

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0318-0847 Embark B

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E11513095 thru E11513126

My license renewal date for the state of North Carolina is December 31, 2018.

North Carolina COA: C-0844

March 5,2018

Lassiter, Frank

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

	H		<u>26-3-8</u> 26-3-8		27-8-	D <mark> </mark>	<u>38-0-0</u> 10-4-0	
LOADING TCLL TCDL	6 (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.44 BC 0.34	DEFL. in (l Vert(LL) -0.07 18 Vert(TL) -0.23 18	loc) l/defl -20 >999 -20 >622	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2009/TPI2007	WB 0.17 Matrix-S	Horz(TL) -0.02 Wind(LL) 0.09 18	2 n/a -20 >999	n/a 240	Weight: 314 lb	FT = 20%

LUMBER-	
---------	--

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.3 *Except

17-23: 2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

WEBS

JOINTS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 11-24 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length. 1 Brace at Jt(s): 34, 35, 36

REACTIONS. All bearings 18-2-0 except (jt=length) 2=0-3-8, 2=0-3-8, 18=0-3-8, 21=0-3-8. (lb) - Max Horz 18=177(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 2, 25, 27, 28, 29, 30, 31, 21 except 24=-939(LC 2), 32=-135(LC 6), 18=-382(LC 7)

- Max Grav All reactions 250 lb or less at joint(s) 2, 2, 24, 25, 27, 28, 29, 30, 31, 32, 21 except 23=1544(LC 2), 18=837(LC 1)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 12-13=-175/325, 13-14=-205/288, 15-17=-335/261, 17-18=-1097/450, 2-3=-269/1, 10-11=-162/282, 11-12=-246/356
- BOT CHORD 2-32=0/298, 31-32=0/298, 30-31=0/298, 29-30=0/298, 28-29=0/298, 27-28=0/298, 25-27=0/298, 24-25=0/298, 23-24=0/298, 21-23=-386/871, 20-21=-386/871, 18-20=-386/871, 23-33=-796/537, 33-34=-824/586, 34-35=-804/564, 35-36=-752/516, 17-36=-803/559, 11-24=-296/141, 17-20=0/256

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 25, 27, 28, 29, 30, 31, 21 except (jt=lb) 24=939, 32=135, 18=382.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=243, 8=191, 10=123.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Aft 818 Soundside Road Edenton, NC 27932

Diate Offsets (X,Y) [2:0-3-4,0-2-0], [8:0-3-4,0-2-0] LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLAT TCLL 20.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) -0.51 11-14 >616 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.86 Vert(TL) -0.76 11-14 >412 240 BCL 0.0 * Rep Stress Incr YES WB 0.75 Horz/(TL) 0.06 8 n/a n/a		12-8-9		12-6-13	1-0-1	11-8-8
LOADING (psf) SPACING- TCLL 2-0-0 Plate Grip DOL CSI. DEFL. in (loc) //defl L/d PLAT TCLL 20.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) -0.51 11-14 >616 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.86 Vert(TL) -0.76 11-14 >412 240 BCL 0.0* Rep Stress Incr YES WB 0.75 Horz/(TL) 0.06 8 n/a n/a	Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [8:0-3-4,0-2-0]				
BCDL 10.0 Code IRC2009/TPI2007 Matrix-S Wind(LL) 0.10 11-14 >99 240 Weigh	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.39 BC 0.86 WB 0.75 Matrix-S	DEFL. in (loc) Vert(LL) -0.51 11-14 Vert(TL) -0.76 11-14 Horz(TL) 0.06 8 Wind(LL) 0.10 11-14	I/defi L/d >616 360 >412 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 242 lb FT = 20%

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 BRACING-TOP CHORD Stru BOT CHORD Rigi WFBS 1 R

 Structural wood sheathing directly applied or 4-6-4 oc purlins.

 Rigid ceiling directly applied or 10-0-0 oc bracing.

 1 Row at midpt
 5-11

REACTIONS. (lb/size) 2=1455/0-3-8, 8=1019/0-3-8, 10=1149/0-3-8 Max Horz 2=-150(LC 7) Max Uplift 2=-247(LC 6), 8=-192(LC 7), 10=-123(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2530/747, 3-5=-2203/741, 5-7=-1331/466, 7-8=-1658/472

BOT CHORD 2-14=-492/2153, 11-14=-81/1145, 10-11=-246/1374, 8-10=-246/1374

WEBS 5-11=-321/148, 7-11=-565/435, 5-14=-300/1272, 3-14=-563/435

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=247, 8=192, 10=123.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 5,2018

		12 0 0				2001				00 0 0	
	1	12-8-9		1		12-6-13				12-8-9	1
Plate Offsets	s (X,Y)	[10:0-4-0,0-4-12], [11:0-4	-0,0-4-4], [12:0-	4-0,0-4-4],	[13:0-4-0,0	-4-12]					
LOADING (TCLL 2 TCDL 1	psf) 20.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.43 0.79	DEFL. Vert(LL) Vert(TL)	in (loc) -0.38 10-13 -0.56 10-13	l/defl >999 >804	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL BCDL 1	0.0 * 10.0	Rep Stress Incr Code IRC2009/TF	YES 912007	WB Matri	0.70 x-S	Horz(TL) Wind(LL)	0.13 8 0.09 10-13	n/a >999	n/a 240	Weight: 266 lb	FT = 20%
LUMBER-						BRACING-					

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.3 *Except*

 11-12: 2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-7 oc purlins. Rigid ceiling directly applied or 9-3-0 oc bracing.

- REACTIONS. (lb/size) 2=1937/0-3-8, 8=1937/0-3-8 Max Horz 2=-150(LC 7) Max Uplift 2=-277(LC 6), 8=-277(LC 7)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3560/991, 3-5=-3235/986, 5-7=-3235/986, 7-8=-3560/991

BOT CHORD 2-13=-709/3070, 10-13=-318/2028, 8-10=-709/3070

WEBS 5-10=-280/1362, 7-10=-554/431, 5-13=-280/1362, 3-13=-554/431

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=277, 8=277.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	12-0-9		12-0-13			12-0-9	
Plate Offsets (X,Y)	[10:0-4-0,0-4-12], [11:0-4-0,0-4-4], [12:	0-4-0,0-4-4], [13:0-4-0,0-4-1	12]				
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0*BCDL	SPACING-2-1-8Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2009/TPI2007	CSI. TC 0.57 BC 0.92 WB 0.74 Matrix-S	DEFL. in Vert(LL) -0.41 Vert(TL) -0.60 Horz(TL) 0.14 Wind(LL) 0.10	10-13 >999 10-13 >757 8 n/a 10-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 266 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S	SP No.1 SP No.1		BRACING- TOP CHORD BOT CHORD	Structural woo Rigid ceiling di	d sheathing dir rectly applied c	ectly applied or 3-6-8 o r 8-11-11 oc bracing.	oc purlins.

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.3 *Except*

 11-12: 2x6 SP No.1

REACTIONS. (lb/size) 2=2058/0-3-8, 8=2058/0-3-8 Max Horz 2=160(LC 6) Max Uplift 2=-294(LC 6), 8=-294(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3783/1053, 3-5=-3437/1047, 5-7=-3437/1047, 7-8=-3783/1053

BOT CHORD 2-13=-753/3262, 10-13=-337/2155, 8-10=-753/3262

WEBS 5-10=-298/1448, 7-10=-589/458, 5-13=-298/1448, 3-13=-589/458

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=294, 8=294.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.40 BC 0.75 WB 0.69 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.48 10-13 >944 360 Vert(TL) -0.68 10-13 >667 240 Horz(TL) 0.10 8 n/a n/a Wind(LL) 0.09 2-13 >999 240	PLATES GRIP MT20 244/190 Weight: 242 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD WFBS 2x4 SP No 3 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-10-9 oc purlins. Rigid ceiling directly applied or 9-3-8 oc bracing.

REACTIONS. (lb/size) 2=1811/0-3-8, 8=1811/0-3-8 Max Horz 2=150(LC 6) Max Uplift 2=-277(LC 6), 8=-277(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3289/986, 3-5=-2963/981, 5-7=-2963/981, 7-8=-3289/986

BOT CHORD 2-13=-705/2830, 10-13=-308/1865, 8-10=-705/2830

WEBS 5-10=-277/1219, 7-10=-557/432, 5-13=-277/1219, 3-13=-557/432

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=277, 8=277.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

I	12-8-9	25-3-7	38-0-0
Plate Offsets (X,Y) [2:0-3-4,0-2-0], [9:0-3-4,0-2-0]		12-0-0
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL. in (le	oc) I/defi L/d PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.40 Vert(LL) -0.48 11- BC 0.76 Vert(TL) -0.67 11-	14 >950 360 MT20 244/190 14 >673 240
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IRC2009/TPI2007	WB 0.61 Horz(TL) 0.10 Matrix-S Wind(LL) 0.09 2-	9 n/a n/a 14 >999 240 Weight: 241 lb FT = 20%
LUMBER-	L.	BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD WFBS 2x4 SP No 3

REACTIONS. (lb/size) 2=1811/0-3-8, 9=1811/0-3-8 Max Horz 2=-145(LC 7) Max Uplift 2=-274(LC 6), 9=-274(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3297/1085, 3-5=-2955/1051, 5-6=-1925/906, 6-8=-2955/1051, 8-9=-3297/1085

2-14=-798/2838, 11-14=-384/1925, 9-11=-798/2838 BOT CHORD

WEBS 3-14=-547/446, 5-14=-268/1164, 6-11=-268/1164, 8-11=-547/446

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-2-13, Exterior(2) 12-2-13 to 25-9-3, Interior(1) 25-9-3 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=274, 9=274.

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 8-9-2 oc bracing.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	12-8-9		25-3-7			38-0-0	
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [7:0-3-4,0-2-0]		12-0-13			12-8-9	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.46	Vert(LL) -	0.49 9-12	>929 360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.81	Vert(TL) -	0.69 9-12	>660 240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.40	Horz(TL) (0.11 7	n/a n/a		
3CDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL)	0.17 2-12	>999 240	Weight: 235 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SP	No.1		TOP CHORD	Structur	al wood sheathing di	rectly applied or 4-0-3	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 8-3-13 oc bracing.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3

REACTIONS. (Ib/size) 2=1814/0-3-8, 7=1813/0-3-8 Max Horz 2=-131(LC 7) Max Uplift 2=-262(LC 6), 7=-262(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3341/1167, 3-4=-2956/1058, 4-5=-2131/966, 5-6=-2943/1054, 6-7=-3335/1168

BOT CHORD 2-12=-884/2886, 9-12=-489/2131, 7-9=-885/2882

WEBS 3-12=-542/432, 4-12=-181/975, 5-9=-176/968, 6-9=-547/433

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 10-2-13, Exterior(2) 10-2-13 to 27-9-3, Interior(1) 27-9-3 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=262, 7=262.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 5,2018

 	9-6-14	<u>19-0-0</u> 9-5-2		28-5-2 9-5-2		38-0-0	
Plate Offsets (X,Y)-	[2:0-3-4,0-2-0], [7:0-3-4,0-2-0]	002		002		0014	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.50 BC 0.65 WB 0.34 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(TL) -0.38 Horz(TL) 0.12 Wind(LL) 0.09	i (loc) l/defl 9-11 >999 9-11 >999 7 n/a 11 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 252 lb	GRIP 244/190 FT = 20%
LUMBER-BRACING-TOP CHORD2x6 SP No.1TOP CHORDStructural wood sheathing directly applied or 3-10-1 oc purlins.BOT CHORD2x6 SP No.1BOT CHORDBOT CHORDRigid ceiling directly applied or 8-1-10 oc bracing.WEBS2x4 SP No.32x4 SP No.3Structural wood sheathing directly applied or 8-1-10 oc bracing.							
REACTIONS. (Ib/s Max Max	ize) 2=1937/0-3-8, 7=1937/0-3-8 Horz 2=-117(LC 7) Uplift 2=-248(LC 6), 7=-248(LC 7)						
FORCES.(lb) - MaTOP CHORD2-BOT CHORD2-WEBS3-6-	x. Comp./Max. Ten All forces 250 (lb) ol =-3640/1214, 3-4=-3407/1212, 4-5=-2718 3=-936/3154, 11-13=-610/2523, 9-11=-61 3=-339/351, 4-13=-235/804, 4-11=-12/500 =-339/351	r less except when shown. //1017, 5-6=-3407/1212, 6 0/2523, 7-9=-936/3154 0, 5-11=-12/500, 5-9=-235	-7=-3640/1214 5/804,				
NOTES-	ive leads have been considered for this de	seign					

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-2-13, Exterior(2) 8-2-13 to 29-9-3, Interior(1) 29-9-3 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=248, 7=248.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L	9-6-14	19-0-0	28-5-2	38-0-0		
	9-6-14	9-5-2	9-5-2	9-6-14		
Plate Offsets (X,Y)-	- [2:0-3-4,0-2-0], [8:0-3-4,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.20 BC 0.41 WB 0.33 Matrix-S	DEFL. in (loc) l/defl Vert(LL) -0.10 12 >999 Vert(TL) -0.27 12-14 >999 Horz(TL) 0.10 8 n/a Wind(LL) 0.10 12 >999	L/d PLATES GRIP 360 MT20 244/190 240 n/a 240 Weight: 256 lb FT = 20%		
LUMBER- BRACING- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.3 REACTIONS. (lb/size) 2=1560/0-3-8, 8=1560/0-3-8 Max Horz 2=-103(LC 7) Max Uplift 2=-232(LC 7)						
FORCES.(lb) - MTOP CHORD2-7-BOT CHORD2-WEBS3-6-	ax. Comp./Max. Ten All forces 250 (lb) o 3=-2815/1294, 3-4=-2550/1203, 4-5=-2357 8=-2815/1294 14=-1018/2448, 12-14=-704/2015, 10-12=- 14=-327/342, 4-14=-143/515, 4-12=-172/5 10=-143/515, 7-10=-327/342	r less except when shown. /1219, 5-6=-2357/1219, 6-7=- .704/2015, 8-10=-1018/2448 93, 5-12=-469/328, 6-12=-172	2550/1203, /593,			
NOTES- 1) Unbalanced roof	live loads have been considered for this de	esign.				

Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 6-1-5, Exterior(2) 6-1-5 to 12-5-8, Interior(1) 18-8-3 to 19-3-13, Exterior(2) 25-6-8 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=232, 8=232.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly incorporate this design into the overall
 building designer. Strategies and parameters and properly damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 **NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	12-8-9		25-3-7				38-0-0	I
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [6:0-3-4,0-2-0]						12.00	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.78 BC 0.59 WB 0.28 Matrix-S	DEFL. in Vert(LL) -0.17 Vert(TL) -0.50 Horz(TL) 0.10 Wind(LL) 0.14	(loc) 6-8 6-8 6 6-8	l/defl >999 >902 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 228 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 P No.1 P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structu Rigid c T-Brac Fasten (0.131"	ral wood : eiling dire e: (2X) T a (2X) T al x3") nails	sheathing d ctly applied 2 nd I braces , 6in o.c.,wit	irectly applied or 3-1-0 or 7-7-10 oc bracing. 2x4 SPF No.2 - 4-11, 4- to narrow edge of web th 3in minimum end dist	oc purlins. 8 with 10d tance.

Brace must cover 90% of web length.

REACTIONS.	(lb/size)	2=1560/0-3-8, 6=1560/0-3-8	
	Max Horz	2=-88(LC 7)	
	Max Uplift	2=-214(LC 6), 6=-214(LC 7)	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2617/1141, 3-4=-2461/1177, 4-5=-2461/1177, 5-6=-2617/1141

BOT CHORD 2-11=-804/2216, 8-11=-1046/2795, 6-8=-804/2216

WEBS 3-11=-70/690, 4-11=-561/277, 4-8=-561/277, 5-8=-70/690

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 4-2-13, Exterior(2) 4-2-13 to 10-5-8, Interior(1) 16-8-3 to 21-3-13, Exterior(2) 27-6-8 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=214, 6=214.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO A MI Tek Affiliate 818 Soundside Road Edenton, NC 27932

H	8-5-8 8-5-8	<u>19</u> - 10-	-0-0 -6-8		29-6- 10-6-	3		<u>38-0-0</u> <u>8-5-8</u>	
Plate Offsets (X,Y) [2:0-3-4,0-2-0], [3:0-2-12,0-3-0], [4:0-4-0,0-4-12], [5:0-2-12,0-3-0], [6:0-3-4,0-2-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2009/TPI2	2-0-0 CSI . 1.15 TC 1.15 BC YES WB 007 Matr	0.47 0.53 0.66 ix-S	DEFL. Vert(LL) -0. Vert(TL) -0. Horz(TL) 0. Wind(LL) 0.	in (loc) 18 10 46 8-10 13 6 16 10	l/defl >999 >989 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 236 lb	GRIP 244/190 FT = 20%
	6 SP No 1			BRACING-	Struct	uralwood	shoothing	directly applied or 4.1.6	

LUWDER-		BRACING-				
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 4-1-6 oc purli			
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 6-11-2 oc bracing.			
WEBS	2x4 SP No.3	WEBS	T-Brace:	2x6 SPF No.2 - 4-12, 4-8		
			Fasten (2X) T and I braces	s to narrow edge of web with 10d		
			(0.131"x3") nails, 6in o.c.,w	vith 3in minimum end distance.		

REACTIONS. (lb/size) 2=1560/0-3-8, 6=1560/0-3-8 Max Horz 2=-74(LC 7) Max Uplift 2=-217(LC 5), 6=-217(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2810/1158, 3-4=-2436/1146, 4-5=-2436/1146, 5-6=-2810/1158

BOT CHORD 2-12=-853/2410, 10-12=-1285/3571, 8-10=-1285/3571, 6-8=-853/2410

WEBS 3-12=-102/745, 4-12=-1350/462, 4-10=0/409, 4-8=-1350/462, 5-8=-102/745

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 14-8-3, Interior(1) 14-8-3 to 23-3-13, Exterior(2) 23-3-13 to 29-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=217.6=217.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Brace must cover 90% of web length.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L	9-6-14	19-0-0	28-5-2		38-0-0			
	9-6-14	9-5-2	9-5-2		9-6-14	1		
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [3:0-0-0,0-0-0], [7:0-0-0	,0-0-0], [8:0-3-4,0-2-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.36 BC 0.59 WB 0.95 Matrix-S	DEFL. in (loc) Vert(LL) -0.23 12 Vert(TL) -0.58 12-14 Horz(TL) 0.14 8 Wind(LL) 0.21 12	l/defl L/d >999 360 >774 240 n/a n/a >999 240	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%		
LUMBER-BRACING-TOP CHORD2x6 SP No.1TOP CHORDStructural wood sheathing directly applied or 3-6-4 oc purlins.BOT CHORD2x6 SP No.1BOT CHORDBOT CHORDRigid ceiling directly applied or 6-3-5 oc bracing.WEBS2x4 SP No.3Structural wood sheathing directly applied or 6-3-5 oc bracing.								
REACTIONS. (Ib/size Max H Max U	REACTIONS. (lb/size) 2=1560/0-3-8, 8=1560/0-3-8 Max Horz 2=-60(LC 7) Max Uplift 2=-246(LC 5), 8=-246(LC 4)							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2830/1177, 3-4=-3279/1327, 4-6=-4426/1746, 6-7=-3279/1327, 7-8=-2830/1177 BOT CHORD 2-14=-904/2466, 12-14=-1584/4314, 10-12=-1584/4314, 8-10=-904/2466 WEBS 3-14=-281/1196, 4-14=-1265/567, 4-12=0/294, 6-12=0/294, 6-10=-1265/567, 7-10=-281/1196								
NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 12-8-3, Interior(1) 12-8-3 to 25-3-13, Exterior(2) 25-3-13 to 31-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60								

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=246, 8=246.

·

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	9-8-14	19-0-0		28-3	3-2			38-0-0	
-		9-8-14	9-3-2	1	9-3	-2			9-8-14	
LOADIN	G (psf)	SPACING- 2-	0-0 CSI .	D	EFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL TCDL	20.0 10.0	Plate Grip DOL 1. Lumber DOL 1.	15 TC 0.61 15 BC 0.68	Ve	ert(LL) -0.32 ert(TL) -0.82	12 12	>999 >549	360 240	MT20	244/190
BCLL	0.0 *	Rep Stress Incr	NO WB 0.74	H	orz(TL) 0.14	8	n/a	n/a		
BCDL	10.0	Code IRC2009/TPI200	7 Matrix-S	W	/ind(LL) 0.37	12	>999	240	Weight: 463 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 2=2409/0-3-8, 8=2440/0-3-8 Max Horz 2=-46(LC 14)

Max Uplift 2=-649(LC 4), 8=-663(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-4499/1373, 3-4=-7247/1988, 4-6=-9416/2653, 6-7=-7296/2006, 7-8=-4563/1411

- BOT CHORD 2-14=-1209/3969, 12-14=-2782/9172, 10-12=-2777/9200, 8-10=-1211/4026
- WEBS 3-14=-826/3592, 4-14=-2196/964, 4-12=0/613, 6-12=0/587, 6-10=-2172/956, 7-10=-810/3586

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=649, 8=663.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 63 lb up at 4-5-8, 60 lb down and 63 lb up at 6-6-4, 60 lb down and 63 lb up at 8-6-4, 60 lb down and 63 lb up at 10-6-4, 60 lb down and 63 lb up at 12-6-4, 60 lb down and 63 lb up at 12-6-4, 60 lb down and 63 lb up at 12-6-4, 60 lb down and 63 lb up at 12-6-4, 60 lb down and 63 lb up at 20-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, 60 lb down and 63 lb up at 22-6-4, and 79 lb down and 63 lb up at 33-6-8 on top chord, and 226 lb down and 64 lb up at 4-5-8, 45 lb down at 6-6-4, 45 lb down at 22-6-4, 45 lb down at 12-6-4, 45 lb down at 12-6-4, 45 lb down at 12-6-4, 45 lb down at 22-6-4, 45 lb

COAD CASE(S) - Spandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 5-0-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 5,2018

Job	Truss	Truss Type	Qty	Ply	Embark B
50040 004 5					E11513108
B0318-0847	A25	Hip Girder	1	2	lab Reference (antional)
					Job Relefence (optional)
Comtech, Inc., Faye	teville, NC 28309		8	.130 s Sep	15 2017 MiTek Industries, Inc. Mon Mar 5 07:53:29 2018 Page 2

8.130 s Sep 15 2017 MiTek Industries, Inc. Mon Mar 5 07:53:29 2018 Page 2 ID:Wu6AUPOZbrU4SgrgbEwHBtzeN_9-_IdC1yEaAdLhWPcgDjPyTtAvDjXqUNvt74gsybze1aa

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-7=-60, 7-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 3=-60(B) 7=-60(B) 10=-23(B) 15=-60(B) 16=-60(B) 17=-60(B) 18=-60(B) 19=-60(B) 20=-60(B) 21=-60(B) 22=-60(B) 23=-60(B) 24=-60(B) 25=-60(B) 26=-60(B) 27=-60(B) 28=-60(B) 29=-226(B) 30=-23(B) 31=-23(B) 32=-23(B) 33=-23(B) 34=-23(B) 35=-23(B) 35=-23(B) 35=-23(B) 35=-23(B) 38=-23(B) 38=-23(B) 39=-23(B) 40=-23(B) 41=-23(B) 42=-23(B) 43=-226(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		14-5-12	20-8-0		
		6-2-4	1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 * Rep Stress Incr Y Code IRC2009/TPI200	-0 CSI. 15 TC 0.35 15 BC 0.40 28 WB 0.79 7 Matrix-S	DEFL. in (loc) l/def Vert(LL) -0.10 16-17 >998 Vert(TL) -0.27 16-17 >912 Horz(TL) -0.02 2 n/ Wind(LL) 0.17 16-17 >998	I L/d PLATES 9 360 MT20 2 240 an/a 3 240 Weight:	GRIP 244/190 144 lb FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 10=867/0-3-8, 2=867/0-3-8 Max Horz 10=103(LC 6) Max Uplift 10=-349(LC 7), 2=-349(LC 6)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 7-8=-962/565, 8-9=-991/532, 9-10=-1301/539, 2-3=-1115/397, 3-4=-1064/441, 4-5=-1014/468, 5-6=-1079/560, 6-7=-844/510

- BOT CHORD 2-18=-244/908, 17-18=-244/908, 16-17=-244/908, 15-16=-244/908, 14-15=-244/908, 12-14=-351/1068, 10-12=-353/1065
- WEBS 14-20=-287/161, 19-20=-338/191, 9-19=-313/176, 6-15=-136/438, 5-16=-278/180

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and

C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 5-11-3, Exterior(2) 5-11-3 to 10-4-0, Interior(1) 14-6-14 to 16-11-13 zone; C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=349, 2=349.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 19, 20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124, 4=124.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			6-2-3			1	
Plate Offsets (X,Y)	[2:0-1-9,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.21 BC 0.14 WB 0.00	DEFL. ir Vert(LL) -0.01 Vert(TL) -0.04 Horz(TL) 0.00 Wind(LL) 0.00	1 (loc) 2-6 2-6	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2009/1P12007	Matrix-P	Wind(LL) 0.00	2	240	weight. 36 b	FT = 20%
LUMBER- TOP CHORD 2x6 S	P No.1		BRACING- TOP CHORD	Structu	ral wood sheathing o	directly applied or 6-0-0	oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3

WEBS 2x4 SP No.3 **REACTIONS.** (lb/size) 6=232/Mechanical, 2=311/0-4-9

Max Horz 2=105(LC 3) Max Uplift 6=-62(LC 3), 2=-100(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=100.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 9 lb up at 3-5-4, and 45 lb down and 9 lb up at 3-5-4 on top chord, and at 3-5-4, and at 3-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(-0-8-10 to 3-8-3, Interior(1) 3-8-3 to 5-7-3, Exterior(2) 5-7-3 to 10-0-0, Interior(1) 14-4-13 to 16-3-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=165, 2=165.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 5,2018

		6-8-9		13-3-7			20-0-0	
	6-8-9			6-6-13		6-8-9		
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in (lo	bc) I/	/defl L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.07 2	<u>2</u> -9 >!	999 360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.26	Vert(TL) -0.11 2	<u>2-9</u> >!	999 240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.12	Horz(TL) 0.02	5	n/a n/a		
BCDL	10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL) 0.04 2	2-9 >	999 240	Weight: 115 lb	FT = 20%

TOP CHORD 2x6 SP No.1 BOT CHORD

2x6 SP No.1 2x4 SP No.3 WEBS

REACTIONS. (lb/size) 2=840/0-3-8, 5=840/0-3-8 Max Horz 2=71(LC 6) Max Uplift 2=-153(LC 6), 5=-153(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-1256/547, 3-4=-966/602, 4-5=-1256/547 TOP CHORD

BOT CHORD 2-9=-312/1023, 7-9=-325/966, 5-7=-312/1023

WEBS 3-9=0/306, 4-7=0/306

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=153, 5=153.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

⊢	6-0-0 6-0-0		14-0-0 8-0-0		+	20-0-0 6-0-0	—
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.74 BC 0.25 WB 0.11 Matrix-S	DEFL. in Vert(LL) -0.07 Vert(TL) -0.11 Horz(TL) 0.03 Wind(LL) 0.04	(loc) l/de 7 >99 7-9 >99 5 r 9 >99	efl L/d 99 360 99 240 1/a n/a 99 240	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF 3-4: 2x	BRACING- TOP CHORD BOT CHORD	Structural w Rigid ceiling	vood sheathing dir g directly applied o	rectly applied or 3-5-10 o or 10-0-0 oc bracing.	oc purlins.		

TOP CHORD	2x6 SP No.1 "Except"
	3-4: 2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.3

REACTIONS. (Ib/size) 5=840/0-3-8, 2=840/0-3-8 Max Horz 2=57(LC 6) Max Uplift 5=-137(LC 7), 2=-137(LC 6)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1359/597, 3-4=-1151/610, 4-5=-1359/597

 BOT CHORD
 2-9=-395/1144, 7-9=-392/1151, 5-7=-395/1144

WEBS 3-9=0/299, 4-7=0/299

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=137, 2=137.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1072/208

L	10-0-0		1	20-	0-0			
1	10-0-0			10-	0-0	1		
Plate Offsets (X,Y)	[3:0-3-0,0-3-12], [4:0-3-0,0-3-12], [7:0-4-	0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2009/TPI2007	CSI. TC 0.79 BC 0.67 WB 0.42 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(TL) -0.30 Horz(TL) 0.04 Wind(LL) 0.08	(loc) l/defi 2-7 >999 3 5-7 >800 2 5 n/a 5-7 >999 2	L/d PLATES 360 MT20 240 n/a 240 Weight: 119 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SP 3-4: 2x6 BOT CHORD 2x6 SP WEBS 2x4 SP	No.1 *Except* 3 SP 2400F 2.0E No.1 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sh Rigid ceiling directl	eathing directly applied or 4-5-7 y applied or 9-9-13 oc bracing.	oc purlins.		
REACTIONS. (lb/size) 5=1237/0-3-8, 2=1240/0-3-8 Max Horz 2=43(LC 13) Max Uplift 5=-336(LC 6), 2=-337(LC 5)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2174/717, 3-4=-2609/508, 4-5=-2172/715 BOT CHORD 2-7=-645/1940, 5-7=-616/1938 WEBS 3-7=0/1110, 4-7=0/1111								
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-05; 11 plate grip DOL=1.60 3) Provide adequate dra 4) This truss has been between the bottom of 5) * This truss has been between the bottom of 6) Provide mechanical of 5=336, 2=337. 7) Hanger(s) or other of 4-0-0, 46 lb down ann lb up at 11-11-4, and and 58 lb up at 4-0-0 13-11-4, and 194 lb of responsibility of other 8) In the LOAD CASE(S) LOAD CASE(S) Stand 1) Dead + Roof Live (ba Uniform Loads (plf) Vert: 1-3=-60 	 TOP CHORD 2-3=2174/717, 3-4=-2609/508, 4-5=-2172/715 BOT CHORD 2-7=-645/1940, 5-7=-616/1938 WEBS 3-7=0/1110, 4-7=0/1111 NOTES- Uhalanced roof live loads have been considered for this design. Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15f; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate gitp DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upliff at joint(s) except (jt=lb) 5-336, 2=337. Provide mechanical connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 54 lb up at 4-0-0, 46 lb down and 54 lb up at 1-11-4, 46 lb down and 54 lb up at 1-11-4, and 46 lb down and 54 lb up at 1-11-4, and 194 lb down and 54 lb up at 1-11-4, 36 lb down at 11-11-4, and 36 lb down at 11-11-4, and 194 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, and 194 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, and 194 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 lb up at 1-11-4, 36 lb down and 54 l							

Continued on page 2

T. LASSIN March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Embark B
B0318-0847	G4	HIP GIRDER	1	1	E11513116
					Job Reference (optional)
Comtech, Inc., Fayett	eville, NC 28309		8	130 s Sep	15 2017 MiTek Industries, Inc. Mon Mar 5 07:53:38 2018 Page 2
		ID:Wu6AUP	OZbrU4Sg	rgbEwHBt	zeN_9-D1gbw1LD2OUQ5noPE633Lm2P8Lb65X8CB_LrmZze1aR

LOAD CASE(S) Standard

Concentrated Loads (Ib)

Vert: 3=-46(B) 4=-46(B) 7=-18(B) 8=-46(B) 9=-46(B) 10=-46(B) 11=-46(B) 12=-46(B) 13=-194(B) 14=-18(B) 15=-18(B) 16=-18(B) 17=-18(B) 18=-194(B) 16=-18(B) 16=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				4-0-0					
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.0	0 2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(TL) -0.0	1 2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.0	0 3	n/a	n/a		
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.0	0 2	****	240	Weight: 18 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=106/Mechanical, 2=221/0-3-8, 4=38/Mechanical Max Horz 2=100(LC 6) Max Uplift 3=-67(LC 6), 2=-67(LC 6) Max Grav 3=106(LC 1), 2=221(LC 1), 4=76(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			1-11-11					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.04 BC 0.01 WB 0.00 Matrix B	DEFL. Vert(LL) -0.0 Vert(TL) -0.0 Horz(TL) -0.0 Wind(L) 0.0	n (loc) D 2 D 2 D 3 D 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 1-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=45/Mechanical, 2=144/0-3-8, 4=19/Mechanical Max Horz 2=62(LC 6) Max Uplift 3=-27(LC 6), 2=-60(LC 6) Max Grav 3=45(LC 1), 2=144(LC 1), 4=39(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offs	ets (X,Y)	[2:0-1-9,Edge]										
	(psf)	SPACING-	2-0-0	CSI.	0.16	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL	20.0 10.0	Lumber DOL	1.15	BC	0.16 0.11	Vert(LL) Vert(TL)	-0.01	2-6 2-6	>999 >999	360 240	MT20	244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2009/TF	NO 912007	WB Matrix	0.00 (-P	Horz(TL) Wind(LL)	0.00 0.00	2	n/a ****	n/a 240	Weight: 32 lb	FT = 20%
						BRACING-					-	

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD WFBS 2x4 SP No 3 TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=205/Mechanical, 2=286/0-4-9 Max Horz 2=96(LC 3) Max Uplift 6=-53(LC 3), 2=-96(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 46 lb down and 2 lb up at 2-9-8, and 46 lb down and 2 lb up at 2-9-8 on top chord, and at 2-9-8, and at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60. 3-4=-20. 2-5=-20

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				4-5-8	
	G (psf)	SPACING- 2-0-0 Plate Grip DOI 1.15	CSI . TC 0.27	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(11) -0.00 2-4 >999 360 MT20 244/190	
TCDL BCLL	10.0 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.07 WB 0.00	Vert(TL) -0.00 2-4 >999 240 Horz(TL) -0.01 2-4 >999 240	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 19 lb FT = 20%	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-5-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=120/Mechanical, 2=239/0-3-8, 4=43/Mechanical Max Horz 2=109(LC 6) Max Uplift 3=-76(LC 6), 2=-68(LC 6) Max Grav 3=120(LC 1), 2=239(LC 1), 4=85(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-5-3						
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP					
TCLL	20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00 2 >999 360 MT20 244/190					
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(TL) -0.00 2 >999 240					
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.00 3 n/a n/a					
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 11 lb FT = 20%					

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

REACTIONS. (Ib/size) 3=53/Mechanical, 2=164/0-3-8, 4=22/Mechanical Max Horz 2=69(LC 6)

Max Uplift 3=-33(LC 6), 2=-66(LC 6)

Max Grav 3=53(LC 1), 2=164(LC 1), 4=44(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-5-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

	5-0-	0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.21 BC 0.11 WB 0.09 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL) Wind(LL)	in (loc) -0.01 6 -0.02 4-6 0.00 4 0.01 4-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

REACTIONS. (Ib/size) 2=450/0-3-8, 4=450/0-3-8

Max Horz 2=51(LC 6) Max Uplift 2=-112(LC 6), 4=-112(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-524/299, 3-4=-524/299

BOT CHORD 2-3=-524/299, 3-4=-524/299 BOT CHORD 2-6=-120/395, 4-6=-120/395

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=112, 4=112.

SEAL 030652

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 5,2018

		5-0-0					10-0-0					
			5-0	J-0					5-0-0			
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	-0.03	2-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.12	Horz(TL)	0.01	5	n/a	n/a		
BCDL	10.0	Code IRC2009/TF	912007	Matrix	-S	Wind(LL)	0.01	7	>999	240	Weight: 60 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

- REACTIONS. (lb/size) 2=673/0-3-8, 5=671/0-3-8 Max Horz 2=43(LC 5) Max Uplift 2=-203(LC 5), 5=-203(LC 6)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1002/269, 3-4=-944/270, 4-5=-1002/269

- BOT CHORD 2-7=-209/835, 5-7=-196/835
- WEBS 3-7=-45/284, 4-7=-45/285

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=203, 5=203.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 54 lb up at 4-0-0, and 64 lb down and 54 lb up at 6-0-0 on top chord, and 186 lb down and 55 lb up at 4-0-0, and 186 lb down and 55 lb up at 5-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 2-5=-20

Concentrated Loads (lb) 2 = 46(P) = 46(P) = 186(P) = 18

Vert: 3=-46(B) 4=-46(B) 8=-186(B) 9=-186(B)

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 5,2018

				4-0-0	
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL	20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.00 2-4 >999 360 MT20 244/190	
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(TL) -0.01 2-4 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.00 3 n/a n/a	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 18 lb FT = 20%	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BRACING-TOP CHORD S BOT CHORD F

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=106/Mechanical, 2=221/0-3-8, 4=38/Mechanical Max Horz 2=100(LC 6) Max Uplift 3=-67(LC 6), 2=-67(LC 6) Max Grav 3=106(LC 1), 2=221(LC 1), 4=76(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

	F	1-11-11			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	ADING (psf) SPACING- 2-0-0 CSI. .L 20.0 Plate Grip DOL 1.15 TC 0. DL 10.0 Lumber DOL 1.15 BC 0. .L 0.0 * Rep Stress Incr YES WB 0.	DEFL. in 0.04 Vert(LL) -0.00 0.01 Vert(TL) -0.00 0.00 Horz(TL) -0.00 DE Wirst(UL) -0.00	(loc) l/defl L/d 2 >999 360 2 >999 240 3 n/a n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	L 0.0 * Rep Stress Incr YES WB 0.1 DL 10.0 Code IRC2009/TPI2007 Matrix-P	0.00 Horz(TL) -0.00 -P Wind(LL) 0.00	3 n/a n/a 2 **** 240	Weight: 10 lb	F

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=45/Mechanical, 2=144/0-3-8, 4=19/Mechanical Max Horz 2=62(LC 6) Max Uplift 3=-27(LC 6), 2=-60(LC 6) Max Grav 3=45(LC 1), 2=144(LC 1), 4=39(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 5,2018

				5-6-6
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) -0.01 2-6 >999 360 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.10	Vert(TL) -0.02 2-6 >999 240
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(TL) 0.00 n/a n/a
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 32 lb FT = 20%

TOP CHORD 2x6 SP No.1 BOT CHORD WEBS

2x6 SP No.1 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

(lb/size) 6=197/Mechanical, 2=292/0-8-6 REACTIONS. Max Horz 2=96(LC 3) Max Uplift 6=-50(LC 3), 2=-104(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=104

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 46 lb down and 2 lb up at 2-9-8, and 46 lb down and 2 lb up at 2-9-8 on top chord, and at 2-9-8, and at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60. 3-4=-20. 2-5=-20

March 5,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

