6=-70, 6-7=-60, 7-8=-60, 8-9=-70, 9-11=-60, 16-20=-20, 6-8=-10


Concentrated Loads (lb) Vert: 6=-391 8=-360

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2015/TPI2014	CSI. TC 0.47 BC 0.42 WB 0.49 Matrix-MS	DEFL. ii Vert(LL) -0.06 Vert(CT) -0.14 Horz(CT) 0.02	4 8-17 >636	L/d 240 180 n/a	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD	Structural woo 2-0-0 oc purlin:	0	rectly applied or 5-6-2	oc purlins, except
WEBS 2x4 SP WEDGE Left: 2x4 SP No.3. Righ	No.3		BOT CHORD WEBS		rectly applied o	4-3. or 10-0-0 oc bracing. -9, 5-8	

REACTIONS. (Ib/size) 2=909/0-3-8, 7=430/0-3-8, 8=926/0-3-8 Max Horz 2=219(LC 9) Max Uplift 2=-53(LC 12), 7=-11(LC 13), 8=-50(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1066/87, 3-4=-725/155, 4-5=-403/159, 5-6=-391/181, 6-7=-402/62

BOT CHORD 2-11=-101/827, 10-11=-101/826, 9-10=-33/514, 8-9=-8/409, 7-8=0/263

WEBS 3-10=-427/183, 4-10=-55/440, 4-9=-324/84, 5-9=-40/441, 6-8=-371/240, 5-8=-537/67

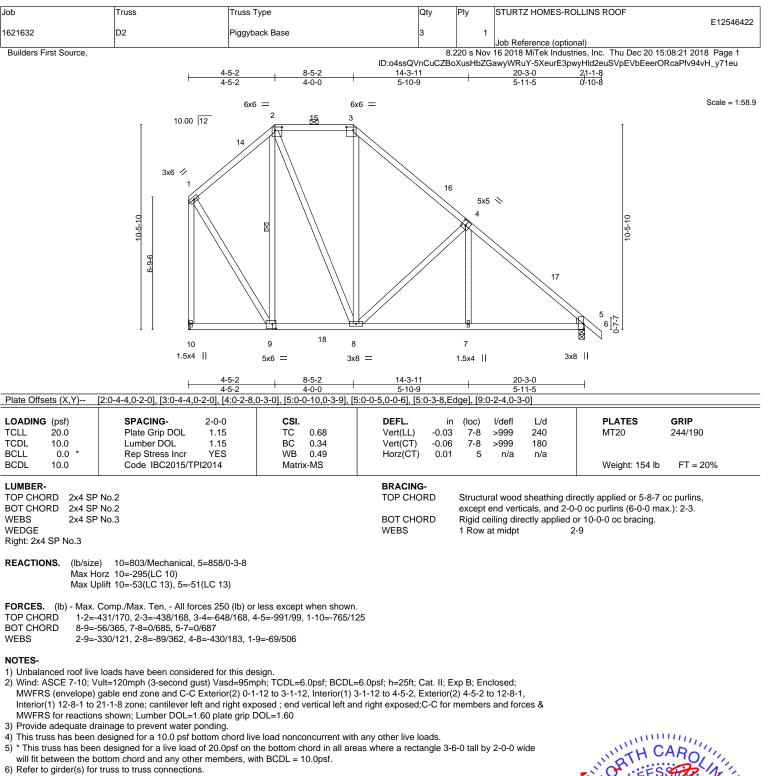
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-9-14, Exterior(2) 11-9-14 to 20-0-13, Interior(1) 20-0-13 to 27-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

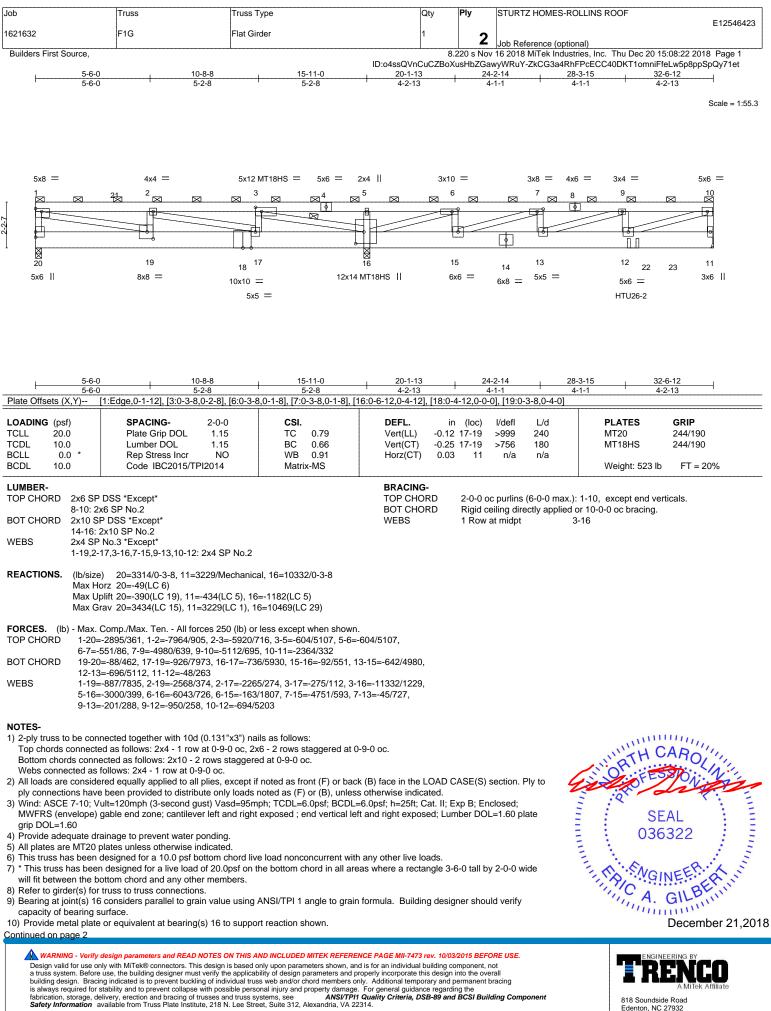
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 7, and 8. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at I(s) 5. This
- connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546423
1621632	F1G	Flat Girder	1	2	
				2	Job Reference (optional)
Builders First Source,			8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:22 2018 Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:22 2018 Page 2 ID:o4ssqVnCuCZBoXusHbZGawyWRuY-ZkCG3a4RhFPcECC40DKT1omniFfeLw5p8ppSpQy71et

NOTES-

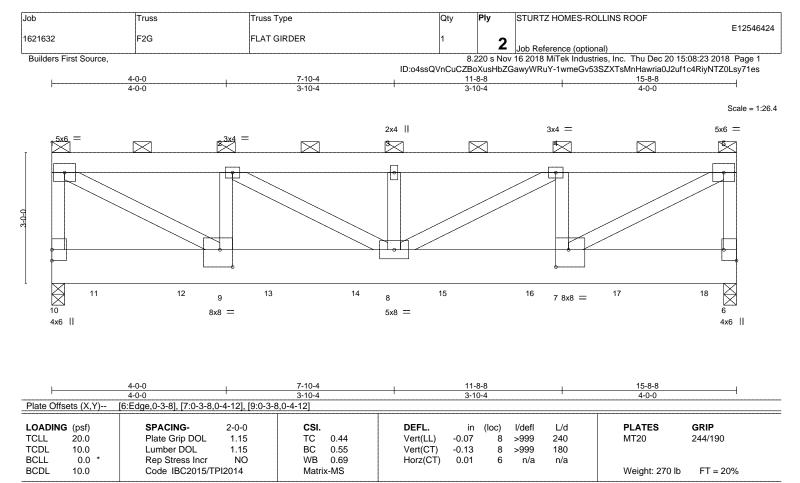
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=434.
- 12) Two HTS20 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20 and 16. This connection is for uplift only and does not consider lateral forces.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie HTU26-2 (20-10d Girder, 14-10d Truss, Single Ply Girder) or equivalent at 28-8-8 from the left end to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 195 lb down and 53 lb up at 30-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-21=-250, 5-21=-680, 5-10=-220, 16-20=-20, 11-16=-170(F=-150)


Concentrated Loads (lb)

Vert: 22=-787(B) 23=-195

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2

BOT CHORD 2x10 SP No.2 WEBS 2x4 SP No.3 *Except*

- 1-9,2-8,4-8,5-7: 2x4 SP No.2
- REACTIONS. (lb/size) 10=4087/0-3-8, 6=4445/0-3-8 Max Horz 10=-74(LC 6) Max Uplift 10=-551(LC 4), 6=-597(LC 5)

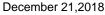
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 1-10=-3486/482, 1-2=-4924/668, 2-3=-6416/857, 3-4=-6416/857, 4-5=-4922/669, TOP CHORD
- 5-6=-3773/514
- BOT CHORD 8-9=-700/4924. 7-8=-682/4922
- WEBS 1-9=-766/5660, 2-9=-2064/316, 2-8=-242/1755, 3-8=-1021/166, 4-8=-244/1756, 4-7=-2065/317, 5-7=-764/5658

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Two HTS20 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 10 and 6. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 159 lb down and 48 lb up at 1-0-12, 158 lb down and 49 lb up at 3-0-12, 158 lb down and 49 lb up at 5-0-12, 158 lb down and 49 lb up at 7-0-12, 158 lb down and 49 lb up at 9-0-12, 158 lb down and 49 lb up at 11-0-12, and 158 lb down and 49 lb up at 13-0-12, and 198 lb down and 51 lb up at 15-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-0-0 oc purlins (5-11-14 max.): 1-5, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

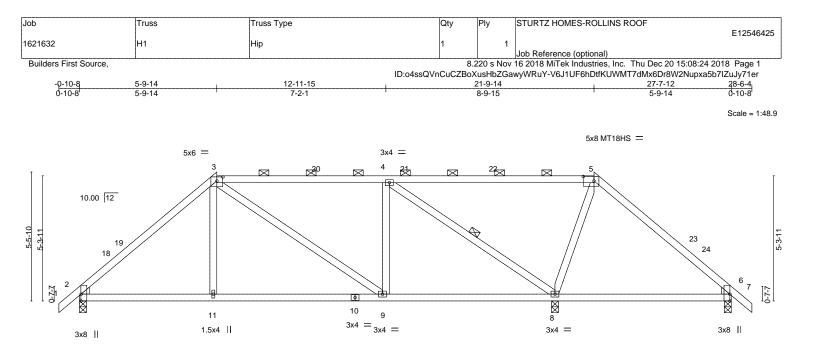
Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546424
1621632	F2G	FLAT GIRDER	1	2	
				2	Job Reference (optional)
Builders First Source,			8.3	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:23 2018 Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:23 2018 Page 2 ID:o4ssQVnCuCZBoXusHbZGawyWRuY-1wmeGv53SZXTsMnHawria0J2uf1c4RiyNTZ0Lsy71es

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-280, 6-10=-170(F=-150)


Concentrated Loads (lb)

Vert: 5=-288 11=-159 12=-158 13=-158 14=-158 15=-158 16=-158 17=-158 18=-198

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I	5-9-14 5-9-14	<u>12-11-15</u> 7-2-1	20-2		1	27-7-12 7-5-12	I
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-0-10,0-3-9], [2:0-0	-5,0-0-6], [3:0-3-0,0-2-1], [5:0	0-5-8,0-2-5], [6:0-0-5,0	-0-6], [6:0-0-10,0-3-	9], [6:0-3-8,Edge]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2015/TPI2014	CSI. TC 0.77 BC 0.55 WB 0.46 Matrix-MS	DEFL. ir Vert(LL) -0.06 Vert(CT) -0.14 Horz(CT) 0.02	8-17 >999 8-17 >655	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 139 lb	GRIP 244/190 244/190 FT = 20%
	P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood si 2-0-0 oc purlins (5 Rigid ceiling direc 6-0-0 oc bracing: 1 Row at midpt	5-9-2 max.): 3-5. tly applied or 10-0		
REACTIONS. (lb/size) 2=856/0-3-8, 8=1117/0-3-8, 6=343/0-3-8 Max Horz 2=-116(LC 10) Max Uplift 2=-92(LC 12), 8=-145(LC 9), 6=-123(LC 13) Max Grav 2=856(LC 1), 8=1127(LC 23), 6=402(LC 20) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.							

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when sh

TOP CHORD 2-3=-1000/131, 3-4=-830/189, 5-6=-290/175

- BOT CHORD 2-11=-50/690, 9-11=-51/686, 8-9=-38/829
- WEBS 3-11=0/268, 4-8=-1093/211, 5-8=-377/130

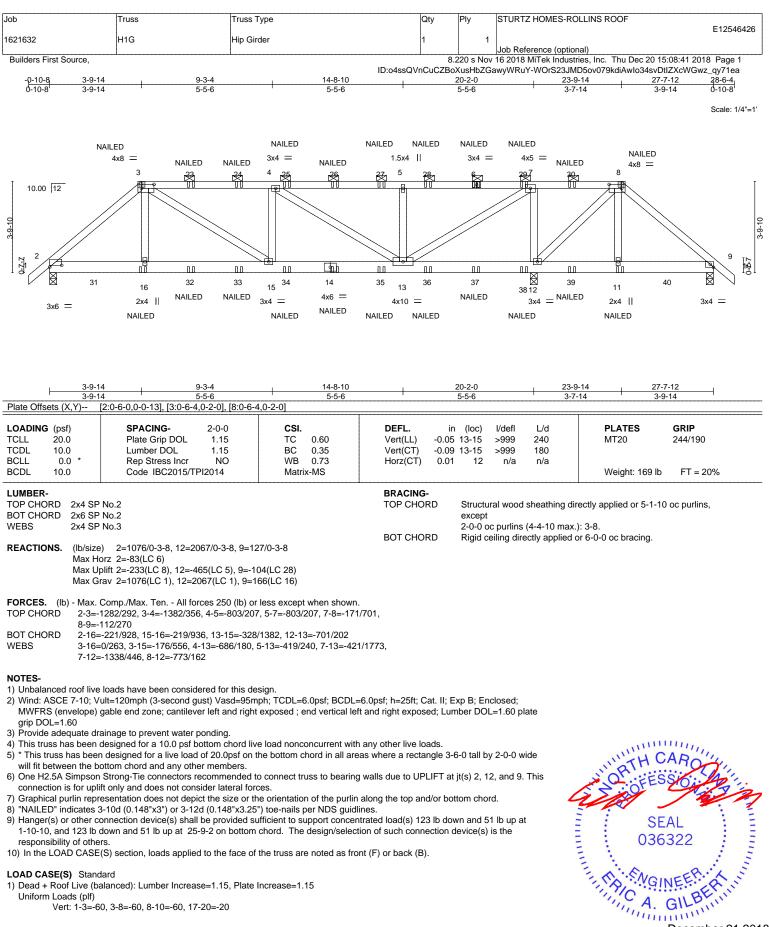
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-9-14, Exterior(2) 5-9-14 to 10-0-13, Interior(1) 10-0-13 to 21-9-14, Exterior(2) 21-9-14 to 26-0-13, Interior(1) 26-0-13 to 28-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, and 6. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MI lek Affili 818 Soundside Road Edenton, NC 27932

Vert: 1-3=-60, 3-8=-60, 8-10=-60, 17-20=-20

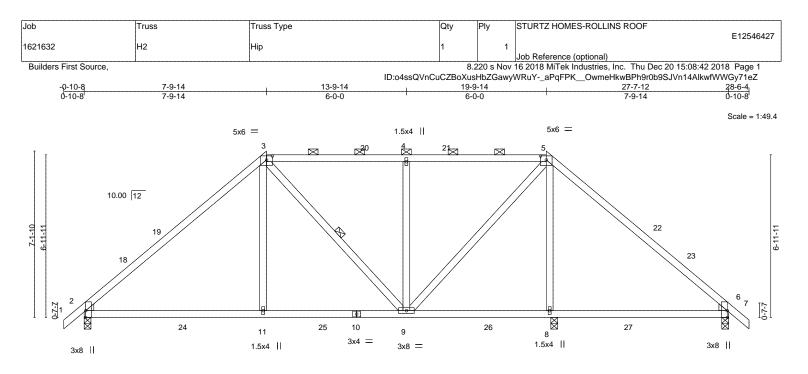
Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

December 21,2018

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546426
1621632	H1G	Hip Girder	1	1	
					Job Reference (optional)
Builders First Source,			8.3	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:41 2018 Page 2

ID:o4ssQVnCuCZBoXusHbZGawyWRuY-WOrS23JMD5ov079kdiAwIo34svDtIZXcWGwz_qy71ea


LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-35(F) 6=-35(F) 8=-35(F) 14=-29(F) 16=-29(F) 11=-29(F) 23=-35(F) 24=-35(F) 25=-35(F) 26=-35(F) 27=-35(F) 28=-35(F) 29=-35(F) 30=-35(F) 31=-123 32=-29(F) 33=-29(F) 34=-29(F) 35=-29(F) 36=-29(F) 37=-29(F) 38=-29(F) 39=-29(F) 40=-123

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

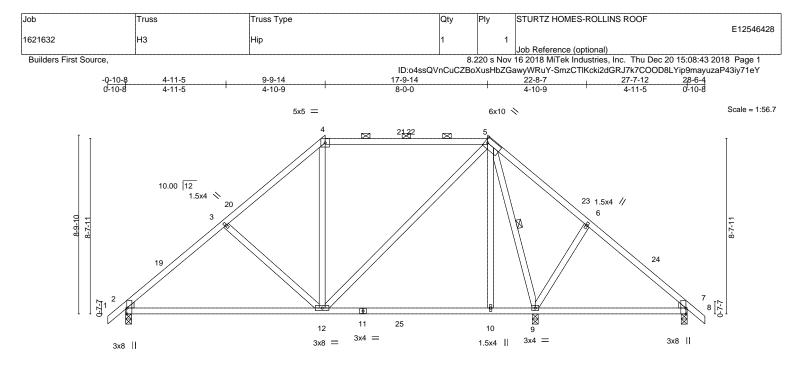
l	7-9-14 7-9-14	<u>13-9-14</u> 6-0-0	19-9		0 ₇ 3-12 0-5-14	<u>27-7-12</u> 7-4-0	
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-0-10,0-3-9], [2:0-0-5	5,0-0-6], [3:0-3-0,0-2-1], [5:0-3	3-0,0-2-1], [6:0-0-5,0-	0-6], [6:0-0-10,0	-3-9], [6:0-3-8,E	dge]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.93 BC 0.63 WB 0.45 Matrix-MS	DEFL. in Vert(LL) -0.10 Vert(CT) -0.21 Horz(CT) 0.03	8-17 >908 8-17 >437	L/d 240 180 n/a	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S WEDGE Left: 2x4 SP No.3, Rig	BRACING- TOP CHORD BOT CHORD WEBS	CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 3-5. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.					
Max I Max I	e) 2=987/0-3-8, 8=618/0-3-8, 6=712/0 lorz 2=-151(LC 10) Jplift 2=-119(LC 12), 8=-102(LC 9), 6=-2 Grav 2=987(LC 1), 8=803(LC 25), 6=753	40(LC 13)					
TOP CHORD 2-3= BOT CHORD 2-11	. Comp./Max. Ten All forces 250 (lb) or -1154/206, 3-4=-817/265, 4-5=-817/265, =-73/807, 9-11=-74/800, 8-9=-108/468, 6 =0/366, 4-9=-400/153, 5-9=-161/654, 5-8	5-6=-761/350 5-8=-112/468					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-9-14, Exterior(2) 7-9-14 to 12-0-13, Interior(1) 24-0-13 to 28-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 December 21,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	9-9-14		<u>17-9-14</u> 8-0-0	20-2-0	<u>27-7-12</u> 7-5-12	
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-0-10,0-3-9], [2:0-0-5	i,0-0-6], [5:0-1-11,0-3-0],				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.84 BC 0.75 WB 0.29 Matrix-MS	Vert(CT) -C	in (loc) l/defl).14 12-15 >999).29 12-15 >843).02 9 n/a	L/d PLATES 240 MT20 180 n/a Weight: 166 lb	GRIP 244/190 FT = 20%
	P No.3		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (theathing directly applied or 5-7-1 4-4-5 max.): 4-5. ttly applied or 10-0-0 oc bracing. 5-9	oc purlins, except
Max L	e) 2=895/0-3-8, 7=448/0-3-8, 9=974/0- lorz 2=-186(LC 10) Jplift 2=-57(LC 12), 7=-31(LC 13), 9=-56(prav 2=895(LC 1), 7=461(LC 24), 9=974)	LC 13)				

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1022/106, 3-4=-818/124, 4-5=-563/145, 5-6=-290/114, 6-7=-380/51

BOT CHORD 2-12=-97/771, 10-12=0/358, 9-10=0/362, 7-9=0/253

WEBS 3-12=-267/168, 4-12=0/259, 5-12=-86/399, 5-10=0/304, 6-9=-276/173, 5-9=-729/86

NOTES-

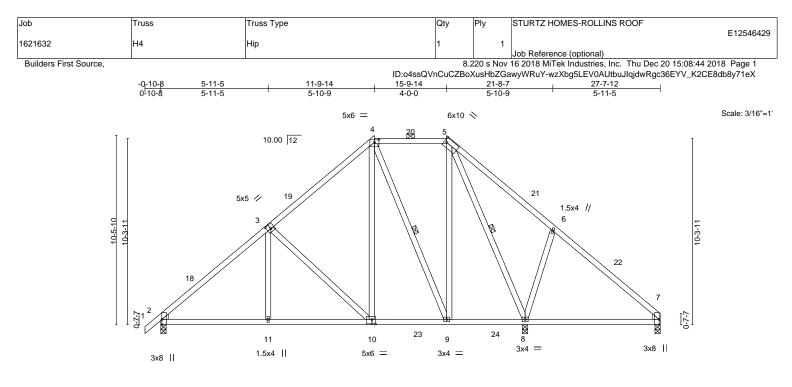
1) Unbalanced roof live loads have been considered for this design.

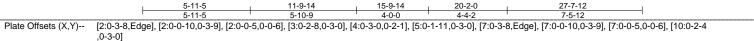
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 9-9-14, Exterior(2) 9-9-14 to 14-0-13, Interior(1) 14-0-13 to 17-9-14, Exterior(2) 17-9-14 to 22-0-13, Interior(1) 22-0-13 to 28-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) The Fabrication Tolerance at joint 5 = 4%

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 7, and 9. This connection is for uplift only and does not consider lateral forces.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.47 BC 0.42 WB 0.48 Matrix-MS	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.14 Horz(CT) 0.02	4 8-17 >637	9 240 7 180	PLATES MT20 Weight: 183 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I WEBS 2x4 SP I WEDGE	No.2		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purl	ins (6-0-0 max.) directly applied	rectly applied or 5-6-3 o : 4-5. or 10-0-0 oc bracing. I-9, 5-8	oc purlins, except

REACTIONS. (lb/size) 2=909/0-3-8, 7=429/0-3-8, 8=927/0-3-8 Max Horz 2=216(LC 9) Max Uplift 2=-54(LC 12), 7=-15(LC 13), 8=-46(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1065/88, 3-4=-724/155, 4-5=-406/159, 5-6=-390/183, 6-7=-401/65

BOT CHORD 2-11=-100/825, 10-11=-101/824, 9-10=-31/518, 8-9=-6/410, 7-8=0/262

WEBS 3-10=-418/180, 4-10=-53/435, 4-9=-325/82, 5-9=-38/440, 6-8=-367/236, 5-8=-541/67

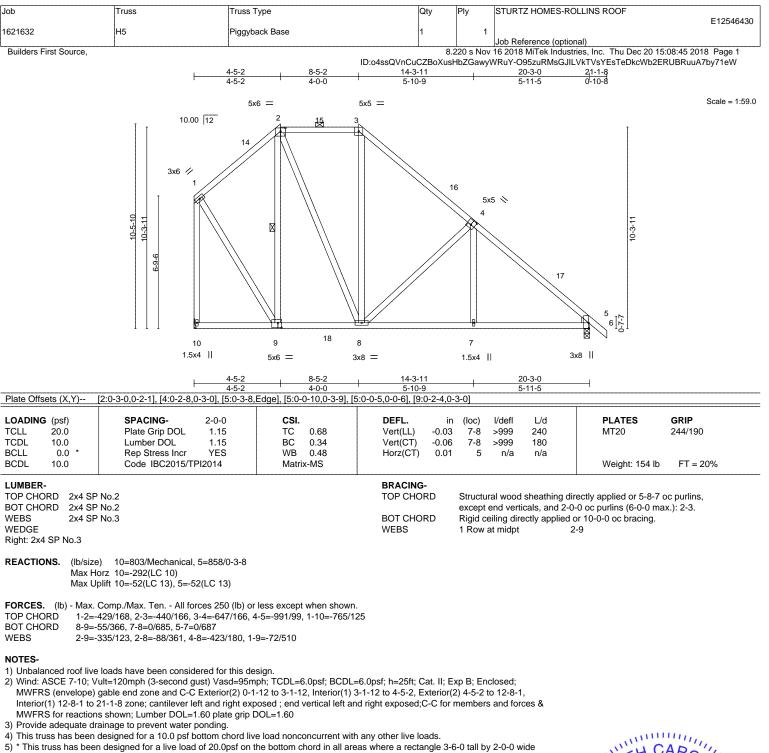
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-9-14, Exterior(2) 11-9-14 to 20-0-13, Interior(1) 20-0-13 to 27-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 7, and 8. This connection is for uplift only and does not consider lateral forces.

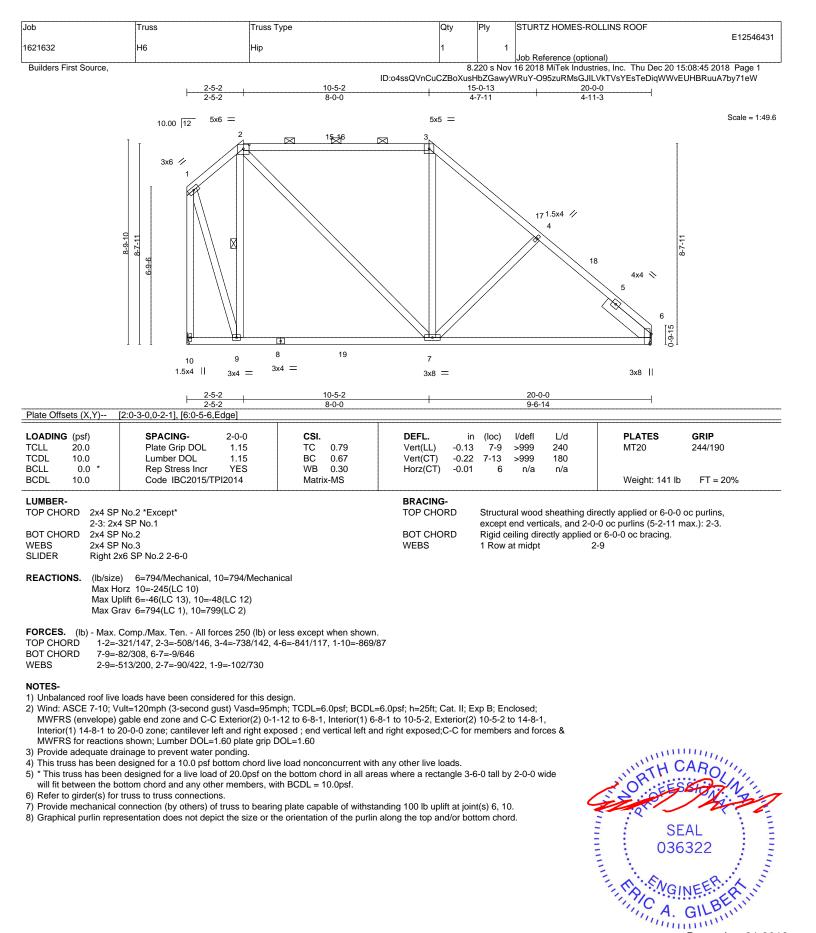
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

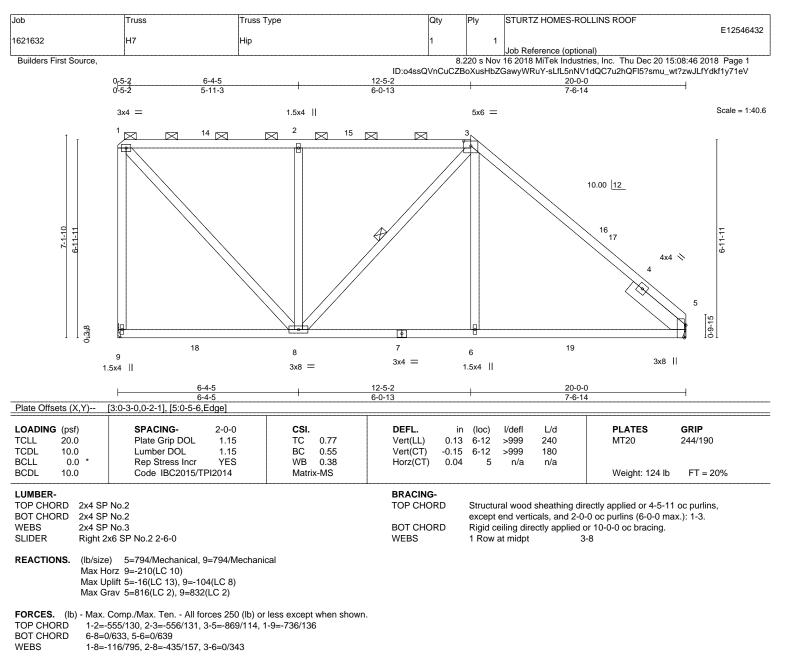
6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This


connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


RENCO

December 21,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

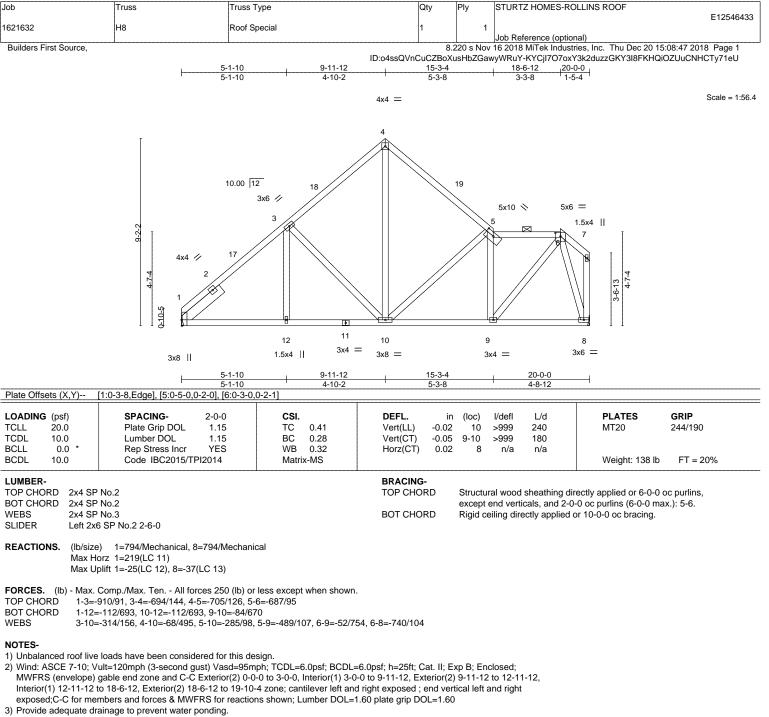
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-5-2, Exterior(2) 12-5-2 to 16-8-1, Interior(1) 16-8-1 to 20-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Refer to girder(s) for truss to truss connections.

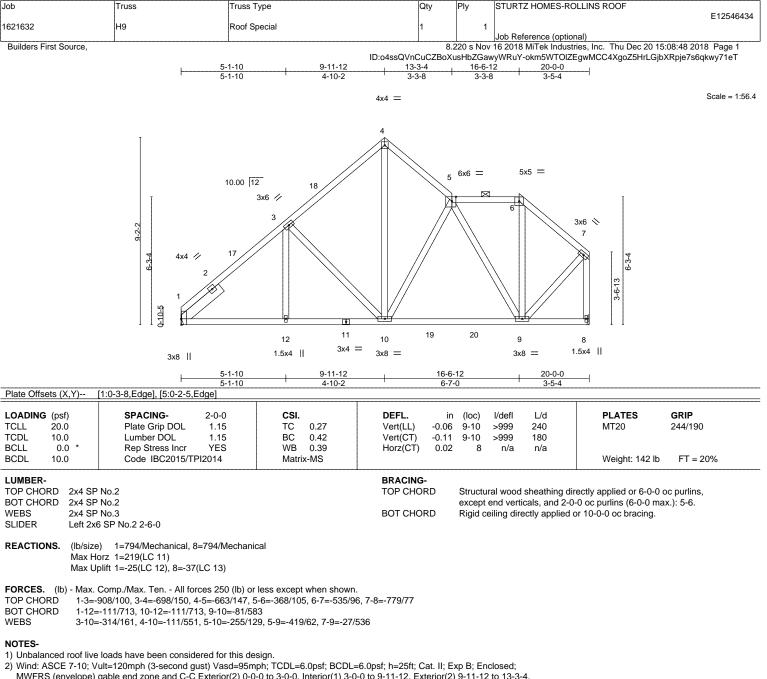
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 9=104.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

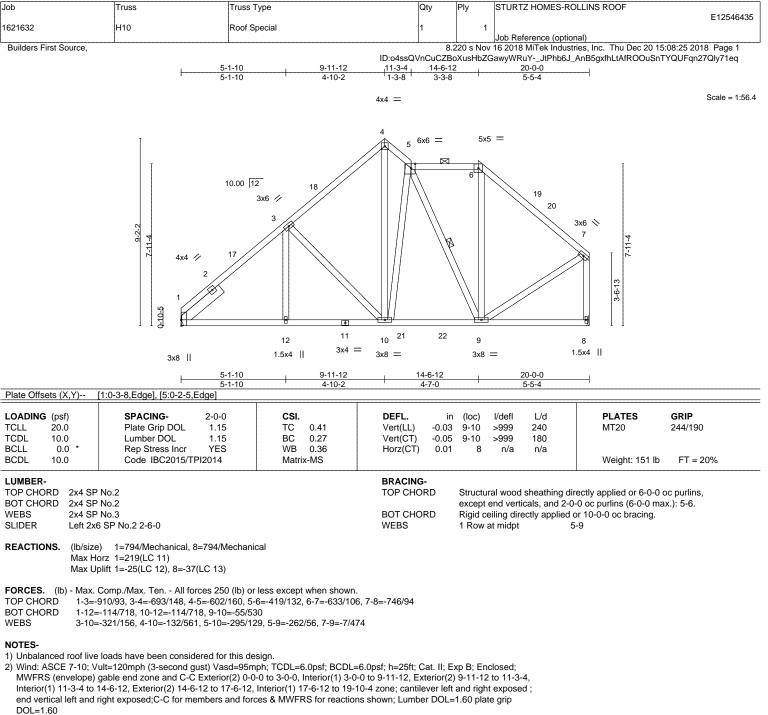

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

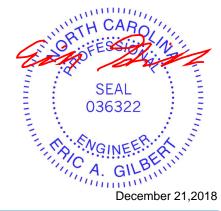
818 Soundside Road Edenton, NC 27932

- MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 9-11-12, Exterior(2) 9-11-12 to 13-3-4, Interior(1) 13-3-4 to 16-6-12, Exterior(2) 16-6-12 to 19-10-4 zone; cantilever left and right exposed; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

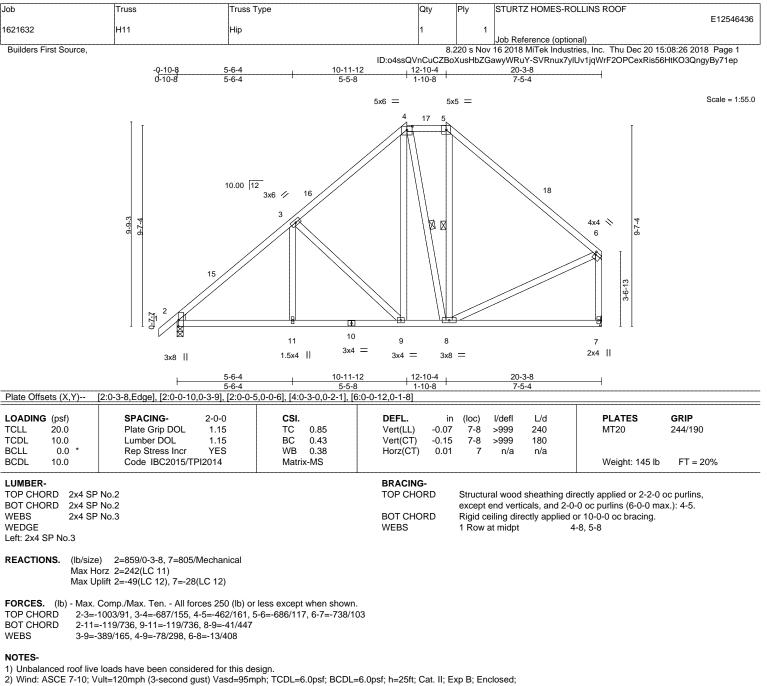
🖊 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003/2016 Sec. 1005/2016 Design valid for use only with MITER & connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component**. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🖊 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-11-12, Exterior(2) 10-11-12 to 17-1-3, Interior(1) 17-1-3 to 20-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

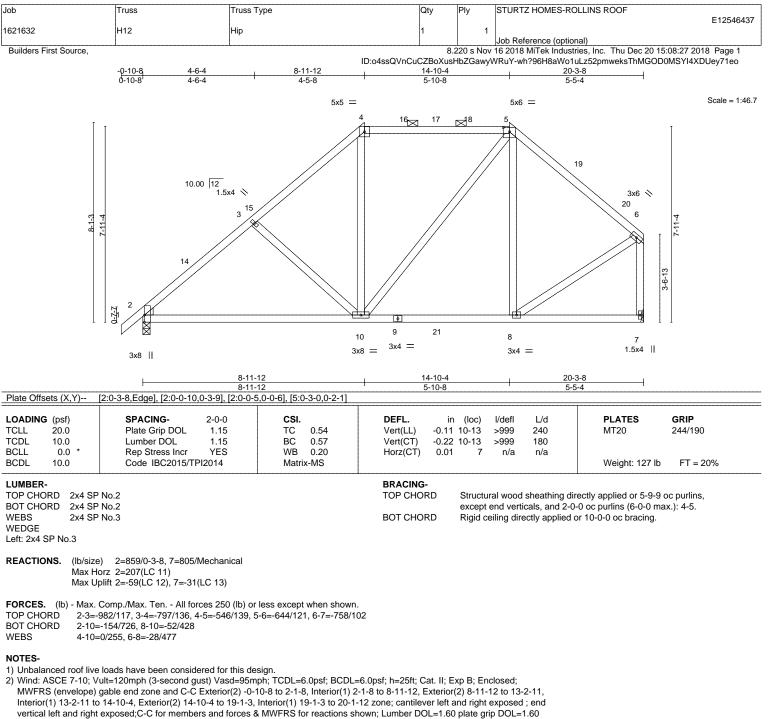
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This


connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) Provide adequate drainage to prevent water ponding.

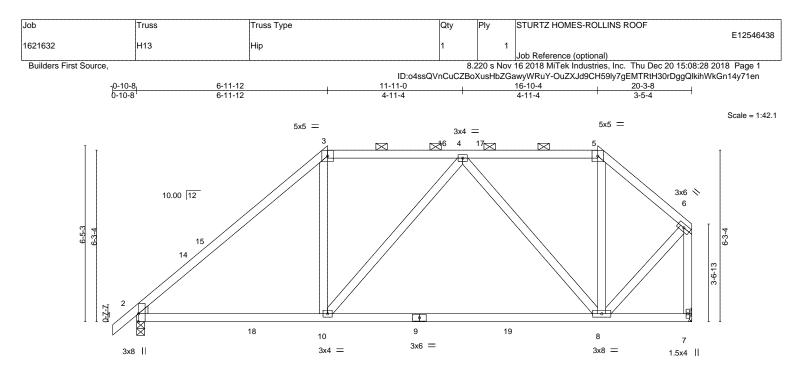
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This

connection is for uplift only and does not consider lateral forces.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

	6-11-12 6-11-12		<u>16-10-4</u> 9-10-8		20-3-8 3-5-4	-
Plate Offsets (X,Y)	[2:0-0-5,0-0-6], [2:0-0-10,0-3-9], [2:0-3-	3,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2015/TPI2014	CSI. TC 0.59 BC 0.83 WB 0.52 Matrix-MS	DEFL. in (loc) Vert(LL) -0.24 8-10 Vert(CT) -0.45 8-10 Horz(CT) 0.02 7	l/defl L/d >999 240 >538 180 n/a n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%
Max He	No.2		except	ral wood sheathing dir end verticals, and 2-0- eiling directly applied c	0 oc purlins (6-0-0 ma	
TOP CHORD 2-3=- BOT CHORD 2-10=	Comp./Max. Ten All forces 250 (lb) of 1003/96, 3-4=-682/129, 4-5=-403/102, 4 95/688, 8-10=-115/660 -0/332, 4-8=-435/122, 6-8=-17/596					
2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 11-2-11 to exposed;C-C for mer	loads have been considered for this de ult=120mph (3-second gust) Vasd=95m gable end zone and C-C Exterior(2) -0- 16-10-4, Exterior(2) 16-10-4 to 20-1-12 mbers and forces & MWFRS for reactio	ph; TCDL=6.0psf; BCDL= 10-8 to 2-1-8, Interior(1) 2 2 zone; cantilever left and	-1-8 to 6-11-12, Exterior(2) 6-11- right exposed ; end vertical left ar	12 to 11-2-11,		

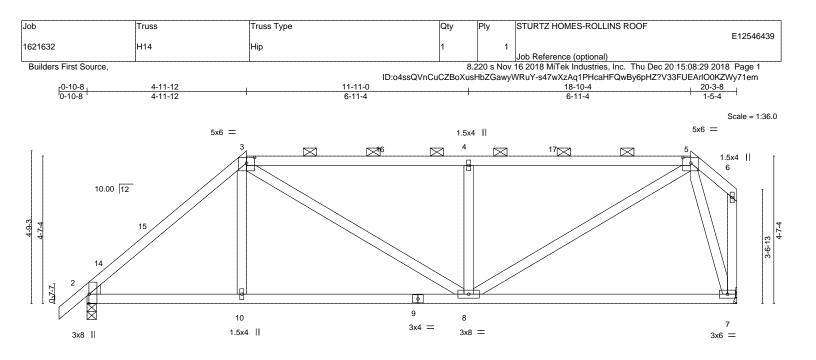
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This


connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	4-11-12	11-11-0		18-10-4	20-3-6			
Plate Offsets (X,Y)	4-11-12 ' [2:0-3-8,Edge], [2:0-0-10,0-3-9], [2:0-0-	<u>6-11-4</u> 5.0-0-6]. [3:0-3-0.0-2-1]. [5:0-	3-0.0-2-11	6-11-4	1-5-4			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.69 BC 0.60 WB 0.38 Matrix-MS	DEFL. in Vert(LL) -0.12 Vert(CT) -0.25 Horz(CT) 0.02	7-8 >999 240 7-8 >975 180	PLATES GRIP MT20 244/19 Weight: 113 lb FT =			
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3	P No.2		BRACING- TOP CHORD BOT CHORD	except end verticals, and 2-0-0 oc purlins (4-11-5 max.): 3-5.				
REACTIONS. (lb/size) 2=859/0-3-8, 7=805/Mechanical Max Horz 2=136(LC 11) Max Uplift 2=-73(LC 12), 7=-50(LC 9)								
TOP CHORD 2-3=- BOT CHORD 2-10=	Comp./Max. Ten All forces 250 (lb) o -1023/98, 3-4=-1006/128, 4-5=-1006/12 =-128/723, 8-10=-130/720 -104/393, 4-8=-493/173, 5-8=-94/908, 5	8						
NOTES-								

1) Unbalanced roof live loads have been considered for this design.

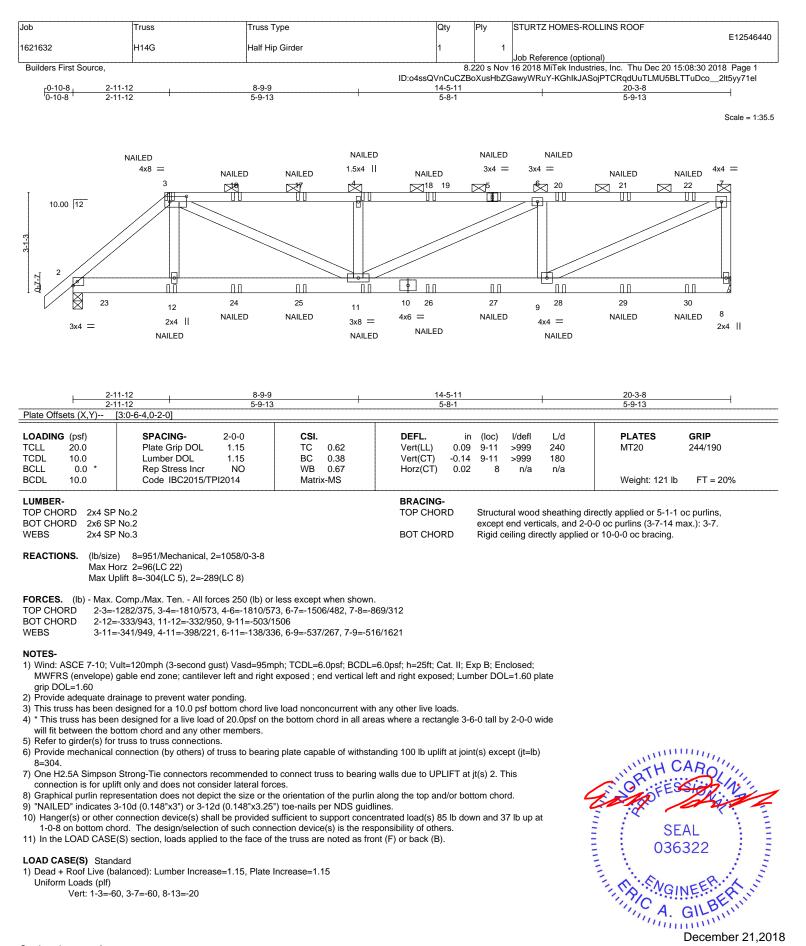
2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-11-12, Exterior(2) 4-11-12 to 9-2-11, Interior(1) 9-2-11 to 18-10-4, Exterior(2) 18-10-4 to 20-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
- connection is for uplift only and does not consider lateral forces.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

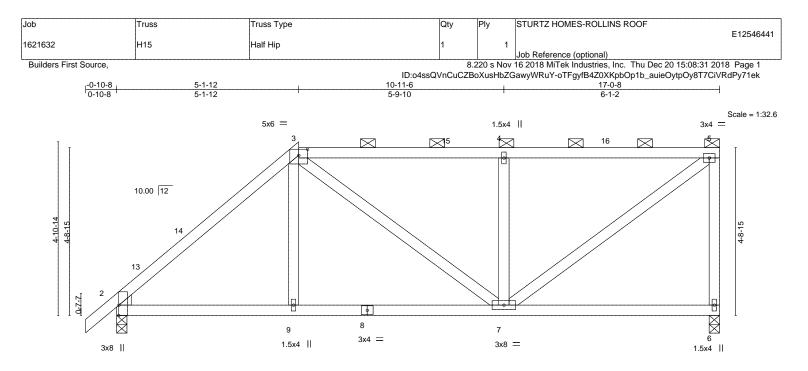
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF			
1001000	114.40	Us K Lis Cistor			E12546440			
1621632	H14G	Half Hip Girder	1	1	Job Reference (optional)			
					JOD Reference (optional)			
Builders First Source,	Builders First Source, 8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:30 2018 Page 2							
		ID:o4ssQVnCuCZBoXusHbZGawyWRuY-KGhlkJASojPTCRqdUuTLMU5BLTTuDco_2lt5yy71el						


LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-12(B) 52=-12(B) 12=-17(B) 11=-17(B) 4=-12(B) 16=-12(B) 17=-12(B) 18=-12(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-85 24=-17(B) 25=-17(B) 26=-17(B) 27=-17(B) 28=-17(B) 29=-17(B) 30=-17(B) 30=-17(B) 4=-12(B) 16=-12(B) 18=-12(B) 18=-12(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-85 24=-17(B) 25=-17(B) 26=-17(B) 26=-1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

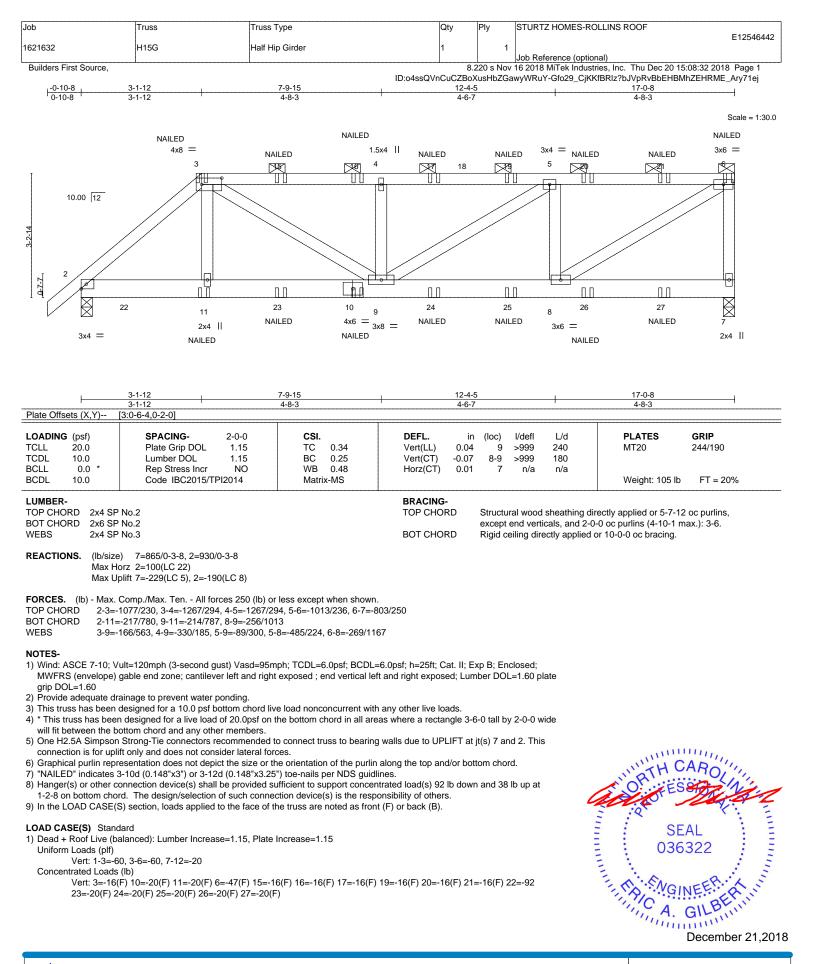
+	5-1-12 5-1-12		10-11-6 5-9-10	l	17-0-8 6-1-2
Plate Offsets (X,Y)	2:0-0-5,0-0-6], [2:0-0-10,0-3-9], [2:0-3-8	3,Edge], [3:0-3-0,0-2-1]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2015/TPI2014	CSI. TC 0.50 BC 0.36 WB 0.32 Matrix-MS	DEFL. in Vert(LL) -0.03 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 6-7 >999 240 6-7 >999 180 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 95 lb FT = 20%
Max Ho	No.2		BRACING- TOP CHORD BOT CHORD		ectly applied or 6-0-0 oc purlins, -0 oc purlins (6-0-0 max.): 3-5. or 10-0-0 oc bracing.
FORCES. (lb) - Max. (TOP CHORD 2-3=-{ BOT CHORD 2-9=-1	Comp./Max. Ten All forces 250 (lb) or 323/89, 3-4=-648/111, 4-5=-646/110, 5-1 154/565, 7-9=-155/561 416/147, 5-7=-100/784				
NOTES- 1) Unbalanced roof live	loads have been considered for this de	sign.			

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-1-12, Exterior(2) 5-1-12 to 9-4-11, Interior(1) 9-4-11 to 16-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

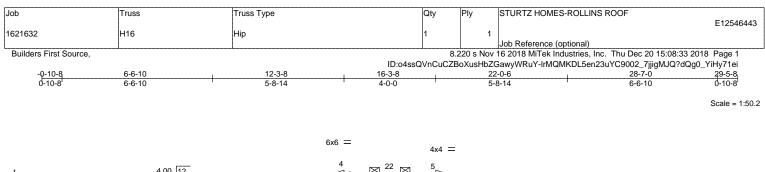
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

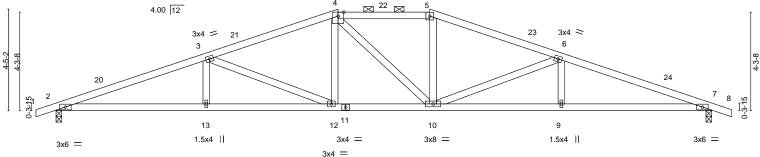
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek A1 818 Soundside Road

Edenton, NC 27932

LOADING (psf) SPACING- 2-0-0 CSI. TCLL 20.0 Plate Grip DOL 1.15 TC 0.55 TCDL 10.0 Lumber DOL 1.15 BC 0.91 BCLL 0.0 * Rep Stress Incr YES WB 0.54 BCDL 10.0 Code IBC2015/TPI2014 Matrix-MS	Vert(LL) -0.1	in (loc) l/defl L/d 17 10-12 >999 240 35 12-13 >973 180 11 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 132 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3	BRACING- TOP CHORD	Structural wood sheathing a except 2-0-0 oc purlins (4-0-8 max	directly applied or 2-10-2 oc purlins,
REACTIONS. (lb/size) 2=1196/0-3-0, 7=1196/0-3-0 Max Horz 2=-61(LC 17) Max Uplift 2=-125(LC 8), 7=-125(LC 9)	BOT CHORD	Rigid ceiling directly applied	l or 10-0-0 oc bracing.

BOT CHORD 2-13=-219/2711, 12-13=-219/2711, 10-12=-98/1990, 9-10=-169/2711, 7-9=-169/2711

WEBS 3-13=0/256, 3-12=-773/136, 4-12=0/397, 5-10=0/397, 6-10=-772/137, 6-9=0/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

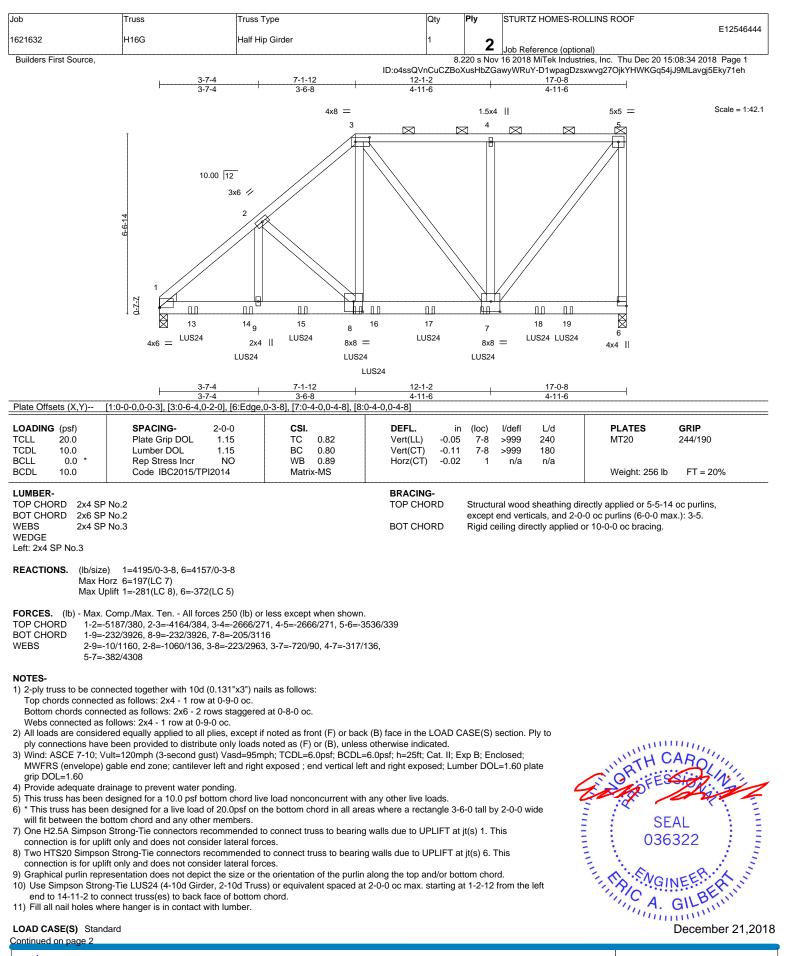
 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-3-8, Exterior(2) 12-3-8 to 20-6-7,

Interior(1) 20-6-7 to 29-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

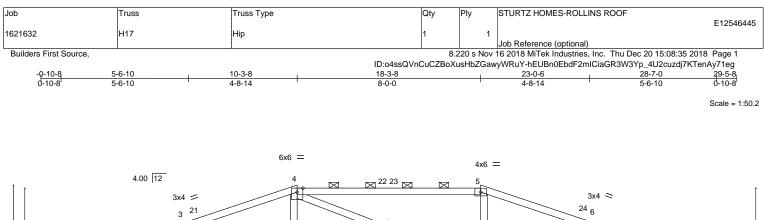
Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546444
1621632	H16G	Half Hip Girder	1	2	
				2	Job Reference (optional)
Builders First Source,			8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:34 2018 Page 2

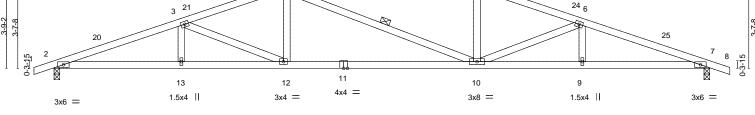
ID:o4ssQVnCuCZBoXusHbZGawyWRuY-D1wpagDzsxwvg270jkYHWKGq54jJ9MLavgj5Eky71eh

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 6-10=-20


Concentrated Loads (lb)


Vert: 8=-780(B) 7=-783(B) 13=-774(B) 14=-774(B) 15=-774(B) 16=-774(B) 17=-774(B) 18=-783(B) 19=-783(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	5-6-10 10-3- 5-6-10 4-8-1		<u>18-3-8</u> 8-0-0		23-0-6 4-8-14	<u>28-7-0</u> 5-6-10
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.87 BC 0.86 WB 0.25 Matrix-MS	DEFL. ir Vert(LL) -0.19	n (loc) 9 10-12 6 10-12 7	:) l/defl L/d 2 >999 240	PLATES GRIP MT20 244/190 Weight: 130 lb FT = 20%
	P No.2 *Except* 4 SP DSS P No.2		BRACING- TOP CHORD	exce	0	directly applied or 2-11-2 oc purlins, x.): 4-5.
WEBS 2x4 SF	P No.3		BOT CHORD WEBS	0	d ceiling directly applie ow at midpt	ed or 10-0-0 oc bracing. 4-10
Max H	e) 2=1196/0-3-0, 7=1196/0-3-0 lorz 2=-52(LC 13) lplift 2=-134(LC 8), 7=-134(LC 9)					
TOP CHORD 2-3= BOT CHORD 2-13	Comp./Max. Ten All forces 250 (lb) -2938/277, 3-4=-2446/228, 4-5=-2280 =-250/2758, 12-13=-250/2758, 10-12=	238, 5-6=-2448/228, 6-7=-2 -156/2278, 9-10=-207/2757	2937/277			

WEBS 3-12=-514/115, 4-12=0/424, 5-10=0/424, 6-10=-511/118

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-3-8, Exterior(2) 10-3-8 to 14-6-7, Interior(1) 14-6-7 to 18-3-8, Exterior(2) 18-3-8 to 22-6-7, Interior(1) 22-6-7 to 29-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	8-3-8	14-3-8	20-	3-8	28-7-0		
	8-3-8	6-0-0	6-0)-0	1	8-3-8	l
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES	CSI. TC 0.79 BC 0.89 WB 0.33 Matrix-MS	DEFL. in Vert(LL) -0.24 Vert(CT) -0.48 Horz(CT) 0.12	11 >717	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 (Ib/size) 2=1196/0-3-0, 8=1196/0-3-0 Max Horz 2=-42(LC 17) Max Uplift 2=-142(LC 8), 8=-142(LC 9)		BRACING- TOP CHORD BOT CHORD	except 2-0-0 oc purlins	(2-6-3 max.):	rectly applied or 3-0-14 4-6. or 10-0-0 oc bracing.	oc purlins,
FORCES. (lb) TOP CHORD BOT CHORD WEBS	- Max. Comp./Max. Ten All forces 250 (lb) 2-3=-2977/331, 3-4=-2685/262, 4-5=-3138/ 7-8=-2977/332 2-13=-299/2807, 11-13=-201/2513, 10-11=- 3-13=-309/114, 4-13=0/347, 4-11=-132/802 7-10=-309/115	326, 5-6=-3138/326, 6-7=-20 165/2513, 8-10=-264/2807	685/262,				

NOTES-

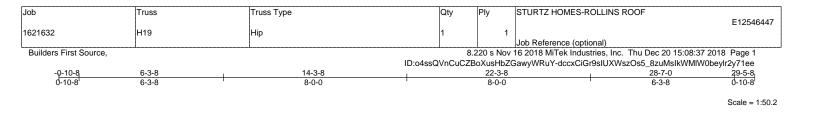
1) Unbalanced roof live loads have been considered for this design.

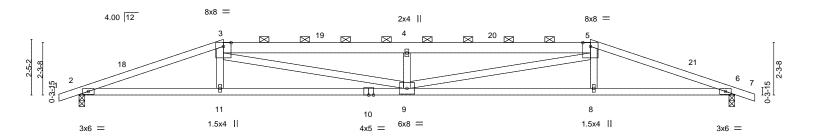
2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-3-8, Exterior(2) 8-3-8 to 12-6-7, Interior(1) 12-6-7 to 20-3-8, Exterior(2) 20-3-8 to 24-3-0, Interior(1) 24-3-0 to 29-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

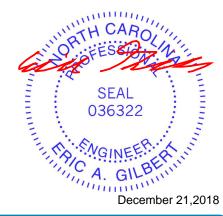
RENCO

	6-3-8 6-3-8	14-3-8 8-0-0		22-3-8 8-0-0		28-7-0 6-3-8	I
Plate Offsets (X,Y)	[3:0-4-0,0-2-0], [5:0-4-0,0-2-0]					1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.73 BC 0.89 WB 0.74 Matrix-MS	Vert(CT) -0	in (loc) l/de .33 9 >99 .67 9-11 >51 .12 6 n	99 240	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD	2-0-0 oc pur	rlins (2-7-15 max.)	ectly applied or 2-6-5 o): 3-5. or 10-0-0 oc bracing.	oc purlins, except
Max H	e) 2=1196/0-3-0, 6=1196/0-3-0 orz 2=-31(LC 17) plift 2=-148(LC 8), 6=-148(LC 9)						
TOP CHORD 2-3=- BOT CHORD 2-11=	Comp./Max. Ten All forces 250 (lb) o 3013/301, 3-4=-4399/469, 4-5=-4399/4 =-255/2824, 9-11=-261/2811, 8-9=-232/ =0/302, 3-9=-235/1779, 4-9=-666/206, 5	69, 5-6=-3013/301 2811, 6-8=-227/2824					

NOTES-

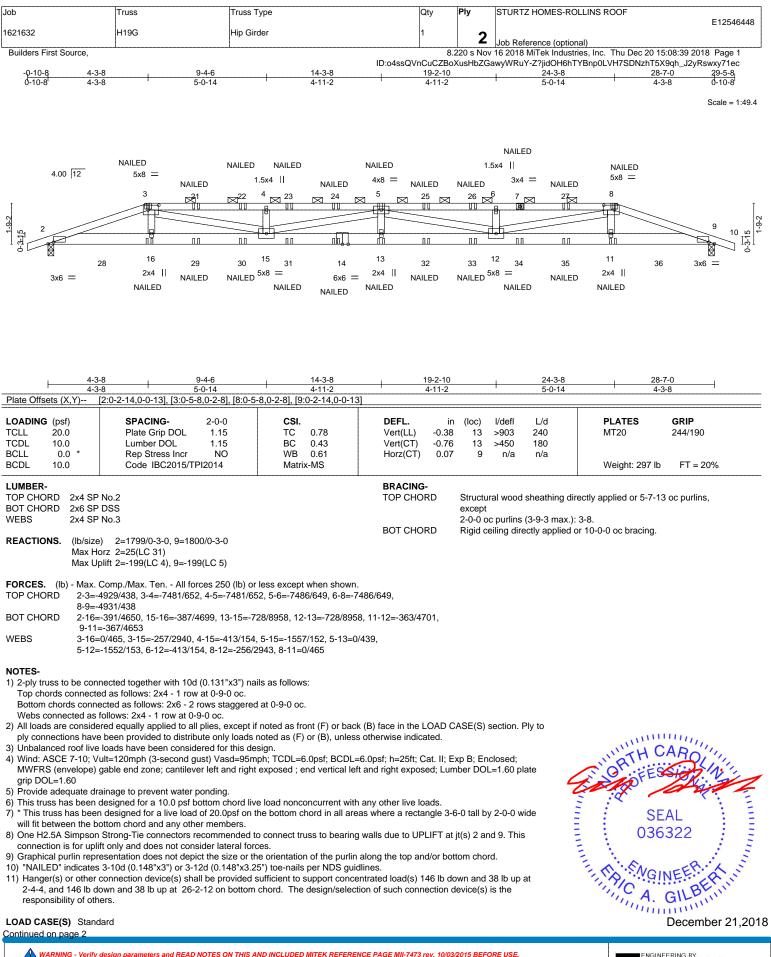
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-3-8, Exterior(2) 6-3-8 to 10-6-7, Interior(1) 10-6-7 to 22-3-8, Exterior(2) 22-3-8 to 26-6-7, Interior(1) 26-6-7 to 29-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-1473 rev. 100/3/2015 BEFORE 05E. Design valid for use only with MITek geomectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

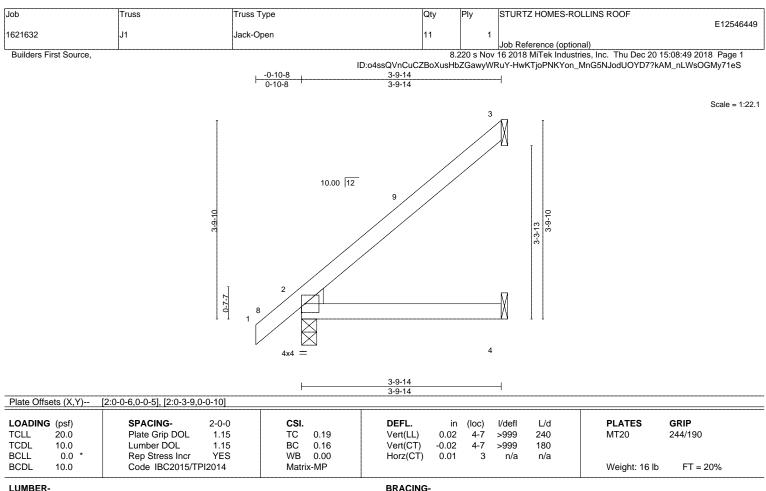
Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546448
1621632	H19G	Hip Girder	1	2	
				2	Job Reference (optional)
Builders First Source,			8.	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:39 2018 Page 2

8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:39 2018 Page 2 ID:o4ssQVnCuCZBoXusHbZGawyWRuY-Z?jidOH6hTYBnp0LVH7SDNzhT5X9qh_J2yRswxy71ec

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 2-9=-20


Concentrated Loads (lb)

Vert: 3=-47(B) 7=-47(B) 8=-47(B) 14=-37(B) 16=-37(B) 5=-47(B) 13=-37(B) 11=-37(B) 21=-47(B) 22=-47(B) 23=-47(B) 24=-47(B) 25=-47(B) 26=-47(B) 27=-47(B) 28=-146 29=-37(B) 30=-37(B) 31=-37(B) 32=-37(B) 32=-37

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-9-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=95/Mechanical, 2=209/0-3-8, 4=49/Mechanical Max Horz 2=124(LC 12) Max Uplift 3=-67(LC 12) Max Grav 3=104(LC 19), 2=209(LC 1), 4=70(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4x4

DADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) 0.00	(/	>999	240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00	7	>999	180	
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	3	n/a	n/a	
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP					Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-9-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

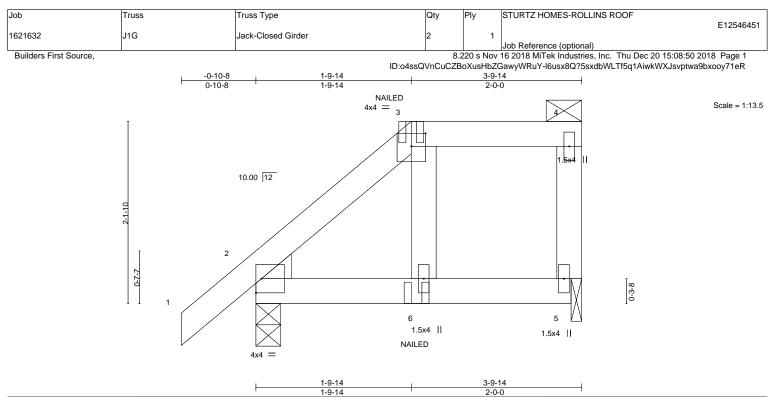
REACTIONS. (lb/size) 3=40/Mechanical, 2=138/0-3-8, 4=20/Mechanical Max Horz 2=70(LC 12) Max Uplift 3=-30(LC 12), 4=-2(LC 12) Max Grav 3=45(LC 19), 2=138(LC 1), 4=32(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y) [2:0-3-9,0-0-10], [2:0-0-6,0-0-5], [3:0-2-0	0,0-1-13]	·		
COADING (psf) TCLL 20.0 TCDL 10.0 3CLL 0.0 3CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IBC2015/TPI2014	CSI. TC 0.09 BC 0.30 WB 0.02 Matrix-MP	DEFL. ir Vert(LL) 0.02 Vert(CT) -0.03 Horz(CT) 0.01	6 >999 240 6 >999 180	PLATES GRIP MT20 244/190 Weight: 19 lb FT = 20%
UMBER- OP CHORD 2x4 SP OT CHORD 2x4 SP			BRACING- TOP CHORD	Structural wood sheathing di except	rectly applied or 3-9-14 oc purlins,

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3

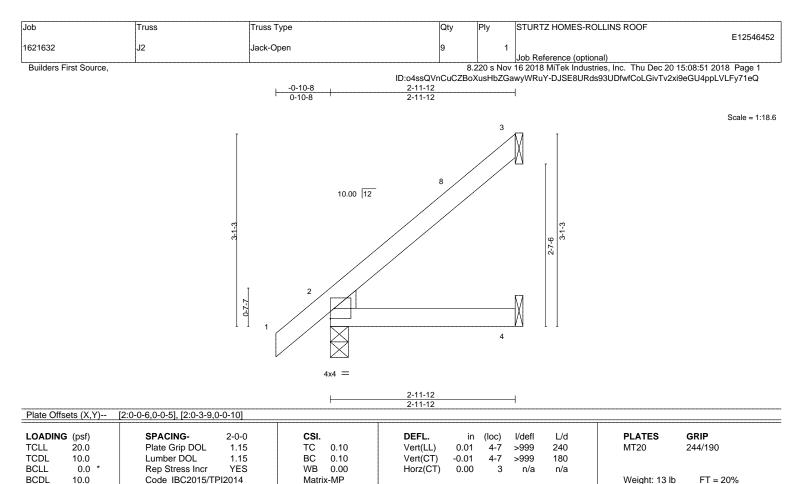
REACTIONS. (lb/size) 2=207/0-3-8, 5=143/0-1-8 Max Horz 2=72(LC 8) Max Uplift 2=-24(LC 8), 5=-31(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-7=-20

Concentrated Loads (lb) Vert: 6=-3(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

BCDL	10.0	
LUMBER-		

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=72/Mechanical, 2=177/0-3-8, 4=37/Mechanical Max Horz 2=101(LC 12) Max Uplift 3=-51(LC 12) Max Grav 3=79(LC 19), 2=177(LC 1), 4=54(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

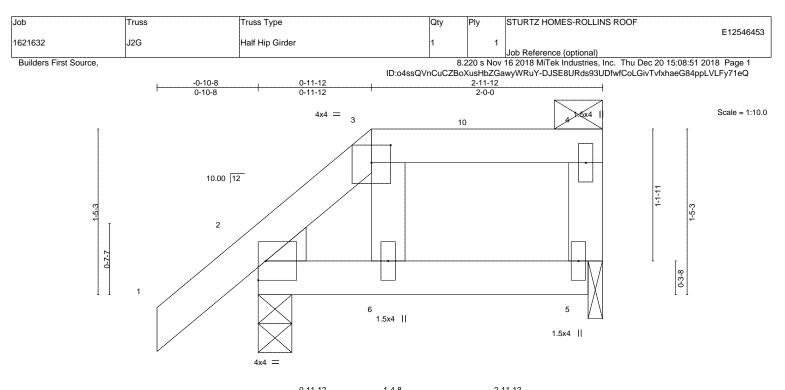
NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.


Structural wood sheathing directly applied or 2-11-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

VIIIIIIIIIIIIIIII SEAL 036322 G minn December 21,2018

				11-12	0-4-12			1-7-4			
Plate Offse	ets (X,Y)	[2:0-3-9,0-0-10], [2:0-0-6,0-0-5		11-12	0-4-12			1-7-4			
LOADING	(psf)	SPACING- 2-0	-0 cs		DEFL.	in ((loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.	15 TC	0.07	Vert(LL)	0.01	6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1.	15 BC	0.14	Vert(CT)	-0.01	6	>999	180		
BCLL	0.0 *	Rep Stress Incr N	IO WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IBC2015/TPI201	4 Ma	rix-MP						Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

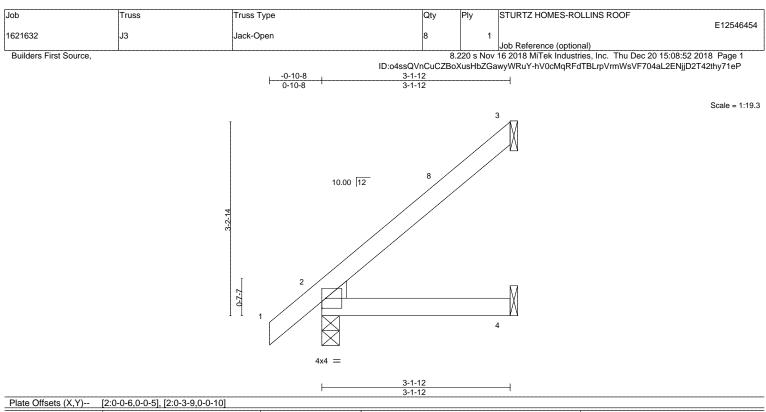
 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=174/0-3-8, 5=105/0-1-8 Max Horz 2=44(LC 11) Max Uplift 2=-24(LC 12), 5=-17(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This
 connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied or 2-11-12 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

_OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (lo	oc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) 0.01 4	-7 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.01 4	-7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	3 n/a n/a	
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP			Weight: 13 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-1-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=76/Mechanical, 2=183/0-3-8, 4=40/Mechanical Max Horz 2=105(LC 12) Max Uplift 3=-54(LC 12)

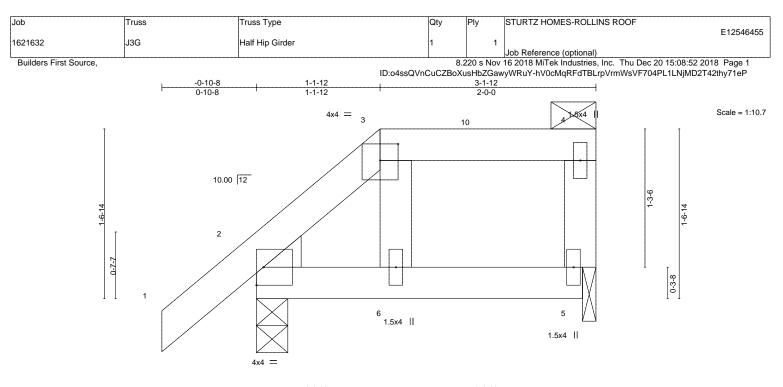
Max Grav 3=84(LC 19), 2=183(LC 1), 4=57(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			1	1-	1-12	1		3-1-12	2		1	
			Г	1-	1-12	1		2-0-0			1	
Plate Of	fsets (X,Y)	[2:0-3-9,0-0-10], [2:0-0-6	,0-0-5], [3:0-2	2-0,0-1-13]								
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.01	6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.01	6	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IBC2015/TF	912014	Matri	x-MP						Weight: 15 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

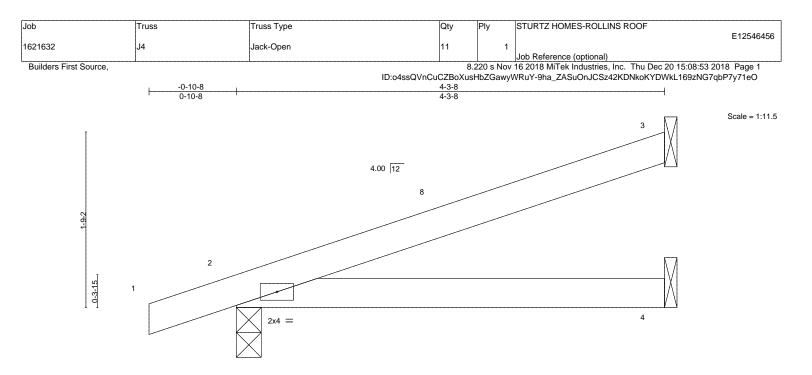
 WEDGE
 Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=180/0-3-8, 5=112/0-1-8 Max Horz 2=49(LC 11) Max Uplift 2=-24(LC 12), 5=-18(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This
 connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 3-1-12 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		4-3-8 4-3-8								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ii	n (loc)	l/defl	L/d	PLATES	GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) 0.02	2 4-7	>999	240	MT20	244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.20	Vert(CT) -0.03	4-7	>999	180				
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 2	n/a	n/a				
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP					Weight: 15 lb	FT = 20%		

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (Ib/size) 3=107/Mechanical, 2=227/0-3-0, 4=57/Mechanical Max Horz 2=59(LC 8)

Max Uplift 3=-36(LC 12), 2=-42(LC 8)

Max Grav 3=107(LC 1), 2=227(LC 1), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

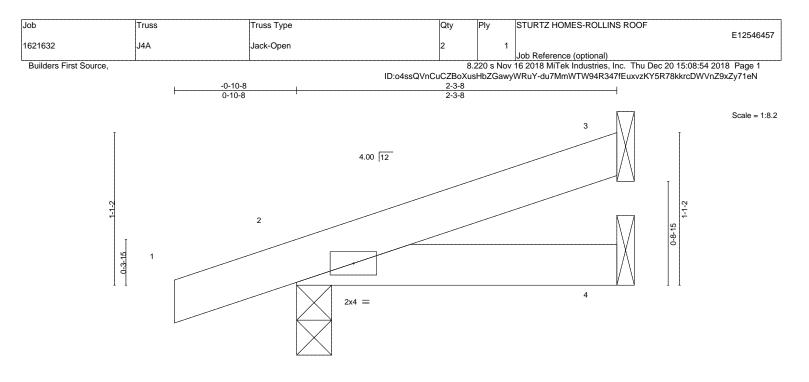
NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-2-12 zone; cantilever left and right
- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 4-3-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

			2-3-8 2-3-8			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00 7	>999 240	MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00 7	>999 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 2	n/a n/a		
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP			Weight: 9 lb FT = 20%	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied or 2-3-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=50/Mechanical, 2=152/0-3-0, 4=29/Mechanical Max Horz 2=37(LC 8) Max Uplift 3=-16(LC 12), 2=-40(LC 8) Max Grav 3=50(LC 1), 2=152(LC 1), 4=38(LC 3)

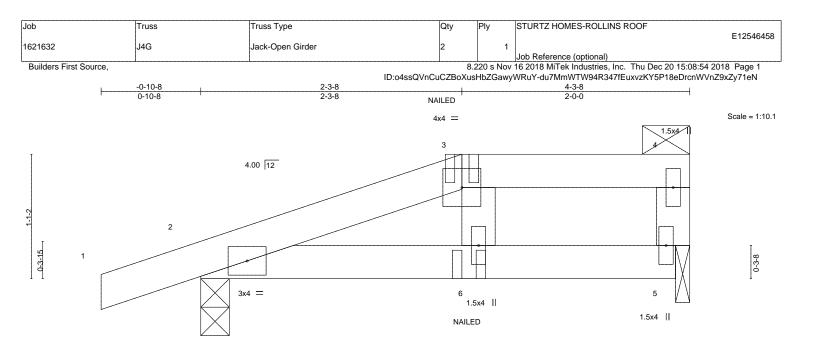
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			-3-8 -3-8					4-3-8 2-0-0		
_OADING (psf)		2-0-0 CSI .		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15 TC	0.19	Vert(LL)	-0.02	6	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15 BC	0.40	Vert(CT)	-0.05	6	>999	180		
CLL 0.0 *	Rep Stress Incr	NO WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
3CDL 10.0	Code IBC2015/TPI20	014 Matrix	-MP	. ,					Weight: 16 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-3-8 oc purlins, except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=228/0-3-0, 5=166/0-1-8 Max Horz 2=38(LC 23) Max Uplift 2=-47(LC 4), 5=-17(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

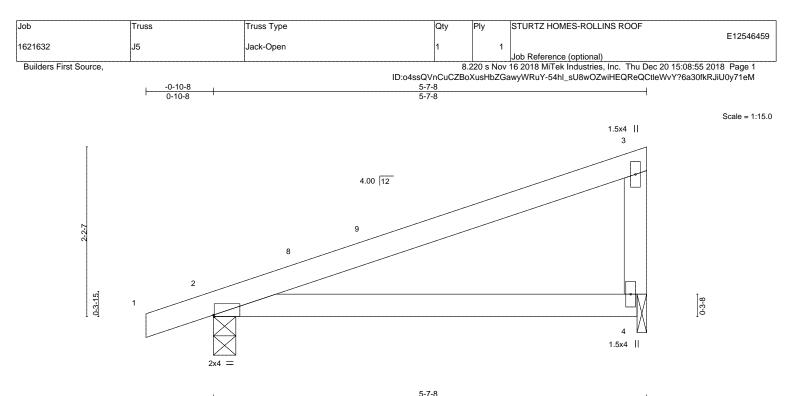
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

- Vert: 1-3=-60, 3-4=-60, 5-7=-20
- Concentrated Loads (lb)
 - Vert: 3=-0(F) 6=-9(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

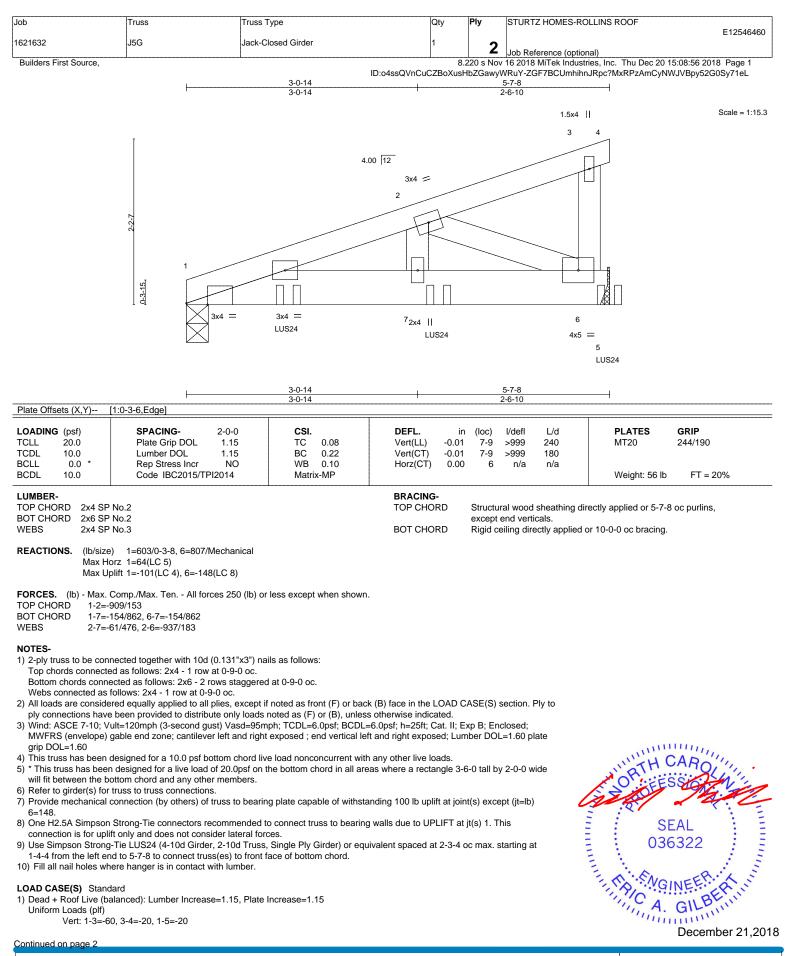
				5-7-8					
Plate Offsets (X,Y)	[2:0-0-2,Edge]			5-1-0					
	[2:0 0 2,2030]			I					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.43	Vert(LL) -	0.04 4-7	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.36	Vert(CT) -	0.09 4-7	>701	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.03	Horz(CT)	0.00 2	n/a	n/a		
BCDL 10.0	Code IBC2015/TF	912014	Matrix-MP					Weight: 21 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-7-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=276/0-3-8, 4=215/0-1-8 Max Horz 2=73(LC 8) Max Uplift 2=-45(LC 8), 4=-33(LC 12)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

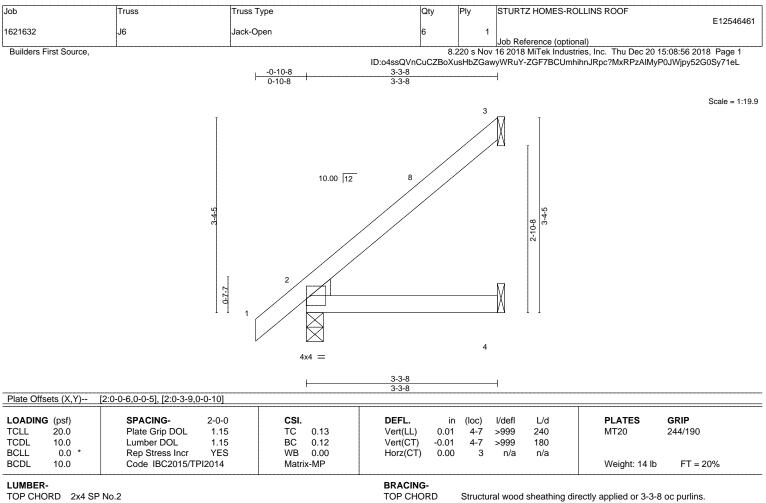
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546460
1621632	J5G	Jack-Closed Girder	1	2	
				2	Job Reference (optional)
Builders First Source,			8.2	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:08:56 2018 Page 2

ID:o4ssQVnCuCZBoXusHbZGawyWRuY-ZGF7BCUmhihnJRpc?MxRPzAmCyNWJVBpy52G0Sy71eL


LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 7=-325(F) 6=-332(F) 9=-325(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

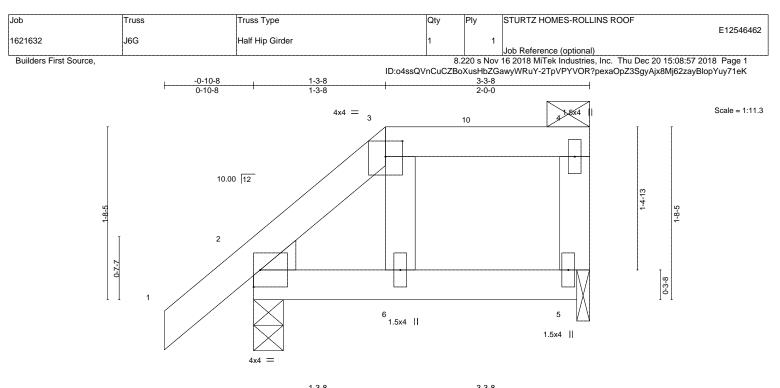
REACTIONS. (lb/size) 3=80/Mechanical, 2=189/0-3-8, 4=42/Mechanical Max Horz 2=109(LC 12) Max Uplift 3=-57(LC 12) Max Grav 3=88(LC 19), 2=189(LC 1), 4=60(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-2-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Invozoris beroke use. Design valif for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	1-3-8	3-3-8	
	I	1-3-8	2-0-0	
Plate Offsets (X,Y)	[2:0-3-9,0-0-10], [2:0-0-6,0-0-5], [3:0-2-	0,0-1-13]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.01 6 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.19	Vert(CT) -0.01 6 >999 180	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.03	Horz(CT) 0.00 2 n/a n/a	
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP		Weight: 16 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

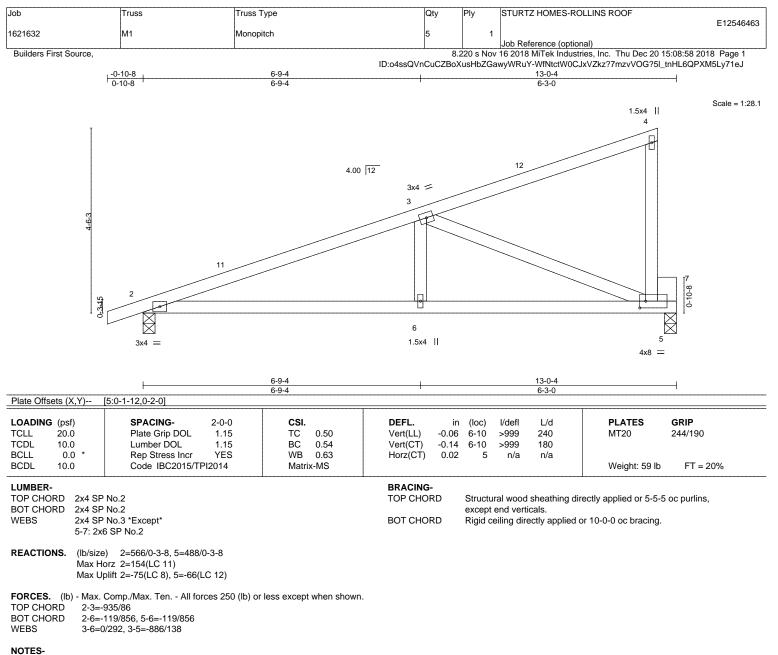
REACTIONS. (lb/size) 2=186/0-3-8, 5=119/0-1-8 Max Horz 2=53(LC 11) Max Uplift 2=-24(LC 12), 5=-20(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


Structural wood sheathing directly applied or 3-3-8 oc purlins,

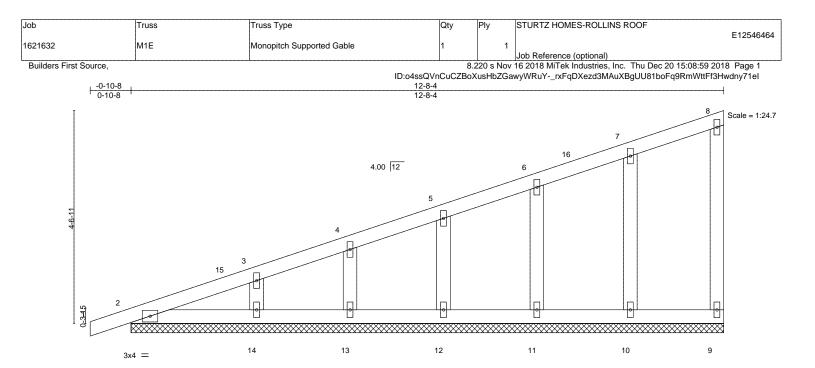
except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH / Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	0.00	1	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	1	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	9	n/a	n/a		
BCDL 10.0	Code IBC2015/T	PI2014	Matrix	k-S						Weight: 61 lb	FT = 20%
LUMBER-					BRACING-						
	SP No.2 SP No.2				TOP CHOR			ral wood end verti		rectly applied or 6-0-0	oc purlins,
WEBS 2x4	SP No.3				BOT CHOR					or 10-0-0 oc bracing.	

REACTIONS. All bearings 12-8-4.

(lb) - Max Horz 2=156(LC 9)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 9, 2, 10, 11, 12, 13, 14

Max Grav All reactions 250 lb or less at joint(s) 9, 2, 10, 11, 12, 13, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 12-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

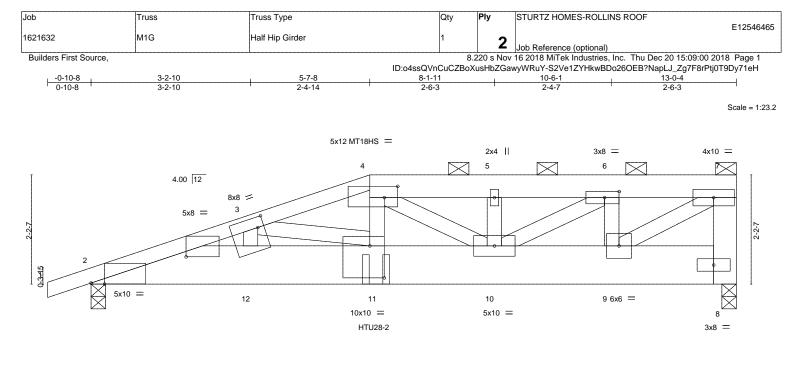
3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9, 10, 11, 12, 13, and 14. This connection is for uplift only and does not consider lateral forces.

9) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	3-2-10	5-7-8	8-1-11	10-6-1	13-0-4
	3-2-10	<u> </u>	2-6-3	2-4-7	2-6-3
Plate Offsets (X,Y)	[2:0-3-4,Edge], [2:1-11-0,0-0	6-6], [3:0-1-8,0-2-8], [4:0-3-4,0-2-12	2], [6:0-3-8,0-1-8], [11:0-3-8,0-	-7-12], [12:0-1-11,0-0-9]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL	C-0-0 CSI. 1.15 TC 0.60 1.15 BC 0.49 NO WB 0.82 014 Matrix-MS	DEFL. in Vert(LL) -0.09 Vert(CT) -0.18 Horz(CT) 0.03	(loc) l/defl L/d 11 >999 240 11 >849 180 8 n/a n/a	PLATES GRIP MT20 244/190 MT18HS 244/190 Weight: 199 lb FT = 20%
BOT CHORD 2x10 S WEBS 2x4 SP 7-8: 2x REACTIONS. (lb/size Max H Max U FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- BOT CHORD 2-12= WEBS 3-12=	6 SP No.2 P DSS No.3 *Except* 6 SP No.2, 7-9: 2x4 SP No.2 e) 2=3539/0-3-8, 8=9130/(orz 2=66(LC 24) plift 2=-469(LC 4), 8=-1059(Comp./Max. Ten All force: 9028/1133, 3-4=-10085/127 8437/993 =-1063/8447, 11-12=-1063/8	D-3-8 LC 4) s 250 (lb) or less except when show 8, 4-5=-8787/1098, 5-6=-8764/109 447, 10-11=-1229/9851, 9-10=-66 -11=-400/3199, 4-10=-1304/534, 5	e BOT CHORD F %n. %5, 6-7=-5459/678, 3/5459, 8-9=-79/567		ectly applied or 3-4-7 oc purlins, 0 oc purlins (4-10-11 max.): 4-7. r 10-0-0 oc bracing.
 NOTES- 1) 2-ply truss to be con Top chords connecte Bottom chords connected Bottom chords connected as 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V MWFRS (envelope) grip DOL=1.60 5) Provide adequate dr 6) All plates are MT20 7) This truss has been will fit between the b 9) Bearing at joint(s) 8 capacity of bearing s 10) One H2:5A Simps connection is for up 11) Two HTS20 Simps connection is for up 	Inected together with 10d (0. ed as follows: 2x4 - 1 row at ected as follows: 2x10 - 2 ro follows: 2x4 - 1 row at 0-9-0 ered equally applied to all pli e been provided to distribute e loads have been considere (ult=120mph (3-second gust gable end zone; cantilever I rainage to prevent water pon plates unless otherwise indii designed for a 10.0 psf bottor n designed for a live load of ototom chord and any other r considers parallel to grain va- surface. In Strong-Tie connectors re on Strong-Tie connectors re polift only and does not consid on Strong-Tie connectors re	131"x3") nails as follows: 0-7-0 oc, 2x6 - 2 rows staggered a ws staggered at 0-3-0 oc. oc. es, except if noted as front (F) or b only loads noted as (F) or (B), unl d for this design.) Vasd=95mph; TCDL=6.0psf; BCD eft and right exposed ; end vertical ding. cated. om chord live load nonconcurrent v 20.0psf on the bottom chord in all a nembers. alue using ANSI/TPI 1 angle to gra commended to connect truss to bea for lateral forces. commended to connect truss to bea	ack (B) face in the LOAD CAS ess otherwise indicated. DL=6.0psf; h=25ft; Cat. II; Exp left and right exposed; Lumbo with any other live loads. areas where a rectangle 3-6-0 in formula. Building designer aring walls due to UPLIFT at ju	B; Enclosed; er DOL=1.60 plate tall by 2-0-0 wide should verify c(s) 2. This it(s) 8. This	SEAL 036322 December 21,2018
Design valid for use or a truss system. Before building design. Braci	nly with MiTek® connectors. This de e use, the building designer must ve ing indicated is to prevent buckling o	TES ON THIS AND INCLUDED MITEK REFE sign is based only upon parameters shown, fly the applicability of design parameters an f individual truss web and/or chord member possible personal injury and property dams	, and is for an individual building comp of properly incorporate this design into s only. Additional temporary and perr	onent, not the overall nanent bracing	TRENGINEERING BY A MITEK Affiliate

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546465
1621632	M1G	Half Hip Girder	1	2	
				2	Job Reference (optional)
Builders First Source,			8.2	20 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:09:00 2018 Page 2
		ID:o4ssQVn	CuCZBoX	usHbZGav	vyWRuY-S2Ve1ZYHkwBDo26OEB?NapLJ_Zg7F8rPtj0T9Dy71eH

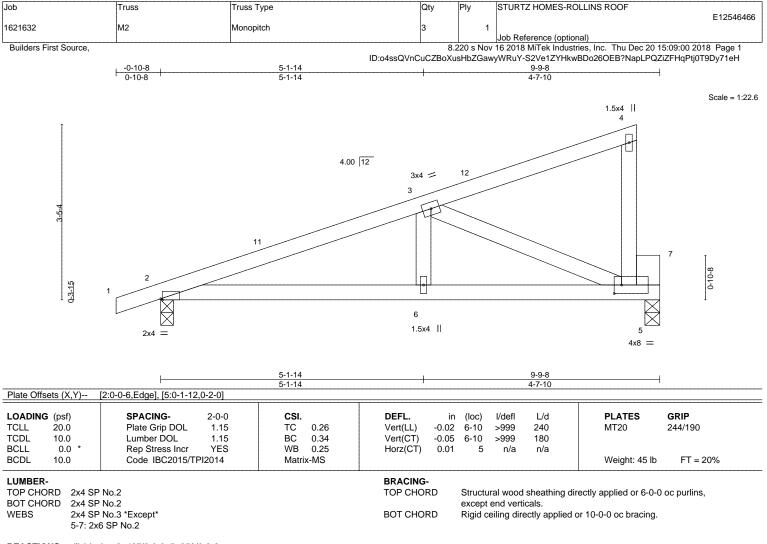
NOTES-

13) Use Simpson Strong-Tie HTU28-2 (26-10d Girder, 14-10d Truss) or equivalent at 5-9-0 from the left end to connect truss(es) to front face of bottom chord.14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-645, 2-8=-20


Concentrated Loads (lb)

Vert: 11=-3209(F) 7=-4195

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 2=437/0-3-0, 5=358/0-3-8 Max Horz 2=116(LC 11) Max Uplift 2=-64(LC 8), 5=-49(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-669/61

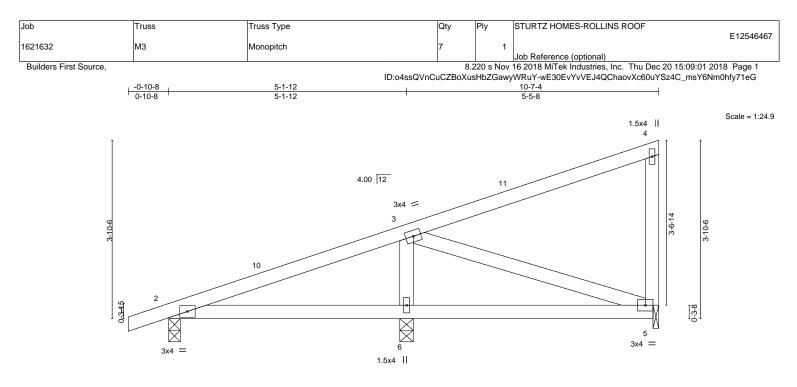
BOT CHORD 2-6=-112/612, 5-6=-112/612

WEBS 3-5=-634/98

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 9-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safey Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MI lek Affil 818 Soundside Road Edenton, NC 27932

			5-1-12 5-1-12				10-7-4 5-5-8			
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0.37 BC 0.25	DEFL. Vert(LL) Vert(CT)	-0.02 -0.04	(loc) 5-6 5-6	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2015/TP	YES 12014	WB 0.07 Matrix-MS	Horz(CT)	0.00	5	n/a	n/a	Weight: 49 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

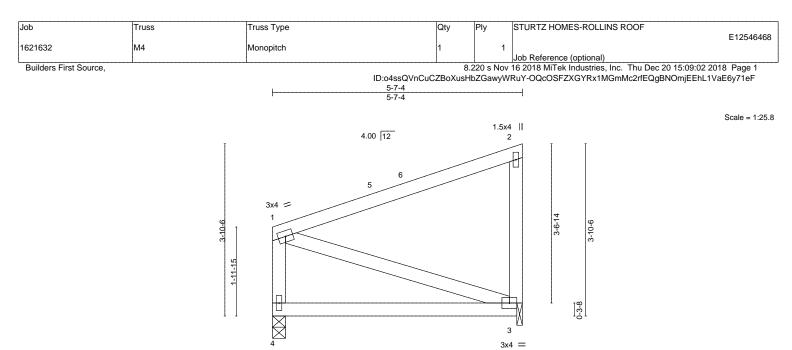
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=228/0-3-0, 6=483/0-3-8, 5=178/0-1-8 Max Horz 2=131(LC 11) Max Uplift 2=-40(LC 8), 6=-55(LC 12), 5=-29(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-344/116

NOTES-


 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, and 5. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1.5x4

5-7-4 5-7-4

		-	1	014			1
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc)	l/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.56	Vert(LL) -0.0	5 3-4	>999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.1	3-4	>667 180	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) -0.0) 3	n/a n/a	
BCDL	10.0	Code IBC2015/TPI2014	Matrix-MP	()			Weight: 32 lb FT = 20%

BRACING-

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (lb/size) 4=213/0-3-8, 3=213/0-1-8 Max Horz 4=117(LC 9) Max Uplift 4=-19(LC 8), 3=-36(LC 9)

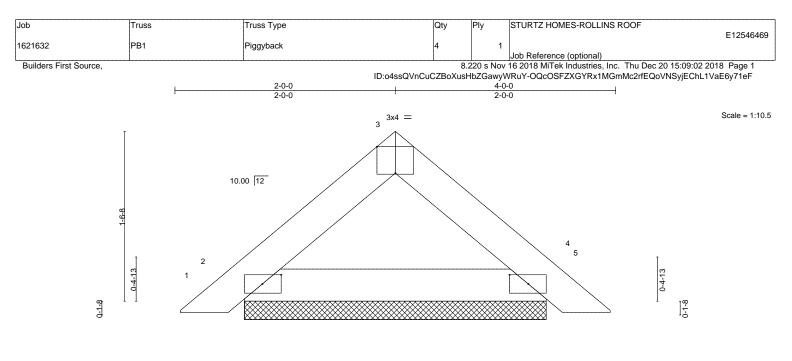
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 3. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP17 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 TOP CHORD
 Structural wood sheathing directly applied or 5-7-4 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 =

2x4 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-0-0 4-0-0 Plate Offsets (X,Y)--[2:0-2-1,0-1-0], [3:0-2-0, Edge], [4:0-2-1,0-1-0] SPACING-LOADING (psf) 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP 244/190 TCLL 20.0 Plate Grip DOL 1.15 тс 0.03 Vert(LL) 0.00 120 MT20 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.09 Vert(CT) 0.00 4 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a Code IBC2015/TPI2014 FT = 20% BCDL Matrix-P Weight: 12 lb 10.0 BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. 2=131/2-8-14, 4=131/2-8-14 (lb/size) Max Horz 2=-30(LC 10) Max Uplift 2=-10(LC 12), 4=-10(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

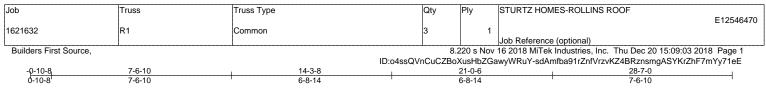
NOTES-

1) Unbalanced roof live loads have been considered for this design

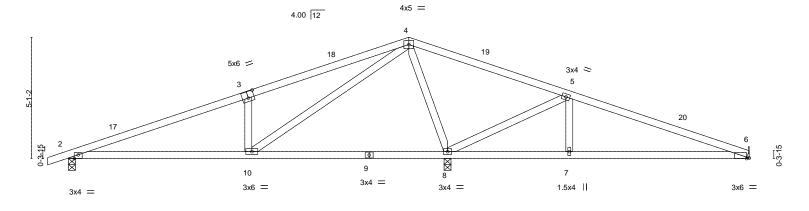
2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

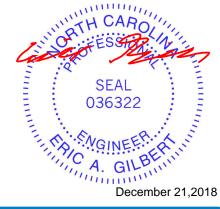

6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



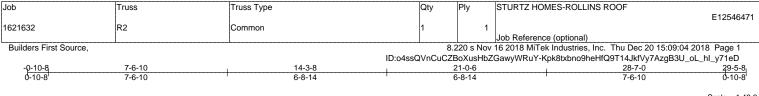
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale: 1/4"=1'

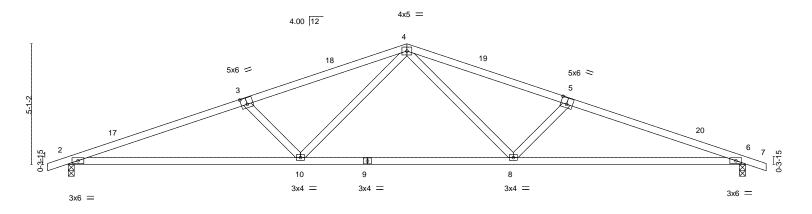

 	7-6-10	<u>15-11-0</u> 8-4-6		21-0 5-1-		<u>28-7-0</u> 7-6-10	
Plate Offsets (X,Y)	[2:0-2-0,Edge], [3:0-3-0,0-3-4], [6:0-1-6			<u> </u>	-0	7-0-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.82 BC 0.60 WB 0.58 Matrix-MS	()	in (loc) -0.10 8-10 -0.20 7-13 0.01 8	l/defl L/d >999 240 >762 180 n/a n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%
	No.2	=1547/0-3-8	BRACING- TOP CHORI BOT CHORI	D Rigid ce		rectly applied or 5-5-12 or 6-0-0 oc bracing, E	
Max U _l Max G F ORCES. (Ib) - Max. FOP CHORD 2-3=-1 30T CHORD 2-10=	bilf 6=-56(LC 13), 2=-83(LC 8), 8=-70 rav 6=345(LC 24), 2=545(LC 23), 8=1 Comp./Max. Ten All forces 250 (lb) c 819/105, 3-4=-848/187, 4-5=-25/767, 5 113/742, 8-10=-324/87, 7-8=-144/307 482/188, 4-10=-168/1181, 4-8=-1097	547(LC 1) r less except when shown. -6=-358/180 , 6-7=-144/307					
 Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 17-3-8 to 2 MWFRS for reaction This truss has been 	loads have been considered for this d ult=120mph (3-second gust) Vasd=95i gable end zone and C-C Exterior(2) -0 28-7-0 zone; cantilever left and right ex s shown; Lumber DOL=1.60 plate grip designed for a 10.0 psf bottom chord li designed for a 10.0 psf bottom chord li	nph; TCDL=6.0psf; BCDL= -10-8 to 2-1-8, Interior(1) 2 posed ; end vertical left an DOL=1.60 ve load nonconcurrent with	-1-8 to 14-3-8, Ext d right exposed;C- n any other live load	erior(2) 14-3-8 C for members ds.	to 17-3-8, and forces &		

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:48.6

l	<u>9-9-9</u> 9-9-9		18-9-7 8-11-13			<u>28-7-0</u> 9-9-9	
Plate Offsets (X,Y)	[3:0-3-0,0-3-4], [5:0-3-0,0-3-4]						
LOADING (psf) ICLL 20.0 ICDL 10.0 3CLL 0.0 3CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2015/TPI2014	CSI. TC 0.79 BC 0.78 WB 0.33 Matrix-MS	Vert(CT) -	in (loc) 0.20 10-13 0.49 10-13 0.09 6	l/defl L/d >999 240 >702 180 n/a n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%
Max H	P No.1		BRACING- TOP CHORD BOT CHORD			g directly applied or 2-2-0 ed or 10-0-0 oc bracing.	oc purlins.
TOP CHORD 2-3= BOT CHORD 2-10	Comp./Max. Ten All forces 250 (lb) c -2765/226, 3-4=-2450/176, 4-5=-2450/1 =-202/2590, 8-10=-47/1714, 6-8=-145/2 -47/807, 5-8=-511/189, 4-10=-47/807, 3	76, 5-6=-2765/226 590					
NOTES-	e loads have been considered for this d	esian					

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-3-8, Exterior(2) 14-3-8 to 17-3-8, Interior(1) 17-3-8 to 29-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	-1-12 11-6-0	17-10-0	24-2-0	30-6-0	37-4-1		2-0
	6-4-4	6-4-0	6-4-0	6-4-0	6-10-1	6-9	-15 '
Plate Offsets (X,Y)	[10:0-0-0,0-0-12], [18:0-3-8,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.71 BC 0.83 WB 0.65 Matrix-MS	Vert(CT) -0.	in (loc) l/defl 16 13-15 >999 34 12-13 >999 09 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S WEBS 2x4 S	P No.2 P No.2 P No.3 *Except* 2x4 SP No.2	L	BRACING- TOP CHORD BOT CHORD WEBS		ctly applied or 10-	applied or 2-10-1 -0-0 oc bracing, 7-15	
Max I Max I	te) 2=-74/0-3-0, 19=2143/0-3-8, 10=1 Horz 2=150(LC 12) Jplift 2=-129(LC 19), 19=-156(LC 12), 19 Grav 2=7(LC 12), 19=2143(LC 1), 10=15	D=-108(LC 13)					
FORCES. (Ib) - Max	. Comp./Max. Ten All forces 250 (lb) o	r less except when showr	1.				
	-116/886, 3-4=-1946/119, 4-5=-2064/17	3, 5-6=-1684/212, 6-7=-1	685/216,				
	-2247/185, 9-10=-2792/175						
	=-783/82, 18-19=-783/82, 16-18=-119/1	804, 15-16=-62/1780, 13-	15=0/1932,				
12-1	3=-73/2413, 10-12=-73/2413						

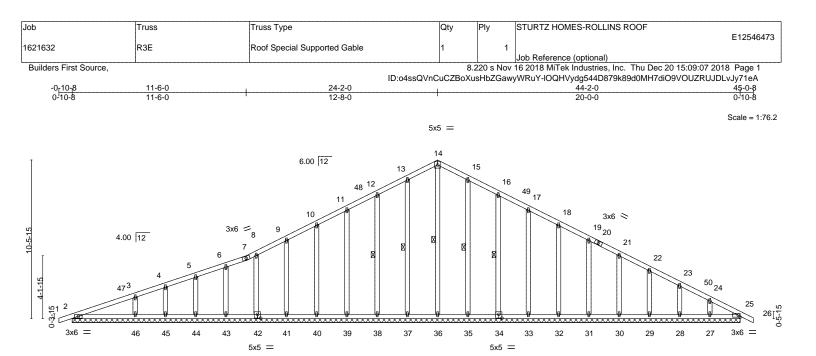
	12-13=-73/2413, 10-12=-73/2413
WEBS	3-19=-1983/217, 3-18=-107/2663, 4-18=-612/109, 5-16=0/276, 5-15=-585/157,
	6-15=-64/1085, 7-15=-771/176, 7-13=0/463, 9-13=-560/138, 9-12=0/255

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-6-8, Interior(1) 3-6-8 to 24-2-0, Exterior(2) 24-2-0 to 28-7-0, Interior(1) 28-7-0 to 45-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 19, and 10.

DUIE TL: DA SIMPSON Strong-Lie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 19, and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

KENLU

Plate Offsets (X,Y) [:	34:0-2-8,0-3-0], [42:0-2-8,0-3-0]		44-2-0					1
OADING (psf) CLL 20.0 CDL 10.0 CCLL 0.0 CCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2015/TPI2014	CSI. TC 0.19 BC 0.13 WB 0.12 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.00 -0.00 0.01	loc) l/del 25 n/ 25 n/ 25 n/	r 120 r 120	PLATES MT20 Weight: 293 lb	GRIP 244/190 FT = 20%
UMBER- OP CHORD 2x4 SP			BRACING- TOP CHOF BOT CHOF	D St			irectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins.

WEBS

1 Row at midpt

OTHERS 2x4 SP No.2 2x4 SP No.3

REACTIONS. All bearings 44-2-0.

(lb) - Max Horz 2=149(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 35, 34, 33, 32, 31, 30, 29, 28, 27 Max Grav All reactions 250 lb or less at joint(s) 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 35, 34, 33, 32,

ax Grav All reactions 250 lb or less at joint(s) 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 35, 34, 33, 32, 31, 30, 29, 28, 27, 25 except 46=330(LC 23)

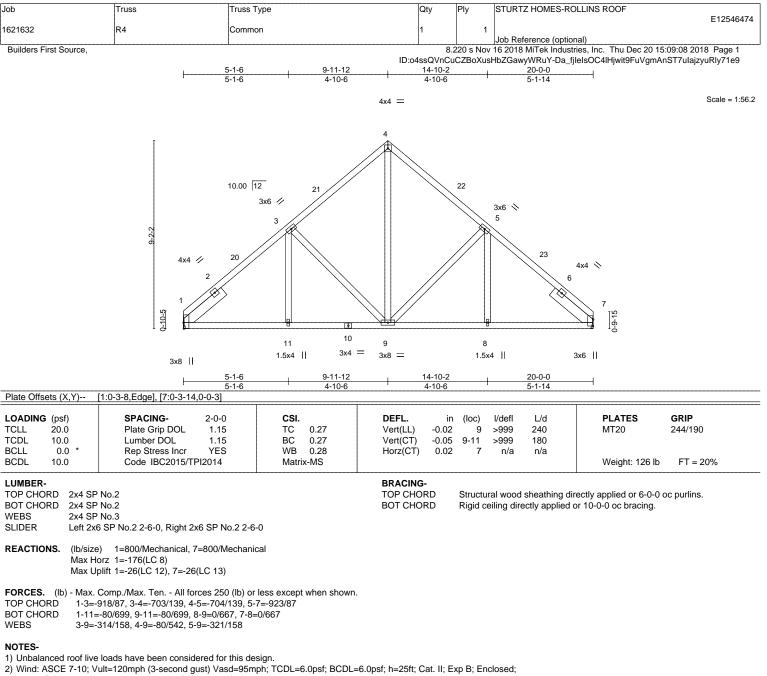
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 12-13=-90/262, 13-14=-103/297, 14-15=-103/300, 15-16=-90/265

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-8, Exterior(2) 3-6-8 to 24-2-0, Corner(3) 24-2-0 to 28-7-0, Exterior(2) 28-7-0 to 45-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 35, 34, 33, 32, 31, 30, 29, 28, and 27. This connection is for uplift only and does not consider lateral forces.



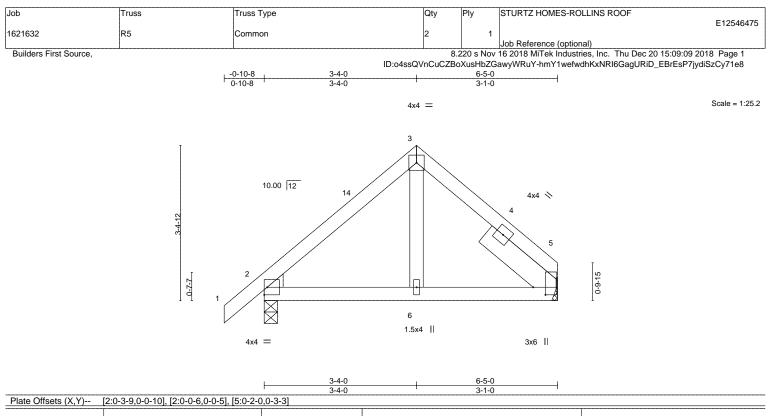
14-36, 13-37, 12-38, 15-35, 16-34

December 21,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0 to 3-0-0, Interior(1) 3-0-0 to 9-11-12, Exterior(2) 9-11-12 to 12-11-12, Interior(1) 12-11-12 to 20-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

OADING (psf) CLL 20.0 CDL 10.0 CLL 0.0 * CDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.12 BC 0.11 WB 0.05 Matrix-MP	DEFL. Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) 0.0	1 6-13 >9 1 6-13 >9	/defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER-		WattA-Wi	BRACING- TOP CHORD		wood sheathing dir	rectly applied or 6-0-0	

WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

Right 2x6 SP No.2 1-11-8 SLIDER

(lb/size) 5=253/Mechanical, 2=313/0-3-8 REACTIONS. Max Horz 2=68(LC 9) Max Uplift 5=-6(LC 13), 2=-23(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-4-0, Exterior(2) 3-4-0 to 6-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Rigid ceiling directly applied or 10-0-0 oc bracing

¹⁾ Unbalanced roof live loads have been considered for this design.

ate Offsets (X,Y)	[2:0-0-6,0-0-5], [2:0-3-9,0-0-10], [6:0-0-	6,0-0-5], [6:0-3-9,0-0-10]	6-8-0				-	
DADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.0) 7	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.0) 7	n/r	120		
CLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.0) 6	n/a	n/a		
CDL 10.0	Code IBC2015/TPI2014	Matrix-P					Weight: 36 lb	FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

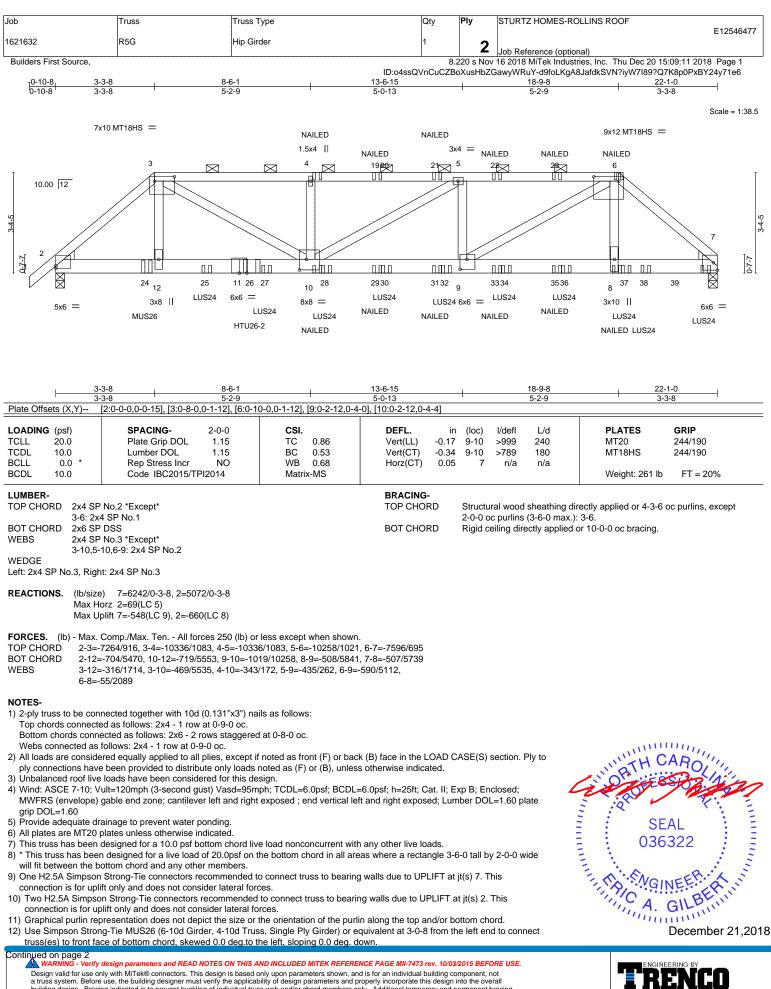

Max Horz 2=-74(LC 10) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 3-4-0, Corner(3) 3-4-0 to 6-4-0, Exterior(2) 6-4-0 to 7-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 6.


Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

REACTIONS. All bearings 6-8-0.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, Storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	STURTZ HOMES-ROLLINS ROOF
					E12546477
1621632	R5G	Hip Girder	1	2	
				~	Job Reference (optional)
Builders First Source,			8.2	220 s Nov	16 2018 MiTek Industries, Inc. Thu Dec 20 15:09:12 2018 Page 2

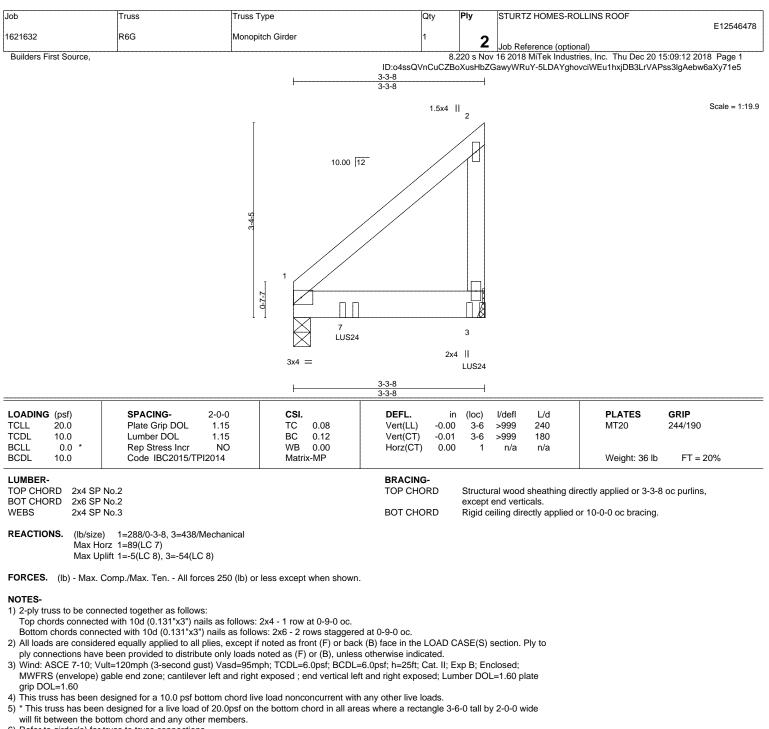
8.220 s Nov 16 2018 MiTek Industries, Inc. Thu Dec 20 15:09:12 2018 Page 2 ID:04ssQVnCuCZBoXusHbZGawyWRuY-5LDAYghovciWEu1hxjDB3LrJvPIM3b3Aebw6aXy71e5

NOTES-

- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 5-0-8 from the left end to 15-0-8 to connect truss(es) to front face of bottom chord.
- 14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 17-0-8 from the left end to 21-8-6 to connect truss(es) to front face of bottom chord.
- 15) Use Simpson Strong-Tie HTU26-2 (20-10d Girder, 14-10d Truss, Single Ply Girder) or equivalent at 6-6-8 from the left end to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 99 lb down and 40 lb up at 20-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

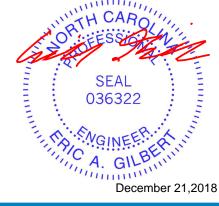
LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 6-7=-60, 13-16=-20


Concentrated Loads (lb)

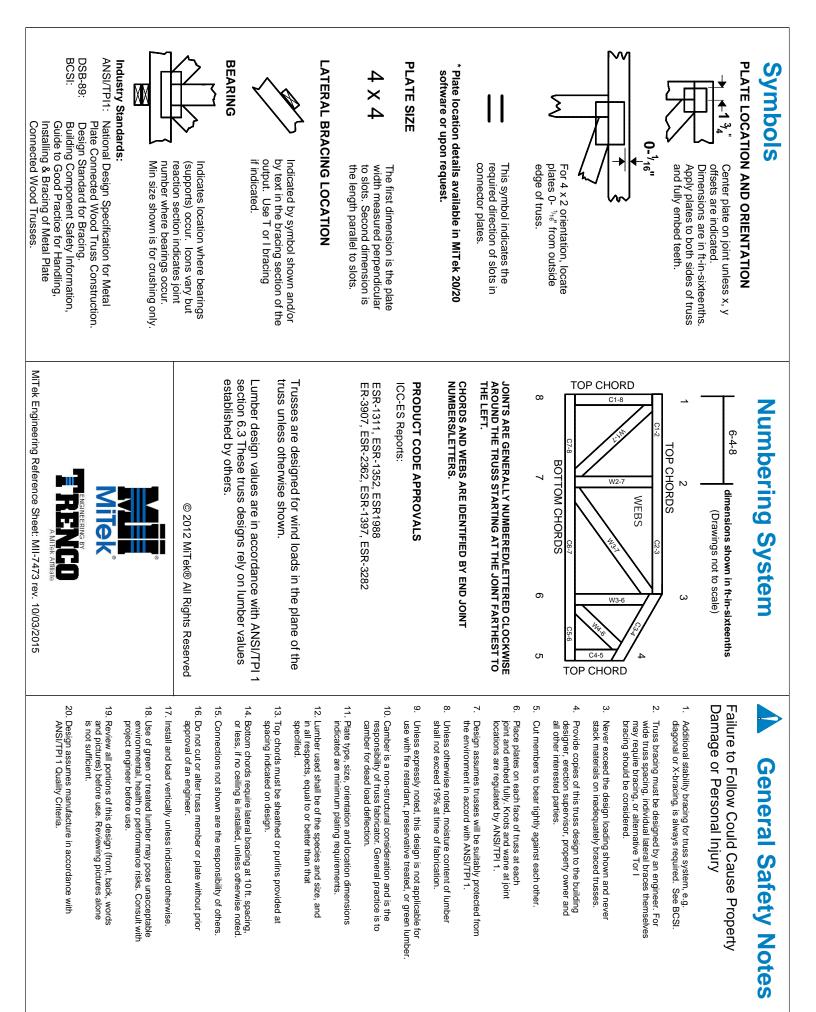
Vert: 6=-20(B) 10=-22(B) 4=-20(B) 8=-22(B) 15=-780(F) 19=-20(B) 21=-20(B) 22=-20(B) 23=-20(B) 24=-931(F) 25=-785(F) 26=-418(B) 27=-785(F) 28=-785(F) 29=-22(B) 30=-785(F) 31=-22(B) 32=-774(F) 33=-22(B) 34=-774(F) 35=-22(B) 36=-774(F) 37=-780(F) 38=-774(F) 39=-99

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This
- connection is for uplift only and does not consider lateral forces.
- 9) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-2-4 oc max. starting at 0-11-8 from the left end to 3-1-12 to connect truss(es) to front face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 3-4=-20 Concentrated Loads (lb) Vert: 3=-241(F) 7=-234(F)

🖊 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 1003220105 BEFORE 052. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

