

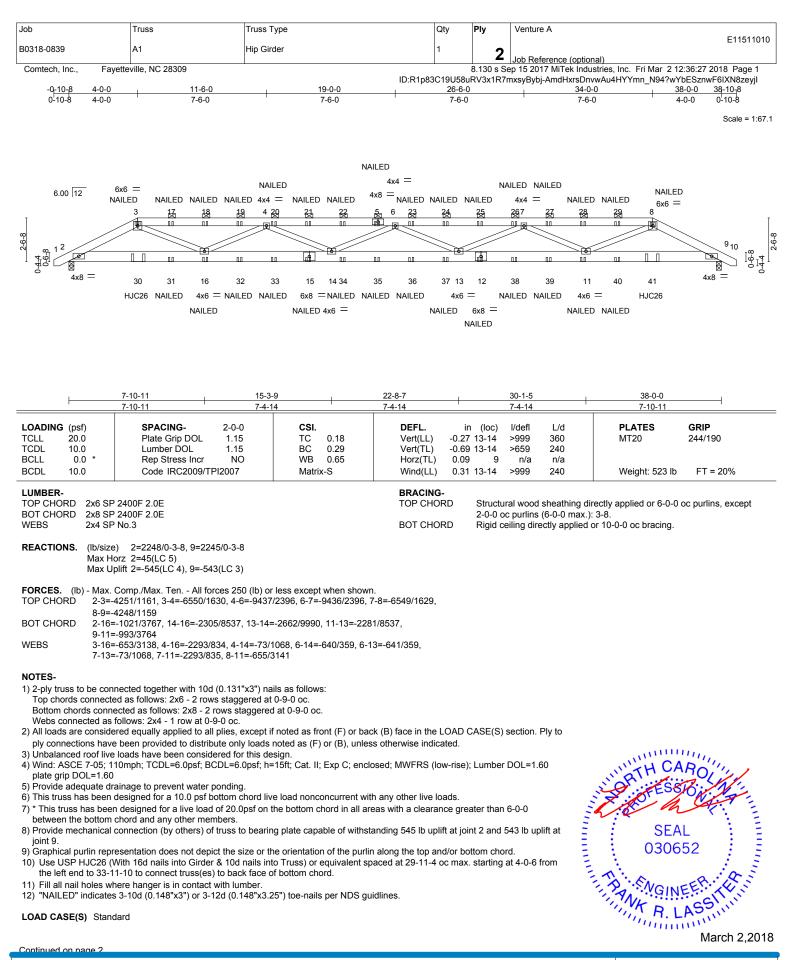
Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0318-0839 Venture A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E11511010 thru E11511049

My license renewal date for the state of North Carolina is December 31, 2018.


North Carolina COA: C-0844

March 2,2018

Lassiter, Frank

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

TRENGINEERING BY A MITEK Attiliate

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Venture A
					E11511010
B0318-0839	A1	Hip Girder	1	2	
				-	Job Reference (optional)
Comtech, Inc., Fayette	eville, NC 28309			8.130 s Se	ep 15 2017 MiTek Industries, Inc. Fri Mar 2 12:36:27 2018 Page 2

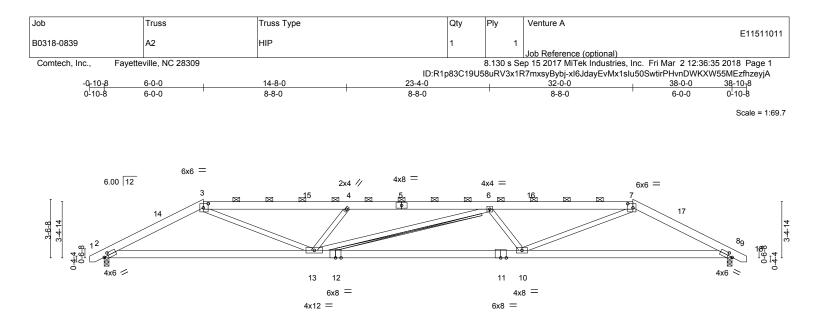
8.130 s Sep 15 2017 MiTek Industries, Inc. Fri Mar 2 12:36:27 2018 Page 2 ID:R1p83C19U58uRV3x1R7mxsyBybj-AmdHxrsDnvwAu4HYYmn_N94?wYbESznwF6lXN8zeyjl

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 2-9=-20

Concentrated Loads (lb)


Vert: 3=-46(B) 5=-46(B) 8=-46(B) 15=-18(B) 16=-18(B) 11=-18(B) 12=-18(B) 17=-46(B) 18=-46(B) 19=-46(B) 20=-46(B) 21=-46(B) 22=-46(B) 22=-46(B) 23=-46(B) 24=-46(B) 25=-46(B) 25=-46(B) 26=-46(B) 27=-46(B) 28=-46(B) 29=-46(B) 30=-197(B) 31=-18(B) 32=-18(B) 33=-18(B) 34=-18(B) 35=-18(B) 35

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

H	<u>12-8-9</u> 12-8-9		25-3-7 12-6-13				<u>38-0-0</u> 12-8-9	
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [3:0-3-8,0-3-0], [7:0-3-1	2,0-3-0], [8:0-3-4,0-2-0]	12-0-13				12-8-9	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.57 BC 0.71 WB 0.86 Matrix-S		in (loc) -0.28 10-13 -0.77 10-13 0.14 8 0.26 10-13	>999 >588 } n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S	P No.1 P No.1 P No.3		BRACING- TOP CHORI BOT CHORI WEBS	2-0-0 D Rigid T-Bra Faste (0.13	oc purlins ceiling dir ace: en (2X) T a 1"x3") nail:	(3-2-5 max. ectly applied and I braces	d or 6-5-3 oc bracing. 2x4 SPF No.2 - 6-13 to narrow edge of web ith 3in minimum end dis	with 10d
	e) 2=1560/0-3-8, 8=1560/0-3-8 Horz 2=-56(LC 8) Jplift 2=-215(LC 6), 8=-215(LC 5)						-	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2812/1054, 3-4=-4255/1405, 4-6=-4696/1686, 6-7=-4311/1430, 7-8=-2808/1055

BOT CHORD 2-13=-808/2462, 10-13=-1472/4680, 8-10=-806/2459

WEBS 3-13=-447/2016, 4-13=-726/458, 6-10=-701/424, 7-10=-473/2073

NOTES-

1) Unbalanced roof live loads have been considered for this design.

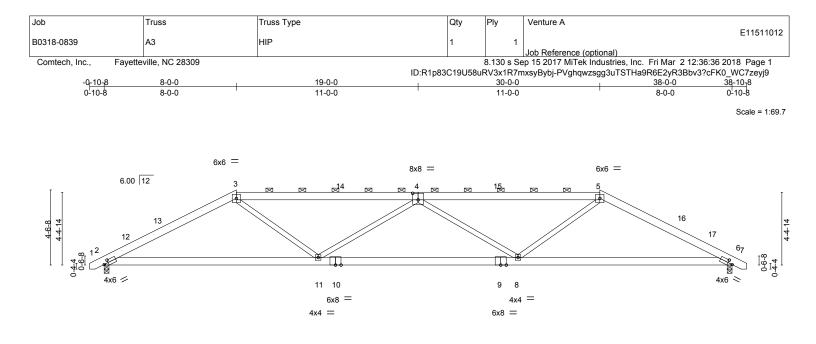
2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 6-0-0, Exterior(2) 6-0-0 to 38-2-11, Interior(1) 38-2-11 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 215 lb uplift at joint 2 and 215 lb uplift at joint 8.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢	<u>12-11-7</u> 12-11-7		25-0-9 12-1-3				38-0-0 12-11-7	
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [3:0-0-0,0-0-0], [4:0-4-0	,0-4-12], [5:0-0-0,0-0-0], [6:0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.60 BC 0.64 WB 0.80 Matrix-S	Vert(TL) -0 Horz(TL) 0	in (loc).19 6-).56 6-).12).14 8-11	.8 >999 .8 >802 6 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 226 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S	6P No.1 6P No.1 6P No.3		BRACING- TOP CHORD BOT CHORD	exce 2-0-0	ept 0 oc purlins	(3-7-11 max	lirectly applied or 4-2-15 x.): 3-5. l or 7-1-2 oc bracing.	oc purlins,
Max	ze) 2=1560/0-3-8, 6=1560/0-3-8 Horz 2=-71(LC 8) Uplift 2=-186(LC 6), 6=-186(LC 5)			g.	g	,	<u></u>	
TOP CHORD 2-3 BOT CHORD 2-1	x. Comp./Max. Ten All forces 250 (lb) o =-2709/1002, 3-4=-3163/1098, 4-5=-3163 1=-759/2352, 8-11=-1215/3752, 6-8=-753 1=-146/1090, 4-11=-781/447, 4-8=-781/4	/1098, 5-6=-2709/1002 /2352						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

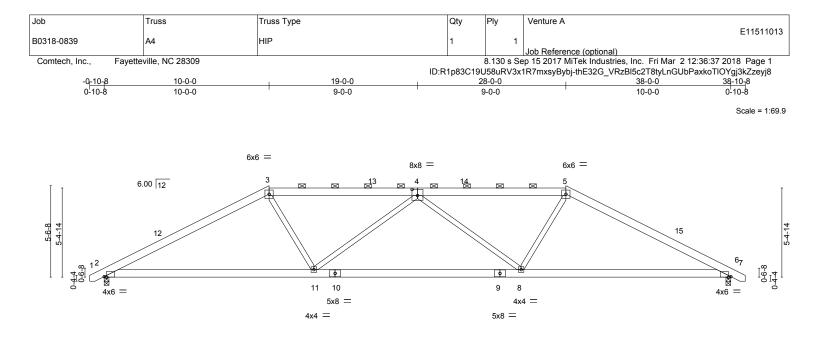
2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-0-0, Exterior(2) 8-0-0 to 36-2-11, Interior(1) 36-2-11 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 2 and 186 lb uplift at joint 6.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

12-8-9 12-8-9 Plate Offsets (X,Y) [2:0-1-10.Edge], [3:0-0-0.0-0-0	25-3-7 12-6-13 [4:0-4-0,0-4-8], [5:0-0-0,0-0-0], [6:0-1-10,Edg	.1		38-0-0 12-8-9		
LOADING (psf) SPACING- 2-0 TCLL 20.0 Plate Grip DOL 1.1 TCDL 10.0 Lumber DOL 1.1 BCLL 0.0 * Rep Stress Incr YE BCDL 10.0 Code IRC2009/TPI2007 200		in (loc .) -0.17 6- .) -0.50 6- L) 0.11	.8 >999 360 .8 >904 240 6 n/a n/a	PLATES MT20 Weight: 227 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 REACTIONS. (lb/size) 2=1560/0-3-8, 6=1560/0-3	BRAC TOP C BOT C	HORD Strue exce 2-0-0	ctural wood sheathing dir ept 0 oc purlins (4-7-5 max.); d ceiling directly applied d	: 3-5.	oc purlins,	
Image: Second	l (Ib) or less except when shown. 2558/973, 5-6=-2611/938					

WEBS 3-11=-58/729, 4-11=-599/320, 4-8=-599/320, 5-8=-58/729

NOTES-

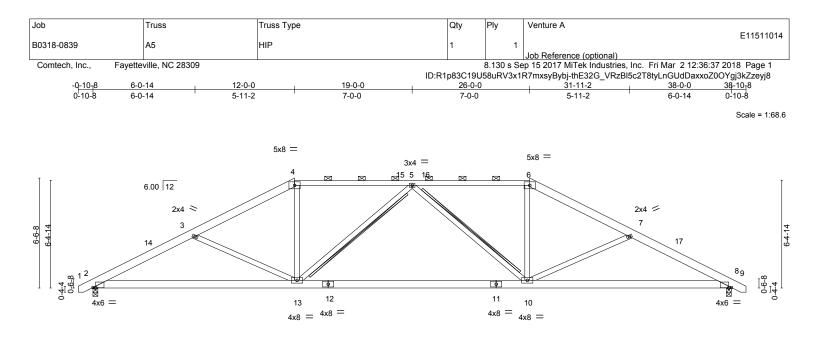
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 10-0-0, Exterior(2) 10-0-0 to 34-2-11, Interior(1) 34-2-11 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint 2 and 172 lb uplift at joint 6.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. 818 S March 2,2018

F	12-0-0		26-0-0			38-0-0	
Plate Offsets (X	<u>12-0-0</u> ,Y) [2:0-1-14,0-0-2], [8:0-1-14,0-0-2]	•	14-0-0			12-0-0	·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES	CSI. TC 0.51 BC 0.59 WB 0.35 Matrix-S	Vert(LL) -0.1 Vert(TL) -0.4 Horz(TL) 0.1	in (loc) I/d 5 10-13 >9 6 10-13 >9 0 8 I 0 10-13 >9	99 360 81 240 n/a n/a	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS REACTIONS.	2x6 SP No.1 *Except* 4-6: 2x4 SP No.1 2x6 SP No.1 2x4 SP No.3 (Ib/size) 2=1560/0-3-8, 8=1560/0-3-8 Max Horz 2=-100(LC 8) Max Uplift 2=-190(LC 7), 8=-190(LC 8)	·	BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc pu Rigid ceilin T-Brace: Fasten (2X (0.131"x3")	urlins (3-9-3 max. g directly applied) T and I braces	f or 8-3-10 oc bracing. 2x4 SPF No.2 - 5-13, 5- to narrow edge of web th 3in minimum end dist	10 with 10d
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./Max. Ten All forces 250 (lb) oi 2-3=-2792/1078, 3-4=-2416/879, 4-5=-2103// 7-8=-2792/1078 2-13=-875/2431, 10-13=-695/2375, 8-10=-87 3-13=-387/376, 4-13=-141/689, 5-13=-477/20 7-10=-387/376	864, 5-6=-2103/864, 6-7=-2 1/2431					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 12-0-0, Exterior(2) 12-0-0 to 32-2-6, Interior(1) 32-2-6 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

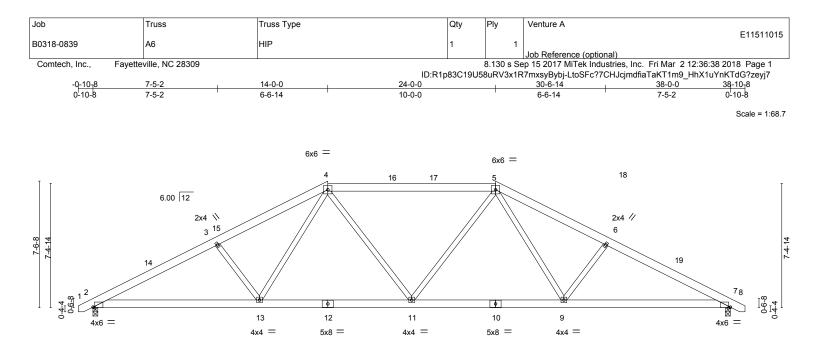
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 190 lb uplift at joint 2 and 190 lb uplift at joint 8.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets		9-11-2 9-11-2 [2:0-1-2,Edge], [7:0-1-2,E			-0-0 -14		28-0 9-0-				38-0-0 9-11-2	
Fidle Olisels	<u>^, r)</u>	[2.0-1-2,Euge], [7.0-1-2,E	Lugej									
LOADING (p TCLL 20 TCDL 10 BCLL 0 BCDL 10	.0 .0 .0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2009/TF	2-0-0 1.15 1.15 YES Pl2007	CSI. TC BC WB Matriz	0.69 0.62 0.31 x-S	DEFL. Vert(LL) Vert(TL) Horz(TL) Wind(LL)	in -0.20 -0.36 0.12 0.08	(loc) 9-11 9-11 7 11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	Max Ho	No.1 No.3				BRACING- TOP CHOR BOT CHOR	D	except 2-0-0 c	c purlins	(3-5-13 max	irectly applied or 3-9-13 :.): 4-5. or 8-10-1 oc bracing.	oc purlins,

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3587/1002, 3-4=-3343/988, 4-5=-2766/829, 5-6=-3343/988, 6-7=-3587/1002

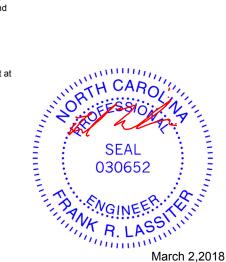
BOT CHORD 2-13=-790/3105, 11-13=-518/2555, 9-11=-515/2555, 7-9=-787/3105

WEBS 3-13=-317/324, 4-13=-167/737, 4-11=-0/492, 5-11=-1/492, 5-9=-167/737, 6-9=-317/324

NOTES-

1) Unbalanced roof live loads have been considered for this design.

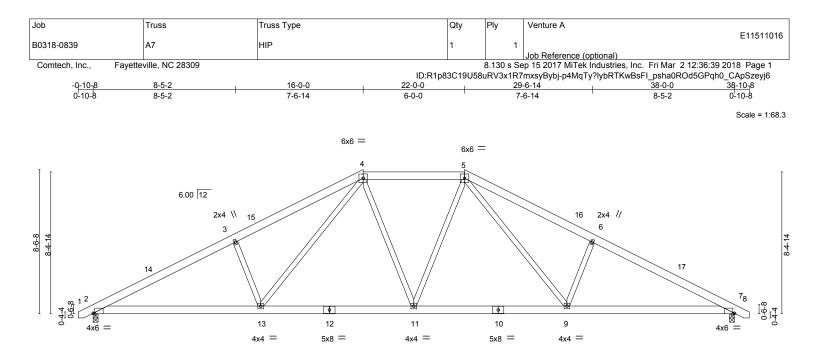
2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-0-0, Exterior(2) 14-0-0 to 30-2-11, Interior(1) 30-2-11 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 206 lb uplift at joint 2 and 206 lb uplift at joint 7.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

111011 2,2010

	9-11-2	19-0-0	28	-0-14		38-0-0			
	9-11-2	9-0-14	9-	0-14	I	9-11-2	I		
Plate Offsets (X,Y)	[2:0-1-2,Edge], [7:0-1-2,Edge]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.34 BC 0.61 WB 0.58 Matrix-S	Vert(LL) -0.20 Vert(TL) -0.36 Horz(TL) 0.11	(loc) l/defl 9-11 >999 9-11 >999 7 n/a 11-13 >999	360 240 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%		
UMBER- TOP CHORD 2x6 SF 3OT CHORD 2x6 SF VEBS 2x4 SF	P No.1		BRACING- TOP CHORD BOT CHORD	2-0-0 oc purli	ns (4-10-9 max	irectly applied or 3-9-5 (.): 4-5. or 9-1-6 oc bracing.	oc purlins, except		
	e) 2=1923/0-3-8, 7=1923/0-3-8 lorz 2=-128(LC 8) Jplift 2=-221(LC 7), 7=-221(LC 8)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3568/957, 3-4=-3388/1039, 4-5=-2468/799, 5-6=-3388/1039, 6-7=-3568/957 BOT CHORD 2-13=-741/3083, 11-13=-425/2356, 9-11=-422/2356, 7-9=-738/3083 WEBS 3-13=-420/383, 4-13=-301/970, 4-11=-20/470, 5-11=-20/470, 5-9=-301/970, 6-9=-420/383									
NOTES-									

~ . .

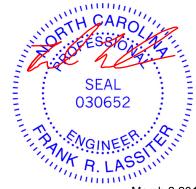
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-0-0, Exterior(2) 16-0-0 to 22-0-0, Interior(1) 28-2-11 to 38-8-10 zone; C-C for members and

.....

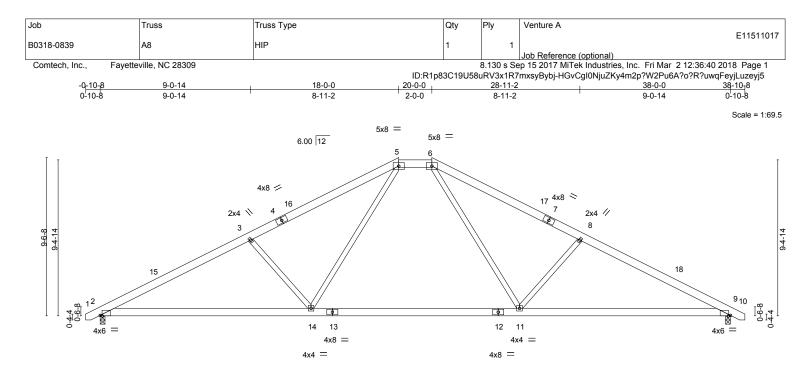
forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

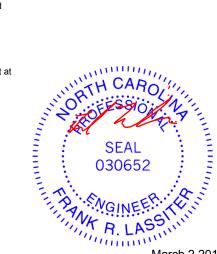
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 2 and 221 lb uplift at joint 7.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

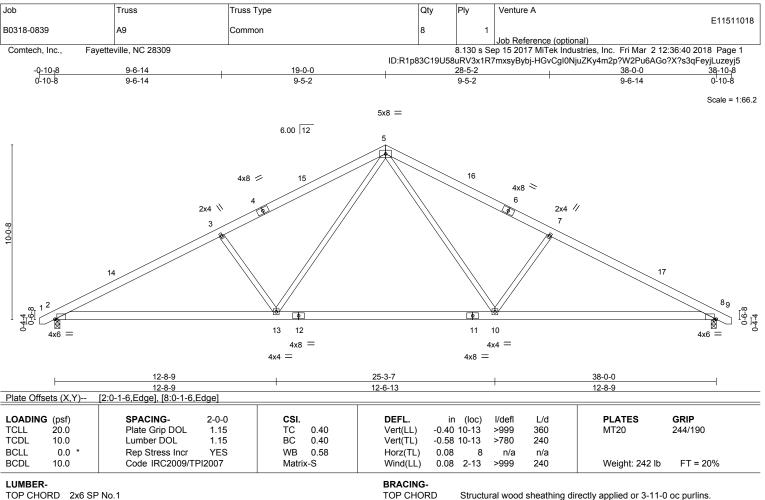
March 2,2018


—	12-8-9		25-3-7			38-0-0	
Plate Offsets (X,Y) [12-8-9 [2:0-1-6,Edge], [9:0-1-6,Edge]		12-6-13			12-8-9	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.42 BC 0.41 WB 0.46 Matrix-S		9 n/a	360 240 a n/a	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	2400F 2.0E		BRACING- TOP CHORD	except 2-0-0 oc purli	ns (5-5-6 max.)		0 oc purlins,
) 2=1811/0-3-8, 9=1811/0-3-8 orz 2=-142(LC 8) plift 2=-234(LC 7), 9=-234(LC 8)		BOT CHORD	Rigid ceiling o	directly applied	or 10-0-0 oc bracing.	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-3304/906, 3-5=-2949/861, 5-6=-1968/757, 6-8=-2949/861, 8-9=-3304/906
- BOT CHORD 2-14=-692/2846, 11-14=-300/1968, 9-11=-688/2846
- WEBS 3-14=-548/444, 5-14=-208/1119, 6-11=-208/1119, 8-11=-548/444

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 18-0-0, Exterior(2) 18-0-0 to 20-0-0, Interior(1) 26-2-11 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 234 lb uplift at joint 9.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP 2400F 2.0E

 WEBS
 2x4 SP No.3

REACTIONS. (lb/size) 2=1811/0-3-8, 8=1811/0-3-8 Max Horz 2=-150(LC 8) Max Uplift 2=-239(LC 7), 8=-239(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3288/835, 3-5=-2963/833, 5-7=-2963/833, 7-8=-3288/835

BOT CHORD 2-13=-584/2828, 10-13=-228/1865, 8-10=-596/2828

WEBS 5-10=-234/1219, 7-10=-554/423, 5-13=-234/1219, 3-13=-554/423

NOTES-

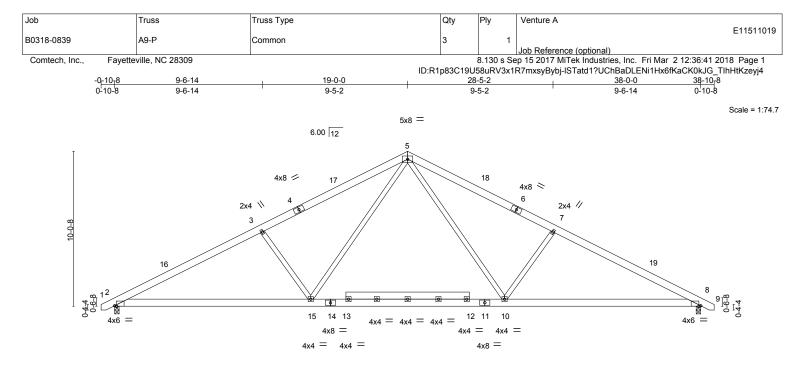
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

-0-8-10 to 3-8-3, Interior(1) 3-8-3 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 239 lb uplift at joint 2 and 239 lb uplift at joint 8.

818 Soundside Road Edenton, NC 27932 March 2,2018

SEAL 030652

	12-8-9 12-8-9	<u>15-0-0</u> 2-3-7	23-0-0 8-0-0	25-3-7		38-0-0 12-8-9	
Plate Offsets (X,Y	[2:0-1-6,Edge], [8:0-1-6,Edge]	-	1				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.43 BC 0.45 WB 0.59	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.31 10-15 -0.44 10-15 0.08 8	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL)	0.08 2-15	>999 240	Weight: 261 lb	FT = 20%

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP 2400F 2.0E
WEBS	2x4 SP No.3 *Except*
	12-13: 2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 2=1937/0-3-8, 8=1937/0-3-8 Max Horz 2=-150(LC 8) Max Uplift 2=-239(LC 7), 8=-239(LC 8)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3546/838, 3-5=-3221/836, 5-7=-3221/836, 7-8=-3546/838

BOT CHORD 2-15=-586/3058, 10-15=-230/2020, 8-10=-598/3058

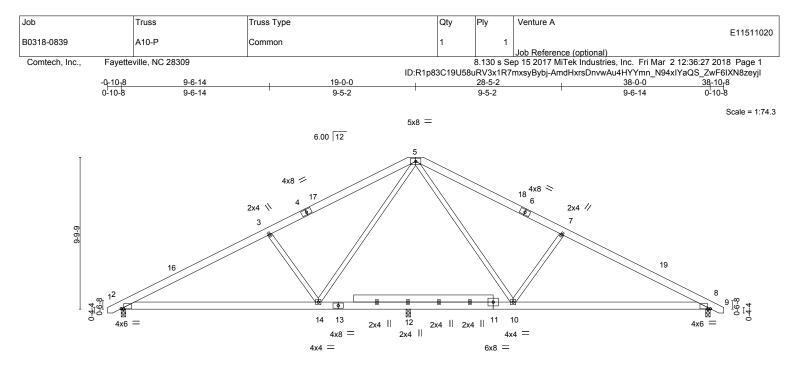
WEBS 5-10=-235/1357, 7-10=-553/423, 5-15=-235/1357, 3-15=-553/423

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13 zone; C-C for members and forces & MWFRS for reactions

shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 239 lb uplift at joint 2 and 239 lb uplift at joint 8.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	12-8-9	<u>15-0-0</u> 2-3-7	18-4-9	<u>25-3-7</u> 6-10-14				<u>38-0-0</u> 12-8-9	
Plate Offsets (X,Y)	[2:0-1-14,0-0-2], [8:0-1-14,0-0-2]	<u>Z</u> =J=1	0-4-0	0-10-14				12-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI.	DE	FL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.41	Ver	t(LL) -0.16	2-14́	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.34	Ver	t(TL) -0.47	2-14	>468	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.60	Hoi	rz(TL) 0.07	8	n/a	n/a		
BCDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wir	nd(LL) 0.10	2-14	>999	240	Weight: 263 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 2x6 SP 2400F 2.0E BOT CHORD 2x4 SP No.3 *Except* WFBS

11-15: 2x6 SP No.1

REACTIONS. (lb/size) 2=1593/0-3-8, 8=1609/0-3-8, 12=672/0-3-8 Max Horz 2=-150(LC 8) Max Uplift 2=-241(LC 7), 8=-243(LC 8)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-2704/831, 3-5=-2400/829, 5-7=-2446/830, 7-8=-2749/832
- BOT CHORD 2-14=-610/2336, 12-14=-225/1536, 10-12=-225/1536, 8-10=-608/2376
- WEBS 5-10=-241/997, 7-10=-574/450, 5-14=-238/926, 3-14=-577/450

NOTES-

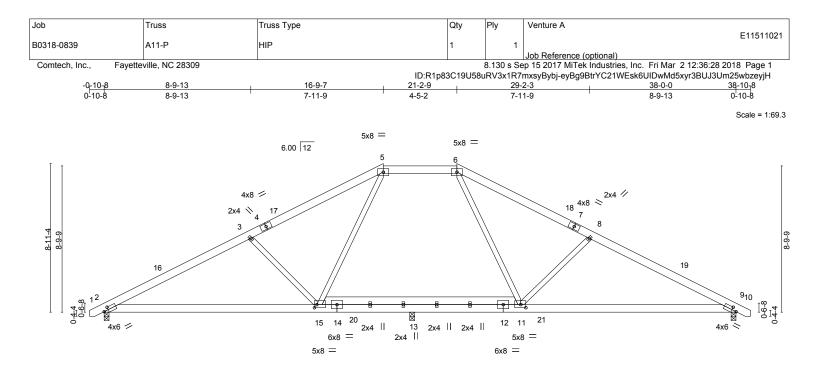
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 19-0-0, Exterior(2) 19-0-0 to 25-2-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint 2 and 243 lb uplift at joint 8.



Structural wood sheathing directly applied or 4-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

⊢	<u>12-11-7</u> 12-11-7	<u> </u>	25-0-9 6-8-1			<u>38-0-0</u> 12-11-7	
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [9:0-3-4,0-2-0], [11:0-3-1	2,0-2-4], [15:0-1-12,0-2-4]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-1-8Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2009/TPI2007	CSI. TC 0.49 BC 0.70 WB 0.44 Matrix-S	Vert(LL) -0.27 Vert(TL) -0.63 Horz(TL) 0.09	(loc) 9-11 9-11 9 2-15	l/defl L/d >848 360 >367 240 n/a n/a >999 240	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S	P No.1 P No.1 P No.3 *Except* : 2x6 SP No.1		:	2-0-0 00	c purlins (5-10-9 ma	directly applied or 4-2-1 c ix.): 5-6. d or 8-10-5 oc bracing.	oc purlins, except

REACTIONS. (lb/size) 2=1643/0-3-8, 9=1655/0-3-8, 13=499/0-3-8 Max Horz 2=142(LC 7) Max Uplift 2=-238(LC 7), 9=-246(LC 8), 13=-5(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2795/959, 3-5=-2417/888, 5-6=-1753/814, 6-8=-2436/874, 8-9=-2825/975
- BOT CHORD 2-15=-735/2418, 13-15=-353/1753, 11-13=-353/1753, 9-11=-745/2446
- WEBS 3-15=-604/467, 5-15=-149/725, 6-11=-153/786, 8-11=-616/468

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-9-7, Exterior(2) 16-9-7 to 21-2-9, Interior(1) 27-5-4 to 38-8-10 zone; C-C for members and

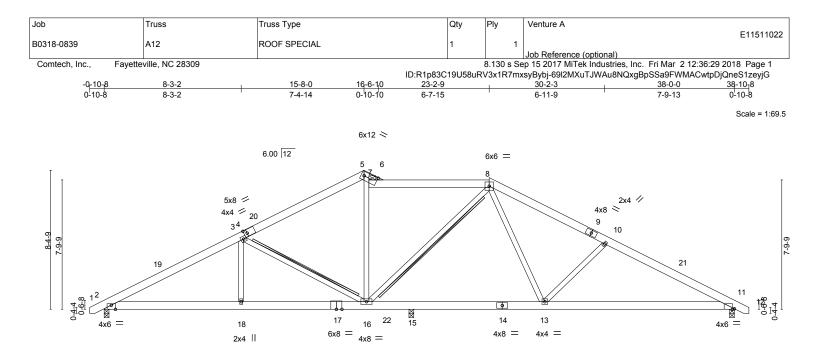
forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 238 lb uplift at joint 2, 246 lb uplift at joint 9 and 5 lb uplift at joint 13.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 2,2018

A MiTek Affi 818 Soundside Road Edenton, NC 27932

⊢	8-3-2		15-8-0		18-4-9		26-4-1				38-0-0	
Plate Offsets (X,Y)	8-3-2	0.01 (5:0.0.4	7-4-14		2-8-8	· 1 4 0 0 71 14	8-0-6				11-7-2	
Plate Olisets (X, Y)	[2:0-3-0,Edge], [4:0-2-3,0	-2-8], [5.0-9-14	4,0- <u>3-0], [6.0</u>	-3-8,0-1-1.	<u>2], [7:0-</u>	-1-4,0-2-7], [1	1:0-1-0	o,Eugej				
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-1-8 1.15 1.15	CSI. TC BC	0.56 0.71		DEFL. Vert(LL) Vert(TL)	-0.15 -0.42	i (loc) 16-18 11-13	l/defl >999 >550	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2009/TP	NO 12007	WB Matrix	0.68 -S		Horz(TL) Wind(LL)	0.07 0.13	11 16-18	n/a >999	n/a 240	Weight: 255 lb	FT = 20%
	SP No.1 *Except* 2x4 SP No.1					BRACING- TOP CHOR	D			sheathing di (5-11-5 max	irectly applied or 4-7-6 (): 7-8.	oc purlins, except
	14-17: 2x6 SP 2400F 2.0E					BOT CHOR WEBS	D		eiling dire	ectly applied	, or 9-11-1 oc bracing. 2x4 SPF No.2 - 3-16, 8-	16
WEBS 2x4								(0.131	"x3") nails		to narrow edge of web h 3in minimum end dist b length.	
	ize) 2=1319/0-3-8, 11=143 Horz 2=-135(LC 8)	32/0-3-8, 15=1	1223/0-3-8								J.	
Max	Uplift 2=-217(LC 7), 11=-25	5(LC 8), 15=-	57(LC 8)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2267/790, 3-5=-1379/617, 5-6=-1056/509, 6-8=-1150/630, 8-10=-2061/725, 10-11=-2393/797												
WEBS 3-1												
NOTES-	ivo loodo havo haan aanaida	and for this do	olan									

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-8-0, Exterior(2) 15-8-0 to 29-5-4, Interior(1) 29-5-4 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

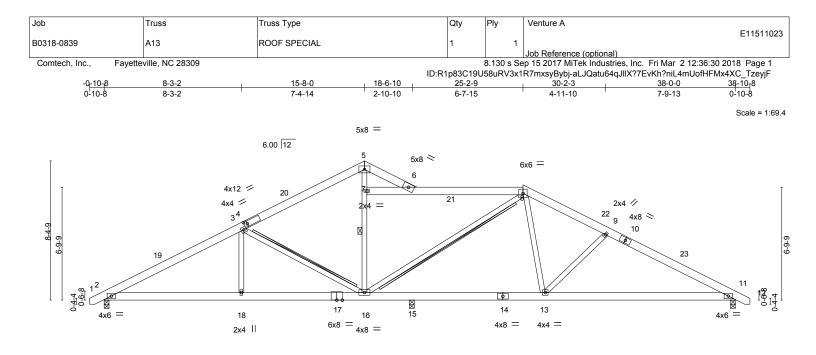
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

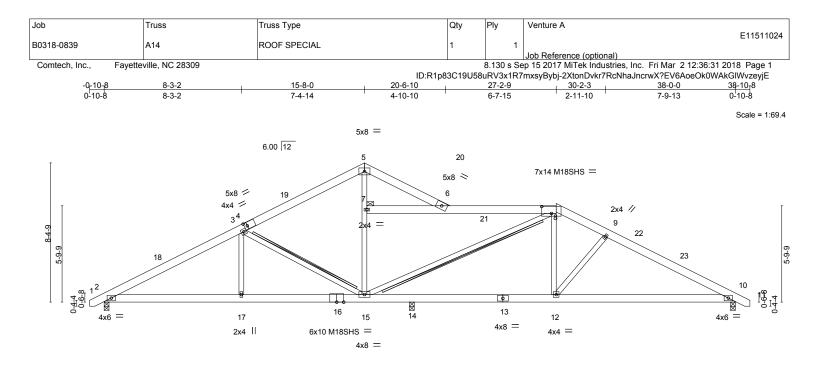
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 2, 255 lb uplift at joint 11 and 57 lb uplift at joint 15.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


 	8-3-2		3-4-9 -8-8	26-4-14 8-0-6		38-0-0	
Plate Offsets (X,Y)	6-3-2 [4:0-2-3,0-2-0]	7-4-14 2-	-0-0	8-0-0		11-7-2	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.89 BC 0.87 WB 0.86 Matrix-S		in (loc) l/defl -0.21 16-18 >999 -0.49 16-18 >453 0.06 11 n/a 0.19 16-18 >999	240 n/a	PLATES MT20 Weight: 260 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF		1	BRACING- TOP CHOR	D Structural woo except	od sheathing dire	ectly applied or 5-2-13	oc purlins,
WEBS 2x4 SF			BOT CHOR WEBS	D Rigid ceiling c 1 Row at midp T-Brace: Fasten (2X) 1 (0.131"x3") na	ot 5- 2x F and I braces to	r 10-0-0 oc bracing. 16 4 SPF No.2 - 3-16, 8- 9 narrow edge of web 3in minimum end dis	with 10d
Max H	 2=1124/0-3-8, 11=1146/0-3-8, 15= orz 2=126(LC 7) plift 2=-182(LC 7), 11=-207(LC 8), 15= 						
TOP CHORD 2-3=- 9-11= BOT CHORD 2-18=	Comp./Max. Ten All forces 250 (lb) c 1891/573, 3-5=-1026/411, 5-6=-745/33 1754/586 369/1588, 16-18=-369/1588, 15-16=- -0/460, 3-16=-864/384, 5-7=-9/332, 8-1	4, 6-8=-861/389, 8-9=-14 210/1210, 13-15=-210/12	465/523, 210, 11-13=-408/149	7			
2) Wind: ASCE 7-05; 1 -0-8-10 to 3-8-3, Inte forces & MWFRS for	e loads have been considered for this d 10mph; TCDL=6.0psf; BCDL=6.0psf; h rrior(1) 3-8-3 to 15-8-0, Exterior(2) 15-8 r reactions shown; Lumber DOL=1.60 p ainage to prevent water ponding.	=15ft; Cat. II; Exp C; encl -0 to 29-7-6, Interior(1) 2				WINTH CA	ROUT

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 182 lb uplift at joint 2, 207 lb uplift at joint 11 and 122 lb uplift at joint 15.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		8-3-2		15-8-0	18-4-9) ₁	26-4-14	27-2	-9	38-0-0	
		8-3-2	I	7-4-14	2-8-8	I	8-0-6	0-9-1	11	10-9-7	
Plate Offsets (X,Y)	[4:0-2-3,0-2-8], [8:0-7-0,0-	5-0]								
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	Ó 0 .0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2009/TPI	2-0-0 1.15 1.15 YES 2007	BC 0	.94 .96 .83	DEFL. Vert(LL) Vert(TL) Horz(TL) Wind(LL)	in (l -0.28 15- -0.62 15- 0.05 0.26 15-	-17 >787 -17 >354 10 n/a	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 264 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS		No.1 *Except* 2x6 SP 2400F 2.0E				BRACING- TOP CHOF BOT CHOF WEBS	RD St ex 2 RD Ri 2 T- Fa	ccept ·0-0 oc purlins igid ceiling dire ·2-0 oc bracing ·Brace: asten (2X) T a	(2-2-0 max.): ectly applied c : 15-17. 22 Ind I braces to	or 10-0-0 oc bracing, 1 x4 SPF No.2 - 3-15, 8- o narrow edge of web v	Except: 15 with 10d
REACTIONS.		e) 2=945/0-3-8, 10=975/ orz 2=-126(LC 8) olift 2=-153(LC 7), 10=-16	,			JOINTS	Br	1.131"x3") nails race must cove Brace at Jt(s):	er 90% of web	ı 3in minimum end dist o length.	ance.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1531/406, 3-5=-571/191, 5-6=-407/144, 6-8=-454/143, 8-9=-1139/376,

9-10=-1374/408 BOT CHORD 2-17=-214/1268, 15-17=-214/1268, 14-15=-110/1044, 12-14=-110/1044, 10-12=-251/1161

WEBS 3-17=-41/502, 3-15=-969/440, 7-15=-267/263, 8-15=-748/325, 8-12=0/332

NOTES-

1) Unbalanced roof live loads have been considered for this design.

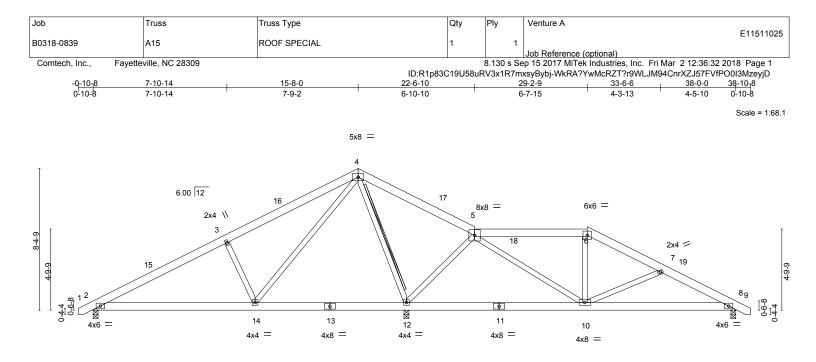
2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 15-8-0, Exterior(2) 15-8-0 to 20-0-13, Interior(1) 20-9-5 to 38-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 153 lb uplift at joint 2, 163 lb uplift at joint 10 and 213 lb uplift at joint 14.

- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

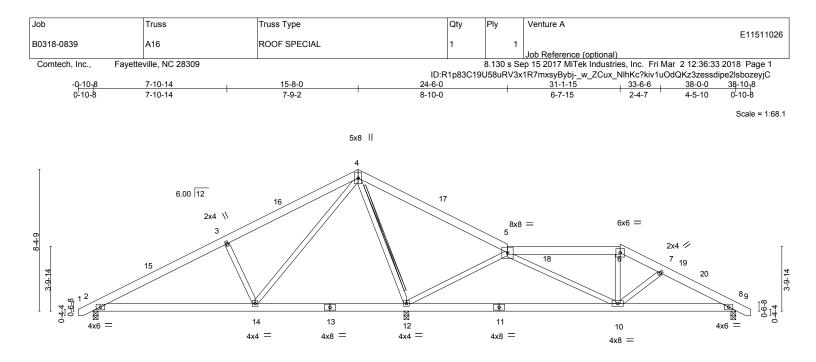
March 2,2018

L	9-6-14	18-6-5		29-2-9	38-0-0	
	9-6-14	8-11-6	1	10-8-5	8-9-7	1
Plate Offsets (X,Y)	[6:0-0-0,0-0-0]	1				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.26 BC 0.31 WB 0.56 Matrix-S	Vert(LL) -0.11 Vert(TL) -0.15 Horz(TL) 0.02	l (loc) l/defi L/d 12-14 >999 360 2-14 >999 240 8 n/a n/a 2-14 >999 240	PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	P No.1	II	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (6-0-0 ma Rigid ceiling directly applie T-Brace: Fasten (2X) T and I brace (0.131"x3") nails, 6in o.c., Brace must cover 90% of	x.): 5-6. ed or 6-0-0 oc bracing. 2x4 SPF No.2 - 4-12 es to narrow edge of web with 3in minimum end dis	with 10d
Max H Max U	e) 2=703/0-3-8, 12=2114/0-3-8, 8=66 lorz 2=-126(LC 8) Jplift 2=-144(LC 7), 12=-205(LC 8), 8=-1 Grav 2=745(LC 11), 12=2114(LC 1), 8=6	66(LC 8)				
TOP CHORD 2-3=	Comp./Max. Ten All forces 250 (lb) o -1057/264, 3-4=-870/324, 4-5=-69/616, -1005/422					
WEBS 3-14:	=-167/861, 8-10=-308/857 =-467/361, 4-14=-276/1039, 4-12=-124§ =-283/267)/404, 5-12=-755/448, 5-10=-	162/638,			
 2) Wind: ASCE 7-05; 1 -0-8-10 to 3-8-3, Interforces & MWFRS for 3) Provide adequate data 	e loads have been considered for this de 10mph; TCDL=6.0psf; BCDL=6.0psf; h: erior(1) 3-8-3 to 15-8-0, Exterior(2) 15-8 r reactions shown; Lumber DOL=1.60 p rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv	=15ft; Cat. II; Exp C; enclose -0 to 20-0-13, Interior(1) 22-6 late grip DOL=1.60	5-10 to 38-8-10 zone;	and C-C Exterior(2) C-C for members and	TH CA	ROLLIN

5)* This russ has been designed for a loso par bottom chord invertible inforcement with any other invertible.
 5)* This truss has been designed for a live load of 20.0ps for the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 2, 205 lb uplift at joint 12 and 166 lb uplift at joint 8.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

SEAL 030652

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

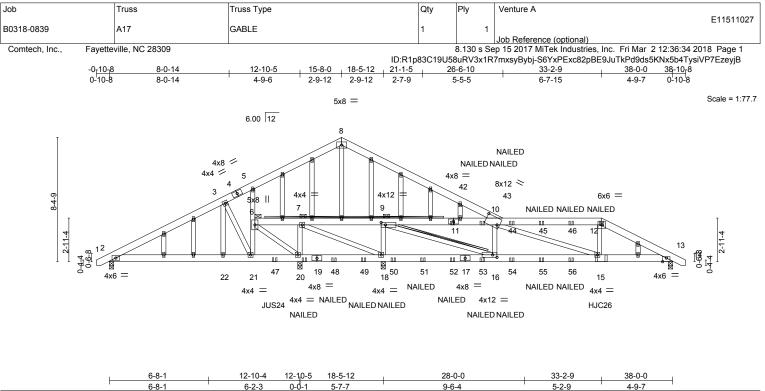
 	9-6-14	<u>18-6-5</u> 8-11-6		29-2-9 10-8-5	31-1-15	38-0-0 6-10-1	
Plate Offsets (X,Y)	<u>9-0-14</u> [6:0-0-0.0-0-0]	0-11-0		10-6-5	1-11-0	0-10-1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.40 BC 0.34 WB 0.88 Matrix-S	Vert(LL) -0.11 Vert(TL) -0.29 Horz(TL) 0.02	n (loc) l/defl 10-12 >999 10-12 >813 8 n/a 2-14 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.1	·	BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (Rigid ceiling direc T-Brace: Fasten (2X) T ar	6-0-0 max.): 5-6. ctly applied or 6-0 2x4 SF ad I braces to nar 6in o.c.,with 3in	0-0 oc bracing. PF No.2 - 4-12 row edge of web v minimum end dist	with 10d
Max H Max U	 2=678/0-3-8, 12=2161/0-3-8, 8=63 orz 2=-126(LC 8) plift 2=-143(LC 7), 12=-220(LC 8), 8=-1 rav 2=738(LC 11), 12=2161(LC 1), 8=6 	59(LC 8)				-	
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) o 1039/243, 3-4=-852/302, 4-5=-152/729 992/361						
	166/844, 12-14=-137/258, 10-12=-46/ 465/354, 4-14=-276/1027, 4-12=-137		=-54/562				
 Wind: ASCE 7-05; 1 -0-8-10 to 3-8-3, Interforces & MWFRS for 	e loads have been considered for this de 10mph; TCDL=6.0psf; BCDL=6.0psf; h rior(1) 3-8-3 to 15-8-0, Exterior(2) 15-8 r reactions shown; Lumber DOL=1.60 p ainage to prevent water ponding.	=15̃ft; Cat. II; Exp C; enclos -0 to 20-0-13, Interior(1) 24			d	WH CA	Poly

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 2, 220 lb uplift at joint 12 and 159 lb uplift at joint 8.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

SEAL 030652

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Diata Offenta (X X) [0:0.2	<u>6-8-1</u> <u>6-2</u> 8 0 2 01 [10:0 10 0 0 5 1] [12:0			6-4	5-2-9	4-9-7	·
Plate Offsets (X,Y) [9:0-3	-8,0-2-0], [10:0-10-0,0-5-4], [13:0-	3-0,Edgej, [16:0-3-8,0-2-	0]				
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2009/TPI2007	CSI. TC 0.62 BC 0.47 WB 0.85 Matrix-S	Vert(LL) -0.1 Vert(TL) -0.2 Horz(TL) 0.0	4 15-16 >968	L/d 360 240 n/a 240	PLATES MT20 Weight: 335 lb	GRIP 244/190 FT = 20%
			PRACING				
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 9-16: 2x4 SP OTHERS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS JOINTS	except 2-0-0 oc purlins T-Brace: Rigid ceiling dir T-Brace: Fasten (2X) T a	(4-8-14 max.) 2x ectly applied o 2x and I braces to s, 6in o.c.,with er 90% of web	4 SPF No.2 - 9-10 r 6-0-0 oc bracing. 4 SPF No.2 - 9-16 narrow edge of web 3in minimum end dis	with 10d
13 Max Grav 10	=-148(LC 14) All uplift 100 lb or less at joint(s) e: 3=-533(LC 6), 20=-618(LC 5) All reactions 250 lb or less at joint()), 13=1317(LC 1), 20=1372(LC 9)	s) except 2=664(LC 1), 1)	8=1858(LC				
TOP CHORD 2-3=-867/32 7-9=-403/1 BOT CHORD 2-22=-198/6 15-16=-955 WEBS 12-15=-76/6	./Max. Ten All forces 250 (lb) or 24, 3-5=-593/366, 5-8=-627/424, 8 130, 9-10=-2207/983, 10-12=-214 867, 21-22=-198/687, 20-21=-76/4 /2636, 13-15=-673/2111 501, 10-15=-519/294, 10-16=-853 38, 6-21=-251/592, 3-22=0/297, 6	3-10=-765/353, 6-7=-500/ 7/839, 12-13=-2444/875 195, 18-20=-695/435, 16- /584, 9-16=-1387/3445, 9	1012, 18=-636/362, -18=-1144/473,				ROULA
2) Wind: ASCE 7-05; 110mph	have been considered for this de t; TCDL=6.0psf; BCDL=6.0psf; h=	0	osed; MWFRS (low-rise) gable end zone;		2000	C. A.
	ads in the plane of the truss only. cable, or consult qualified building to prevent water ponding. less otherwise indicated.			see Standard Ind	ustry	SEA 0306	• -
 7) This truss has been design 8) * This truss has been design between the bottom chord 9) Provide mechanical connenist joint 18, 533 lb uplift at join 	ned for a 10.0 psf bottom chord liv gned for a live load of 20.0psf on t	he bottom chord in all are g plate capable of withsta	eas with a clearance groanding 245 lb uplift at jo	int 2, 670 lb uplift		ANK R. L	ASSILUTION March 2,2018
Continued on page 2			- <u>J</u>				
Design valid for use only with Mi a truss system. Before use, the b building design. Bracing indicate is always required for stability an fabrication, storage, delivery, ere	rameters and READ NOTES ON THIS AND Tek® connectors. This design is based onl uuliding designer must verify the applicabili di sto prevent buckling of individual truss to prevent collapse with possible persons with a di barcing of trusses and truss syst om Truss Plate Institute, 218 N. Lee Street	y upon parameters shown, and i y of design parameters and pro web and/or chord members only al injury and property damage. I ems, see ANSI/TPI1 Q	s for an individual building co perly incorporate this design i . Additional temporary and p For general guidance regardir uality Criteria, DSB-89 and I	mponent, not nto the overall ermanent bracing ng the	nent	818 Soundside R Edenton, NC 279	

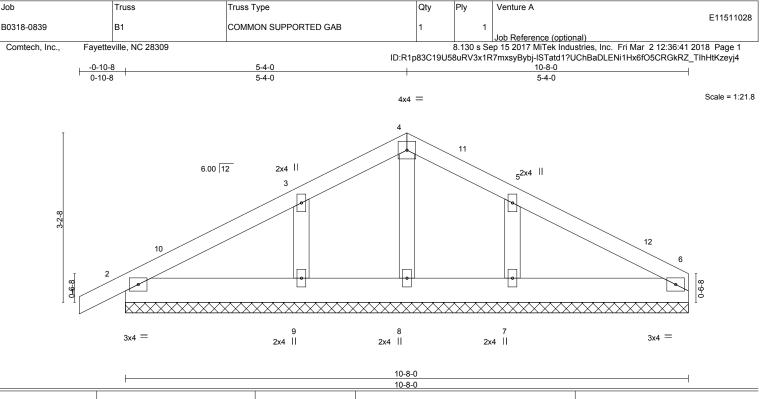
Job	Truss	Truss Type	Qty	Ply	Venture A
D0240 0020	447				E11511027
B0318-0839	A17	GABLE	1	1	Job Reference (optional)
Comtech, Inc., Fayette	ville, NC 28309				p 15 2017 MiTek Industries, Inc. Fri Mar 2 12:36:34 2018 Page 2

ID:R1p83C19U58uRV3x1R7mxsyBybj-S6YxPExc82pBE9JuTkPd9ds5KNx5b4TysiVP7EzeyjB

NOTES-

- 11) Use USP JUS24 (With 10d nails into Girder & 10d nails into Truss) or equivalent at 11-1-13 from the left end to connect truss(es) to front face of bottom chord.
- 12) Use USP HJC26 (With 16d nails into Girder & 10d nails into Truss) or equivalent at 33-2-3 from the left end to connect truss(es) to front face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-8=-60, 8-10=-60, 10-12=-60, 12-14=-60, 2-13=-20
- Concentrated Loads (lb)
 - Vert: 12=-70(F) 15=-251(F) 20=-136(F) 42=-70(F) 43=-70(F) 44=-70(F) 45=-70(F) 46=-70(F) 47=-441(F) 48=-136(F) 49=-136(F) 50=-136(F) 51=-136(F) 52=-26(F) 53=-26(F) 55=-26(F) 55=-26(F) 56=-26(F) 56=

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in ito the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

-		1				10-8-0						1
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	-0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.12	Horz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2009/TF	912007	Matri	k-S						Weight: 53 lb	FT = 20%

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 2x4 SP No.3 OTHERS

REACTIONS. All bearings 10-8-0

(lb) - Max Horz 2=70(LC 7)

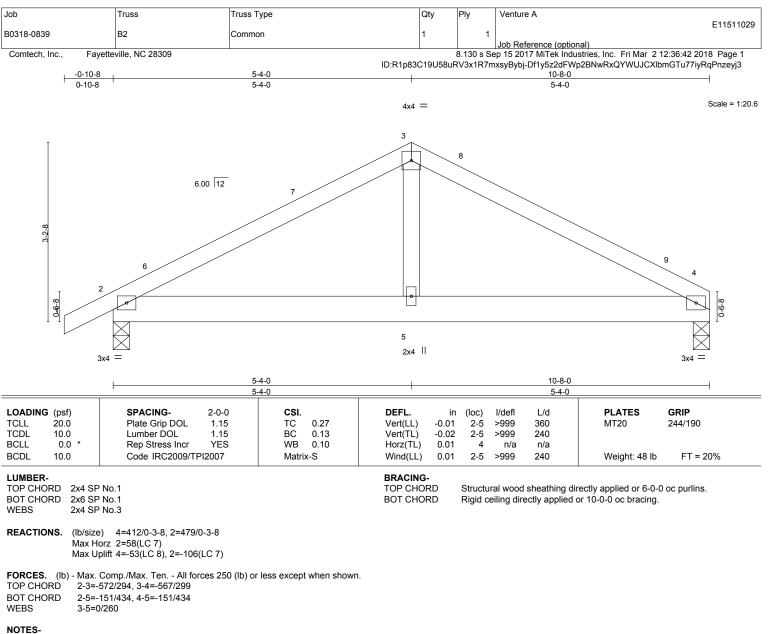
Max Uplift All uplift 100 lb or less at joint(s) 6, 2 except 9=-149(LC 7), 7=-165(LC 8) Max Grav All reactions 250 lb or less at joint(s) 6, 2, 8 except 9=268(LC 1), 7=281(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-9=-182/375, 5-7=-195/398

NOTES-

- 2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) -0-10-8 to 3-4-0, Exterior(2) 3-4-0 to 5-4-0, Corner(3) 5-4-0 to 9-8-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2 except (jt=lb) 9=149, 7=165.

March 2,2018


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-

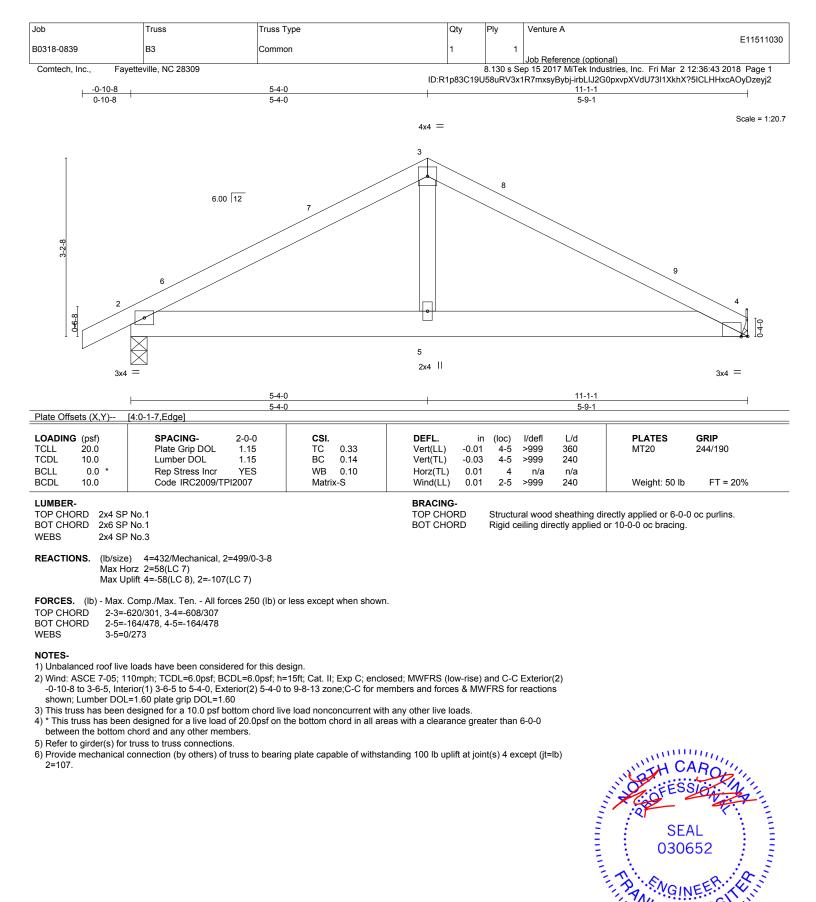
¹⁾ Unbalanced roof live loads have been considered for this design.

1) Unbalanced roof live loads have been considered for this design.

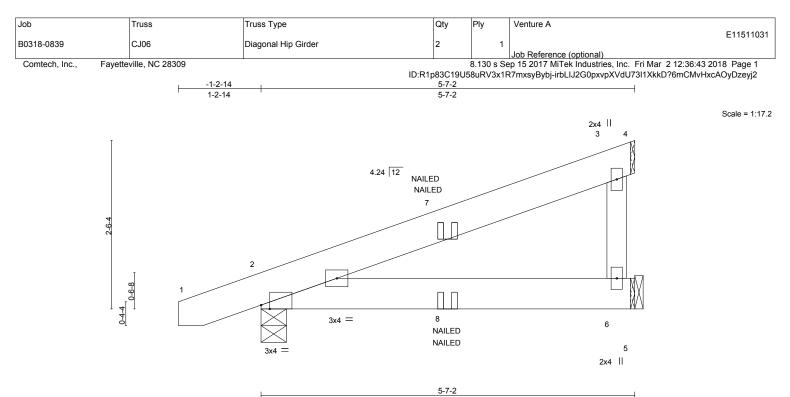
2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-4-0, Exterior(2) 5-4-0 to 9-8-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=106.

March 2,2018


A MiTek Affil 818 Soundside Road Edenton, NC 27932

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			5-7-2					
Plate Offsets (X,Y)	[2:0-1-9,Edge]	1					1	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) -0	.01 2-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(TL) -0	.02 2-6	>999	240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(TL) 0	.00	n/a	n/a		
BCDL 10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0	.00 2	****	240	Weight: 33 lb	FT = 20%
							-	
LUMBER-			BRACING-					

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No 3 TOP CHORD Structural wood sheathing directly applied or 5-7-2 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=207/Mechanical, 2=289/0-4-9 Max Horz 2=97(LC 3) Max Uplift 6=-48(LC 3), 2=-92(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

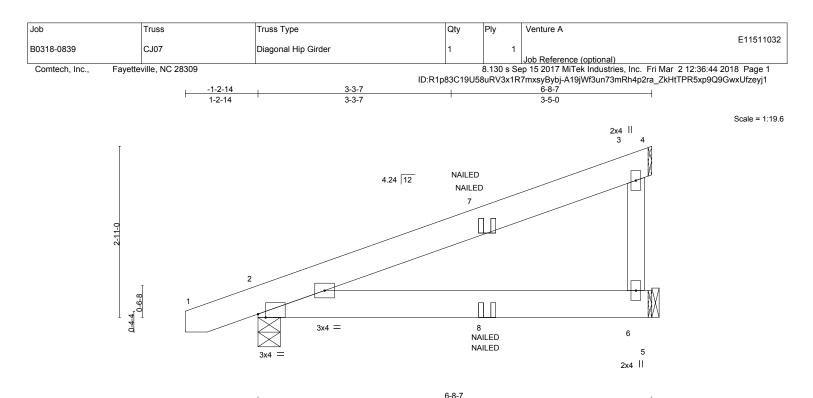
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

6) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20

March 2,2018

Plate Offsets (2	(X,Y) [2:0-1-9,Edge]			6-8	3-7					
LOADING (ps	sf) SPACING- 2-0-	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	0.0 Plate Grip DOL 1.15	TC	0.26	Vert(LL)	-0.02	2 -6	>999	360	MT20	244/190
TCDL 10.	0.0 Lumber DOL 1.15	BC	0.17	Vert(TL)	-0.05	2-6	>999	240		
BCLL 0.	0.0 * Rep Stress Incr NO	WB	0.00	Horz(TL)	0.00		n/a	n/a		
BCDL 10.	0.0 Code IRC2009/TPI2007	Matr	ix-P	Wind(LL)	0.00	2	****	240	Weight: 38 lb	FT = 20%

TOP CHORD

BOT CHORD

REACTIONS.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No 3

(lb/size) 6=253/Mechanical, 2=331/0-4-9

Max Horz 2=113(LC 3) Max Uplift 6=-63(LC 3), 2=-98(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

6) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines

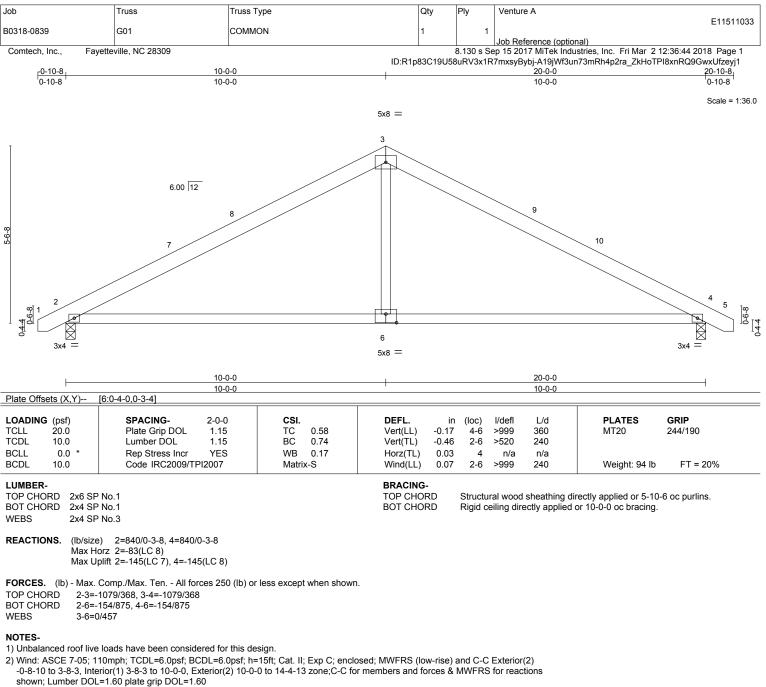
7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

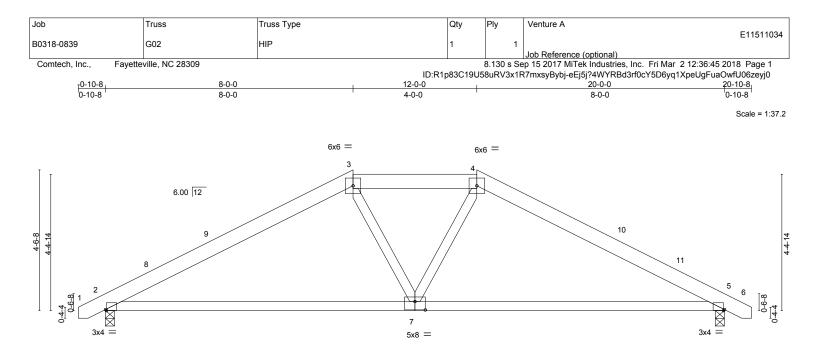
March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=145, 4=145.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

March 2,2018

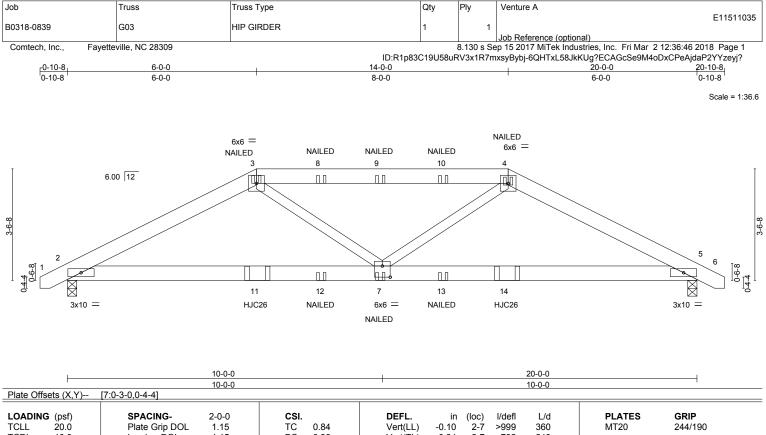
 	10-0-0					20-0-0		
Plate Offsets (X,Y)	[2:0-0-6,Edge], [3:0-0-0,0-0-0], [4:0-0-0	0-0-0], [5:0-0-6,Edge], [7:0-4	-0,0-3-4]			10 0 0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.37 BC 0.73 WB 0.10 Matrix-S	Vert(TL) -(Horz(TL) ().44).03	2-7 >9 2-7 >5 5	defl L/d 999 360 536 240 n/a n/a 999 240	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.1	BRACING- TOP CHORD BOT CHORD	2-	Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.				
REACTIONS. (lb/size) 5=840/0-3-8, 2=840/0-3-8 Max Horz 2=68(LC 7) Max Uplift 5=-133(LC 8), 2=-133(LC 7)								
TOP CHORD2-3=-BOT CHORD2-7=-	Comp./Max. Ten All forces 250 (lb) or 1153/458, 3-4=-1013/467, 4-5=-1153/4 282/955, 5-7=-271/955 //252, 4-7=0/252							
2) Wind: ASCE 7-05; 1 -0-8-10 to 3-8-3, Inte	loads have been considered for this de 10mph; TCDL=6.0psf; BCDL=6.0psf; h= rior(1) 3-8-3 to 8-0-0, Exterior(2) 8-0-0	15ft; Cat. II; Exp C; enclosed o 12-0-0, Interior(1) 18-2-11						

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=133, 2=133.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TCDL 10.0 L	umber DOL 1.15	BC 0.96	Vert(TL) -0.34	2-7 >702 240	101120 244/190
	ep Stress Incr NO ode IRC2009/TPI2007	WB 0.35 Matrix-S	Horz(TL) 0.05 Wind(LL) 0.12		Weight: 116 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d 2-0-0 oc purlins (3-1-15 max Rigid ceiling directly applied	,
Max Horz 2=5	543/0-3-8, 5=1539/0-3-8 7(LC 5) ៛15(LC 5), 5=-414(LC 6)				
	6, 3-4=-2861/650, 4-5=-2613/73 8, 5-7=-598/2286				
 NOTES- 1) Unbalanced roof live loads h. 2) Wind: ASCE 7-05; 110mph; plate grip DOL=1.60 3) Provide adequate drainage tr 4) This truss has been designer 5) * This truss has been designer between the bottom chord ar 6) Provide mechanical connecti 	TCDL=6.0psf; BCDL=6.0psf; h= o prevent water ponding. d for a 10.0 psf bottom chord liv ed for a live load of 20.0psf on 1 nd any other members.	:15ft; Cat. II; Exp C; enclose e load nonconcurrent with a he bottom chord in all areas	iny other live loads.	ater than 6-0-0	
2=415, 5=414. 7) Graphical purlin representation 8) Use USP HJC26 (With 16d n	on does not depict the size or th	ne orientation of the purlin a Truss) or equivalent space	long the top and/or bo	ttom chord. arting at 6-0-6 from the	H CARO

9) Fill all nail holes where hanger is in contact with lumber.

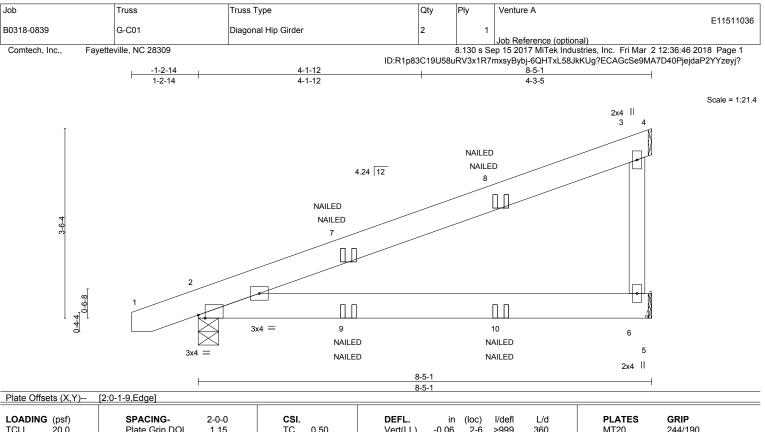
10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 2-5=-20

Concentrated Loads (lb)


Vert: 3=-108(B) 4=-108(B) 7=-38(B) 8=-108(B) 9=-108(B) 10=-108(B) 11=-373(B) 12=-38(B) 13=-38(B) 14=-373(B)

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.50 BC 0.33 WB 0.00	DEFL. Vert(LL) Vert(TL) Horz(TL)	in -0.06 -0.16 0.00	(loc) 2-6 2-6	l/defl >999 >610 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 48 lb	FT = 20%	
LUMBER	۶-			BRACING-							

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No 3

REACTIONS. (lb/size) 6=364/Mechanical, 2=417/0-4-9 Max Horz 2=136(LC 3) Max Uplift 6=-109(LC 3), 2=-117(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-266/168

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

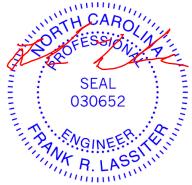
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=109, 2=117.

6) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

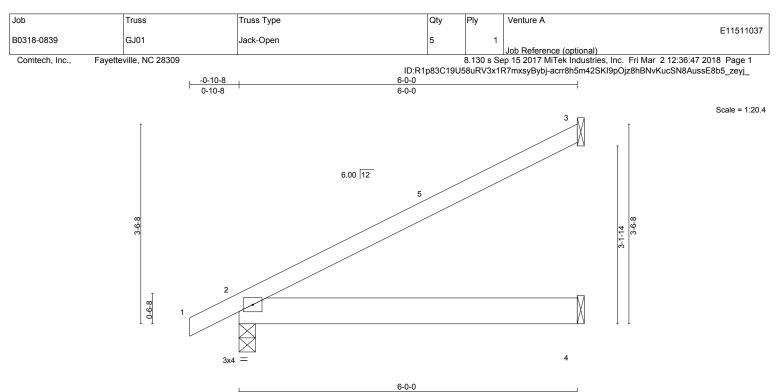

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60 3-4=-20 2-5=-20

Concentrated Loads (lb)

Vert: 8=-40(F=-20, B=-20) 10=-19(F=-9, B=-9)


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				6-0-0					
LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.57	Vert(LL) -	-0.02	2-4	>999	360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.13	Vert(TL) -	-0.04	2-4	>999	240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -	-0.00	3	n/a	n/a	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 26 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

REACTIONS. (Ib/size) 3=168/Mechanical, 2=298/0-3-8, 4=58/Mechanical Max Horz 2=139(LC 7) Max Uplift 3=-106(LC 7), 2=-66(LC 7) Max Grav 3=168(LC 1), 2=298(LC 1), 4=116(LC 2)

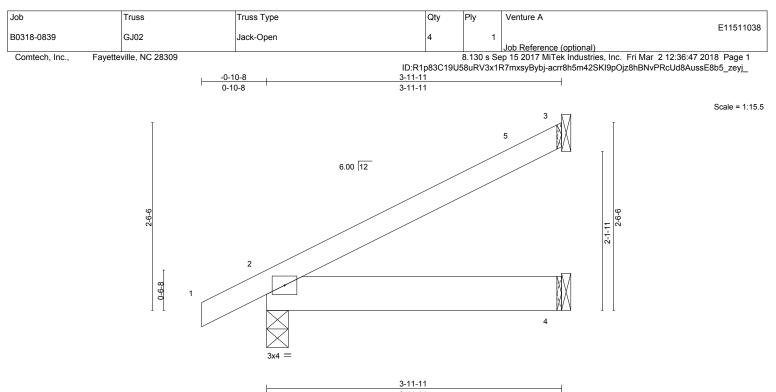
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 3=106.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				3-11-11					
LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.	00 2-4	4 >999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(TL) -0.	01 2-4	4 >999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.	00 3	3 n/a	n/a		
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.0	00 2	2 ****	240	Weight: 18 lb	FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=105/Mechanical, 2=220/0-3-8, 4=38/Mechanical Max Horz 2=99(LC 7) Max Uplift 3=-66(LC 7), 2=-63(LC 7) Max Grav 3=105(LC 1), 2=220(LC 1), 4=75(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

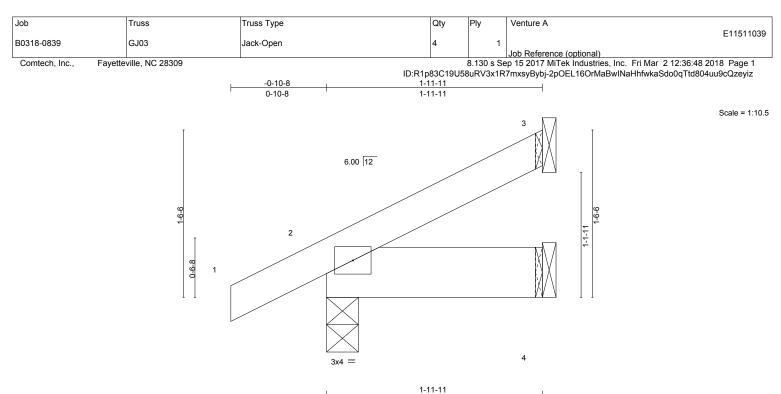
NOTES-

 Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 3-10-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						1-11-	11					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	-0.00	2	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2009/TF	912007	Matrix	(-P	Wind(LL)	0.00	2	****	240	Weight: 10 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (Ib/size) 3=45/Mechanical, 2=144/0-3-8, 4=19/Mechanical Max Horz 2=62(LC 7)

Max Uplift 3=-27(LC 7), 2=-58(LC 7) Max Grav 3=45(LC 1), 2=144(LC 1), 4=39(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

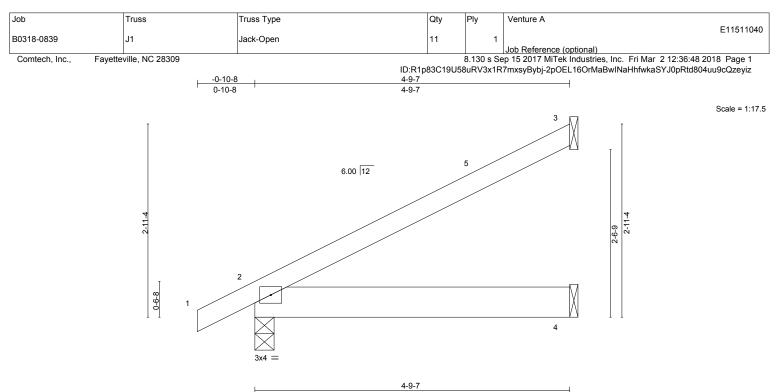
1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.


Structural wood sheathing directly applied or 1-11-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREENCO AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

-						4-9-7				ļ		
LOADIN	IG (psf)	SPACING- 2-0	-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.1	5	TC	0.33	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.1	5	BC	0.08	Vert(TL)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr YE	S	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2009/TPI200	7	Matrix	κ-P	Wind(LL)	0.00	2	****	240	Weight: 21 lb	FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

REACTIONS. (lb/size) 3=130/Mechanical, 2=251/0-3-8, 4=46/Mechanical Max Horz 2=115(LC 7) Max Uplift 3=-82(LC 7), 2=-64(LC 7) Max Grav 3=130(LC 1), 2=251(LC 1), 4=92(LC 2)

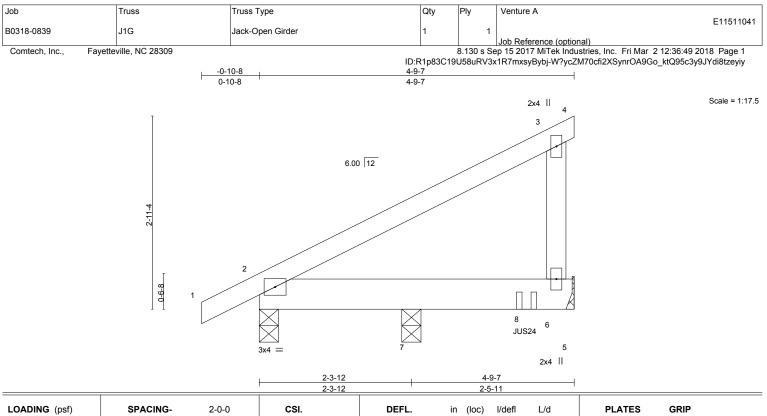
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.


March 2,2018

BRACING-TOP CHORD

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-9-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.00	6-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(TL) -0.00	6-7	>999	240		
BCLL 0.0	Rep Stress Incr NO	WB 0.03	Horz(TL) 0.00		n/a	n/a		
BCDL 10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00	7	>999	240	Weight: 24 lb	FT = 20%

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-9-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=195/0-3-8, 6=461/Mechanical, 7=181/0-3-8 Max Horz 2=115(LC 5) Max Uplift 2=-79(LC 11), 6=-123(LC 5) Max Grav 2=195(LC 1), 6=461(LC 1), 7=197(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb)

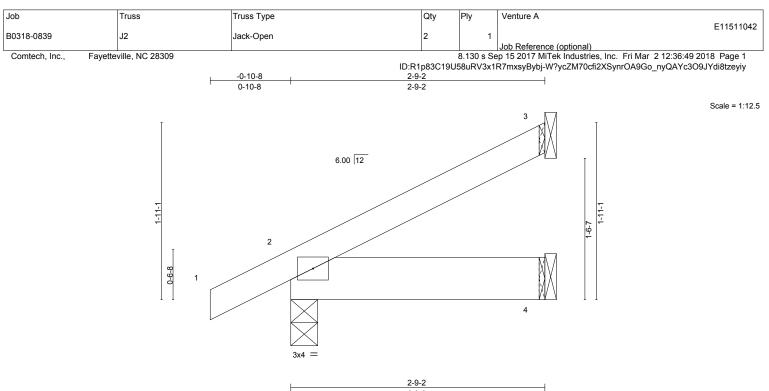
6=123.6) Use USP JUS24 (With 10d nails into Girder & 10d nails into Truss) or equivalent at 4-0-12 from the left end to connect truss(es) to back face of bottom chord.

7) Fill all nail holes where hanger is in contact with lumber.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20 Concentrated Loads (lb) Vert: 8=-415(B)

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

						2-9-2				1		
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	-0.00	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2009/TP	12007	Matri	κ-P	Wind(LL)	0.00	2	****	240	Weight: 13 lb	FT = 20%

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

REACTIONS. (Ib/size) 3=64/Mechanical, 2=176/0-3-8, 4=26/Mechanical Max Horz 2=76(LC 7)

Max Uplift 3=-40(LC 7), 2=-63(LC 7) Max Grav 3=64(LC 1), 2=176(LC 1), 4=51(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

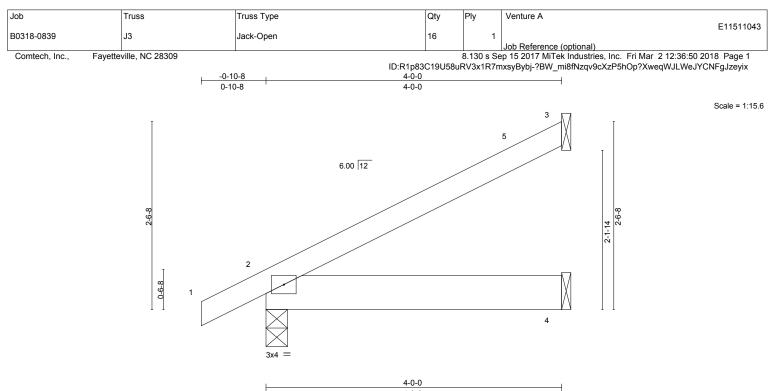
- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

SEAL 030652


March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-9-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

						4-0-0						
LOADIN	IG (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	-0.00	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2009/TPI20	007	Matrix	<-P	Wind(LL)	0.00	2	****	240	Weight: 18 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

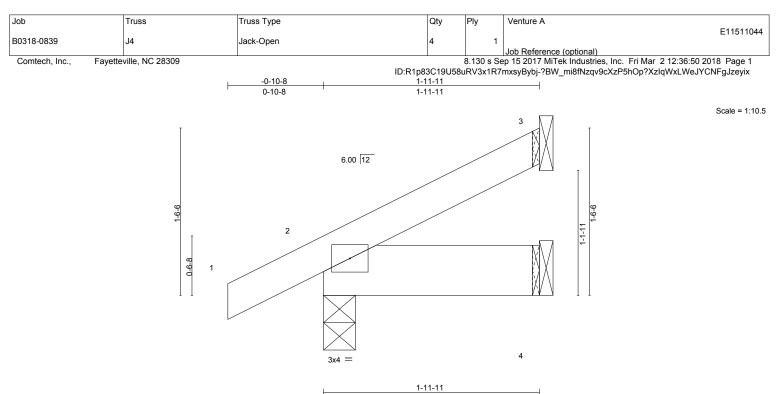
REACTIONS. (Ib/size) 3=106/Mechanical, 2=221/0-3-8, 4=38/Mechanical Max Horz 2=100(LC 7) Max Uplift 3=-67(LC 7), 2=-63(LC 7) Max Grav 3=106(LC 1), 2=221(LC 1), 4=76(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					1	1-11-	11					
	G (psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.04	DEFL. Vert(LL)	in	(loc)	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCLL TCDL	20.0 10.0	Lumber DOL	1.15	BC	0.04	Vert(LL)	-0.00 -0.00	2	>999 >999	240	IVI I 20	244/190
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2009/TF	12007	Matri	k-P	Wind(LL)	0.00	2	****	240	Weight: 10 lb	FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD

2x6 SP No.1

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 1-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 3=45/Mechanical, 2=144/0-3-8, 4=19/Mechanical (lb/size) Max Horz 2=62(LC 7) Max Uplift 3=-27(LC 7), 2=-58(LC 7) Max Grav 3=45(LC 1), 2=144(LC 1), 4=39(LC 2)

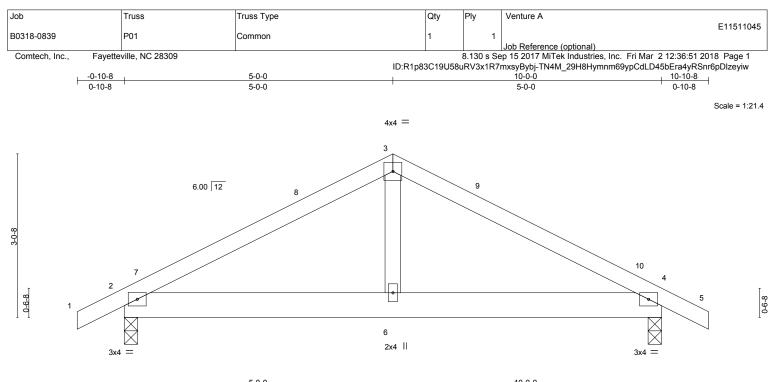
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-0-			5-0-0		
LOADING (psf)	SPACING- 2-0-0		DEFL. in	()	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.20 BC 0.11	Vert(LL) -0.01 Vert(TL) -0.02	6 >999 360 4-6 >999 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(TL) 0.00	4 n/a n/a		
BCDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL) 0.01	4-6 >999 240	Weight: 47 lt	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=450/0-3-0, 4=450/0-3-0 Max Horz 2=51(LC 7)

Max Uplift 2=-102(LC 7), 4=-102(LC 8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-528/271, 3-4=-528/271

BOT CHORD 2-6=-102/399, 4-6=-102/399

NOTES-

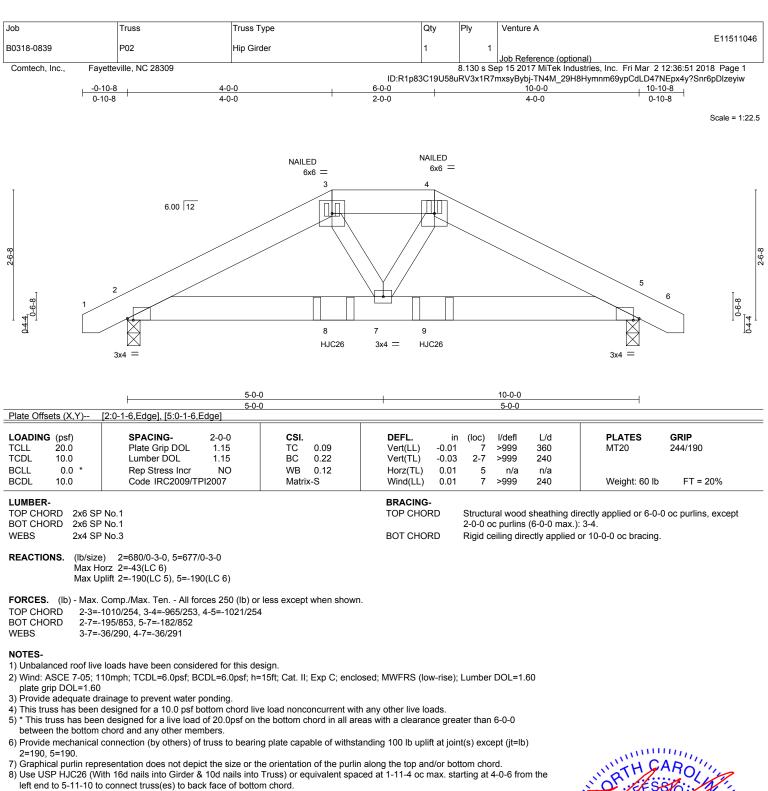
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-0-0, Exterior(2) 5-0-0 to 9-4-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=102, 4=102.

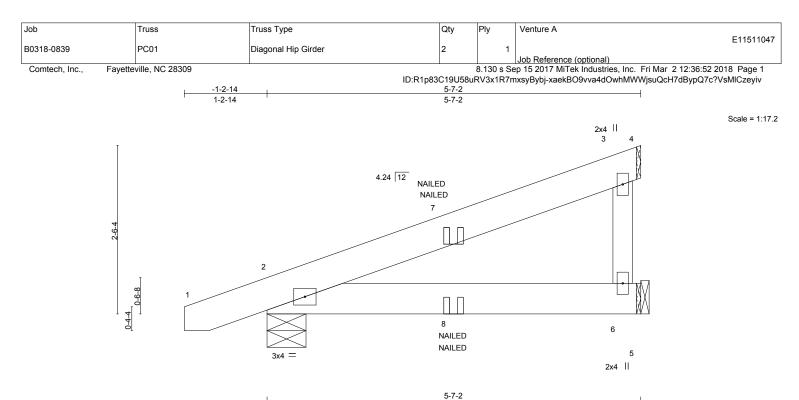

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 9) Fill all nail holes where hanger is in contact with lumber.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 2-5=-20 Concentrated Loads (lb) Vert: 3=-47(B) 4=-47(B) 8=-191(B) 9=-191(B)

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			Γ				-7-2					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	-0.02	2-6	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(TL)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2009/TF	912007	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 33 lb	FT = 20%

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-7-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 6=202/Mechanical, 2=292/0-7-0 Max Horz 2=97(LC 3) Max Uplift 6=-46(LC 3), 2=-97(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60

- plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

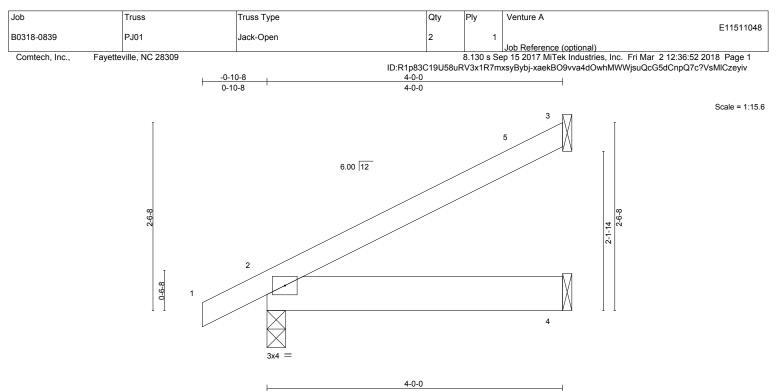
6) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-20, 2-5=-20

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			1	4-0-0			1	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (lo	oc) l/defl	L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.22	Vert(LL) -0	0.00 2	2-4 >999	360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(TL) -(0.01 2	2-4 >999	240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -(0.00	3 n/a	n/a	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) (0.00	2 ****	240	Weight: 18 lb FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

REACTIONS. (lb/size) 3=107/Mechanical, 2=220/0-3-0, 4=38/Mechanical Max Horz 2=100(LC 7) Max Uplift 3=-67(LC 7), 2=-62(LC 7) Max Grav 3=107(LC 1), 2=220(LC 1), 4=76(LC 2)

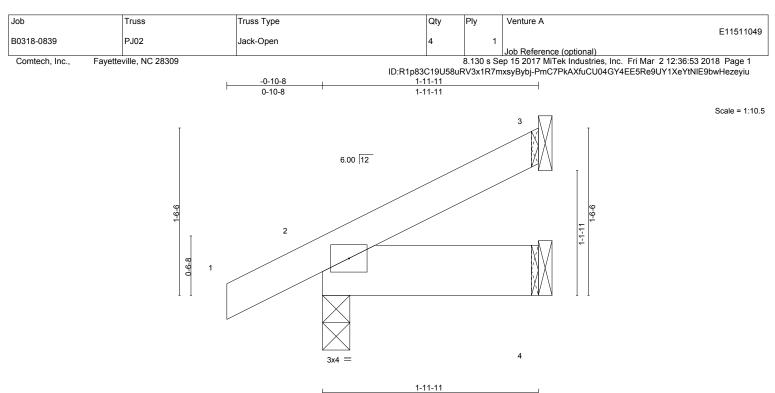
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.


March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADIN TCLL	G (psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.04	DEFL. Vert(LL)	in -0.00	(loc) 2	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	-0.00	2	>999	240		2
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2009/TP	YES 12007	WB Matrix	0.00 <-P	Horz(TL) Wind(LL)	-0.00 0.00	3	n/a ****	n/a 240	Weight: 10 lb	FT = 20%

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=46/Mechanical, 2=144/0-3-0, 4=19/Mechanical Max Horz 2=62(LC 7) Max Uplift 3=-27(LC 7), 2=-57(LC 7) Max Grav 3=46(LC 1), 2=144(LC 1), 4=39(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

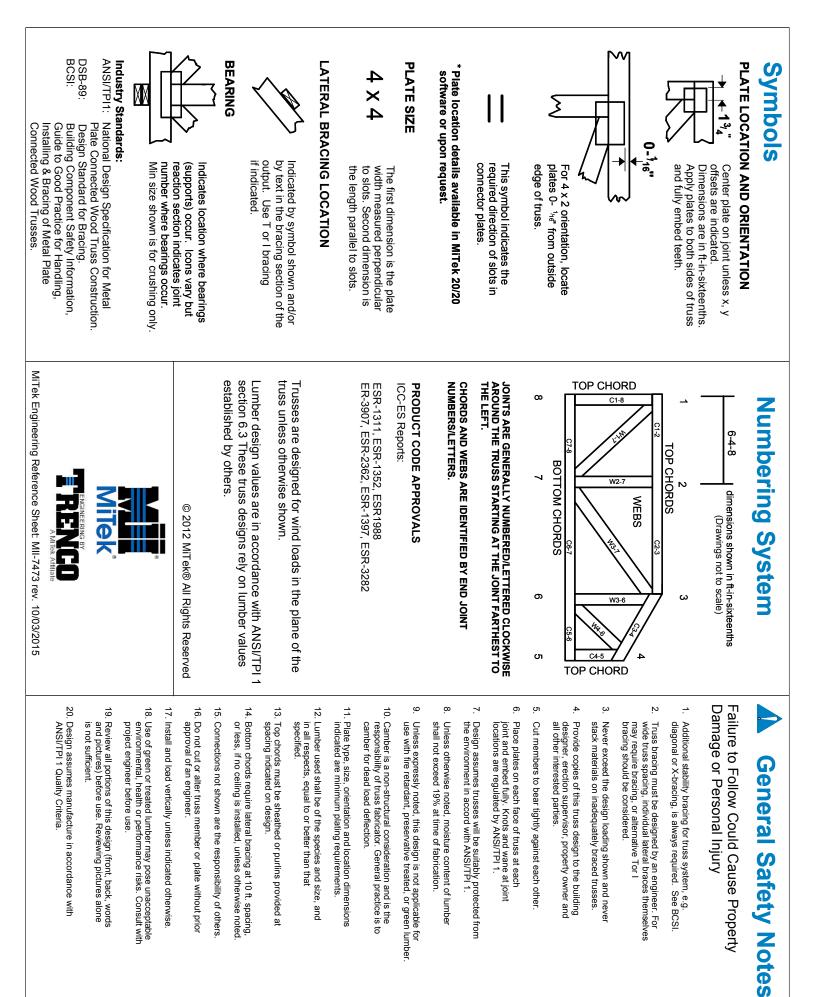
NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 2,2018

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

