

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0119-0403

Precision/Lot 29 Summerlin/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

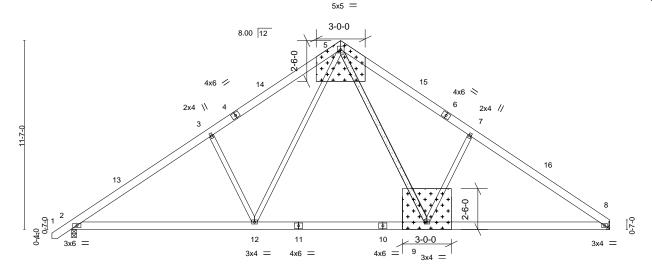
Pages or sheets covered by this seal: E13035836 thru E13035836

My license renewal date for the state of North Carolina is December 31, 2019.

North Carolina COA: C-0844

May 13,2019

Gilbert, Eric


IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

Precision/Lot 29 Summerlin/Harnett Job Truss Truss Type Qty E13035836 J0119-0403 A2X FINK Job Reference (optional)

Comtech. Inc., Fayetteville, NC 28309 8.130 s Mar 11 2018 MiTek Industries, Inc. Mon May 13 06:30:59 2019 Page 1 ID:JJp3_bNirdpeLXA5mDh?5?y7p3U-5BUXvZODBw5Prr8thGvgtlw2JiAQpdh4Wlt23vzH?6A

33-0-0 8-6-14 16-6-0 24-5-3 8-6-14 7-11-2 8-6-13

Scale = 1:70.6

ATTACH 1/2" PLYWOOD OR OSB GUSSET (15/32" RATED SHEATHING 32/16 EXP 1)
TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE:
2 X 3"S - 2 ROWS, 2 X 4"S - 3 ROWS, 2 X 6"S AND LARGER - 4 ROWS: SPACED @ 4" O.C.
NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE.

REMOVE ANY REMAINING SECTION OF WEB (5-9 or 5-12) AND REPLACE WITH 2 X 4 SPF/DF/SP NO.2

Structural wood sheathing directly applied or 5-0-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	11-2-9 11-2-9	-	21-9-7 10-6-14	33-0-0 11-2-9	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.57 WB 0.48 Matrix-S	DEFL. in (loc) Vert(LL) -0.30 9-12 Vert(CT) -0.36 9-12 Horz(CT) 0.04 8 Wind(LL) 0.05 2-12	2 >999 360 MT2 2 >999 240 3 n/a n/a	

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 2x6 SP No.1 BOT CHORD 2x4 SP No.3 *Except* WEBS

5-12,5-9: 2x4 SP No.2

REACTIONS. (lb/size) 2=1383/0-3-8, 8=1309/Mechanical

Max Horz 2=276(LC 11)

Max Uplift 2=-86(LC 12), 8=-69(LC 13) Max Grav 2=1524(LC 19), 8=1455(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2183/391, 3-5=-2018/491, 5-7=-2027/505, 7-8=-2167/403

BOT CHORD 2-12=-195/1887, 9-12=0/1227, 8-9=-199/1708

WFBS 3-12=-559/324, 5-12=-180/1045, 5-9=-183/1058, 7-9=-565/331

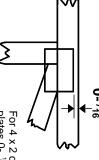
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-9 to 3-4-4, Interior(1) 3-4-4 to 16-6-0, Exterior(2) 16-6-0 to 20-10-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2 and 69 lb uplift at joint 8.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and permanent. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


818 Soundside Road Edenton, NC 27932

Symbols

PLATE LOCATION AND ORIENTATION

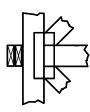
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

PLATE SIZE

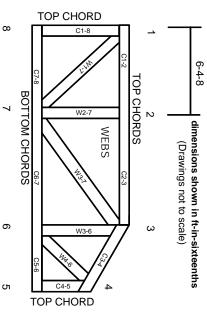

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. Indicated by symbol shown and/or

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

National Design Specification for Metal

DSB-89: ANSI/TPI1:

Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing. Connected Wood Trusses. Installing & Bracing of Metal Plate Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building
- Cut members to bear tightly against each other

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.