

Trenco 818 Soundside Rd Edenton, NC 27932

Re: CL-3145_W_CP CL 3145 CP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I30418482 thru I30418507

My license renewal date for the state of North Carolina is December 31, 2017.

North Carolina COA: C-0844

July 12,2017

Komnick, Chad

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. TREENCO A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoIVIT11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREERING BY A MITCH Affiliate B18 Soundside Road Edenton, NC 27932

		<u>0-2-4</u> 0-2-4	<u>2-0-0</u> 1-9-12	—
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.02 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 G >999 240 Vert(TL) -0.00 G >999 180 Horz(TL) 0.00 D n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IBC2012/TPI2007	Matrix-MP		Weight: 8 lb FT = 20%
			BRACING-	actly applied or 2.0.0 oc purling

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (Ib/size) B=150/0-3-8, D=58/0-1-8 Max Horz B=26(LC 9) Max Uplift B=-41(LC 6), D=-3(LC 10)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) D considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) D.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, D.

	0-2-4 0-2-4		4-0-0 3-9-12		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.18 BC 0.16 WB 0.00	DEFL. ir Vert(LL) -0.01 Vert(TL) -0.03 Horz(TL) 0.00	n (loc) l/defl L/d l D-G >999 240 3 D-G >999 180 D B n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IBC2012/TPI2007	Matrix-MP			Weight: 15 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	P No.2		BRACING- TOP CHORD	Structural wood sheathing di	rectly applied or 4-0-0 oc purlins,

2x4 SP No.3 WEBS

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) D=146/0-1-8, B=222/0-3-8 Max Horz B=48(LC 9) Max Uplift D=-13(LC 10), B=-41(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) D considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) D.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) D, B.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-6- 0-6-	-8 6-0-0 -8 5-5-8		+		11 5-	- <u>5-8</u> 5-8		<u>12-0-0</u> 0-6-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2012/TPI2007	CSI. TC 0.42 BC 0.29 WB 0.08 Matrix-MS	DEFL. in Vert(LL) -0.02 Vert(TL) -0.05 Horz(TL) 0.01	(loc) F-N F-N D	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-						

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) B=540/0-3-8, D=540/0-3-8 Max Horz B=30(LC 14)

Max Uplift B=-54(LC 6), D=-54(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD B-C=-639/92, C-D=-639/92

BOT CHORD B-F=-16/550, D-F=-16/550

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, D.

<u>0-6-</u> 0-6-	8 <u>4-0-0</u> 8 3-5-8	8-0-0	<u>11-5-8</u> 3-5-8	<u>12-0-0</u> 0-6-8
Plate Offsets (X,Y)	[C:0-5-4,0-2-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IBC2012/TPI2007	CSI. DEFL. in TC 0.35 Vert(LL) -0.02 BC 0.26 Vert(TL) -0.05 WB 0.06 Horz(TL) 0.01 Matrix-MS Horz(TL) 0.01 Integral	(loc) I/defl L/d PL G-H >999 240 MT G-H >999 180 E n/a n/a We	ATES GRIP 20 244/190 ight: 58 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x6 SI WEBS 2x4 SI	P No.2 P No.2 P No.3	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly appl except 2-0-0 oc purlins (5-7-6 max.): C-D. Rigid ceiling directly applied or 10-0-0 MiTek recommends that Stabilizers an be installed during truss erection, in a Installation guide.	ied or 5-10-9 oc purlins, oc bracing. nd required cross bracing ccordance with Stabilizer

REACTIONS.	(lb/size)	B=683/0-3-8, E=683/0-3-8
	Max Horz	B=-22(LC 9)
	Max Unlift	B=-86(I C 4) E=-86(I C 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-C=-1004/69, C-D=-924/66, D-E=-992/68

BOT CHORD B-H=-42/927, G-H=-36/936, E-G=-37/916

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, E.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 41 lb down and 37 lb up at 4-0-0, and 30 lb down and 37 lb up at 5-11-4, and 41 lb down and 37 lb up at 8-0-0 on top chord, and 87 lb down and 27 lb up at 2-0-12, 20 lb down at 4-0-12, 20 lb down at 5-11-4, and 20 lb down at 7-11-4, and 87 lb down and 27 lb up at 9-11-4 on bottom

chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-C=-60, C-D=-60, D-F=-60, B-E=-20 Concentrated Loads (lb)

Vert: C=-22(F) D=-22(F) H=-15(F) G=-15(F) Q=-22(F) R=-87(F) S=-15(F) T=-87(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-0		3-6-0	
LOADING TCLL TCDL	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Bop Stross Larger VES	CSI. TC 0.14 BC 0.10	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 D-I >999 240 Vert(TL) -0.01 D-I >999 180 Horz(TL) -0.02 C p/g p/g	PLATES GRIP MT20 244/190
BCDL	10.0	Code IBC2012/TPI2007	Matrix-MP		Weight: 14 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) C=82/Mechanical, B=258/0-3-8, D=35/Mechanical

Max Horz B=53(LC 6)

Max Uplift C=-27(LC 10), B=-43(LC 6) Max Grav C=82(LC 1), B=258(LC 1), D=60(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, B.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		0-6-8	2-0-0 1-5-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.09 BC 0.06 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 E >999 240 Vert(TL) -0.00 E >999 180 Horz(TL) -0.00 C n/a n/a	PLATES GRIP MT20 244/190 Weight: 8 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) C=13/Mechanical, D=-7/Mechanical, B=213/0-3-8 Max Horz B=33(LC 6)

Max Uplift C=-7(LC 10), D=-7(LC 1), B=-53(LC 6) Max Grav C=13(LC 1), D=16(LC 3), B=213(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) C, D, B.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> 0-6-0</u> 0-6-0	2-0-0		<u>4-0-0</u> 2-0-0	
Plate Offsets (X,Y)	[C:0-4-8,0-2-8], [D:0-0-0,0-1-12], [D:Ec	ge,0-3-8], [E:0-0-0,0-1-12],	[F:0-1-11,0-0-9]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2012/TPI2007	CSI. TC 0.09 BC 0.07 WB 0.01 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(TL) -0.00 Horz(TL) 0.00	(loc) l/defl L/d F >999 240 F >999 180 E n/a n/a	PLATES GRIP MT20 244/190 Weight: 18 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x6 S WEBS 2x4 S	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals, and 2-0 Rigid ceiling directly applied MiTek recommends that Sta be installed during truss ere	rectly applied or 4-0-0 oc purlins, I-0 oc purlins: C-D. or 10-0 oc bracing. abilizers and required cross bracing retion in accordance with Stabilizer

Installation guide.

REACTIONS. (lb/size) E=102/Mechanical, B=267/0-3-8 Max Horz B=27(LC 5) Max Uplift E=-7(LC 5), B=-51(LC 4) Max Grav E=107(LC 20), B=267(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) E, B.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 7 lb down and 7 lb up at 2-0-0
- on top chord, and 13 lb down and 12 lb up at 2-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: A-C=-60, C-D=-60, B-E=-20

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design in to the overall
 building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Strategies and the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoIVIT11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CL 3145 CP
CL-3145_W_CP	T01A	ROOF TRUSS	6	1	130418492
					Job Reference (optional)
84 Components, Dun	n, NC 28334	ID	8 t3epcH3js:	.120 s Jun YDtlBpFK	22 2017 MiTek Industries, Inc. Wed Jul 12 08:18:31 2017 Page 2 2vjoozk_By-irSHSMuE6trb3ttc5T7?Bi9SYo4O7bvWmNXozZyyspM

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: N=-75(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

- (lb) Max Horz B=-85(LC 8) Max Uplift All uplift 100 lb or less at joint(s) B, M, N, K, J
 - Max Grav All reactions 250 lb or less at joint(s) B, H, L, M, N, K, J

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, M, N, K, J.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B, H.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

🔔 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 11-2-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. All bearings 11-1-8.

(lb) - Max Horz B=-85(LC 8)
 Max Uplift All uplift 100 lb or less at joint(s) B, M, N, K, J
 Max Grav All reactions 250 lb or less at joint(s) B, H, L, M, N, K, J

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, M, N, K, J.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) B, H.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L	9-3-4	18-0-0		<u>26-8-1</u>	2		3	31-8-8	35-9-0)
	<u>9-3-4</u> <u>8-8-12</u>			8-8-12	2		4	4-11-12 4-0-		
Plate Offsets (X,Y)-	- [B:0-2-8,0-1-8], [J:0-0-0,0-0-6], [M:0-0-	<u>,0-1-12], [Z:0-1-12,0-0-0]</u>								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.64 BC 0.98 WB 0.46 Matrix-MS	DEFL. i Vert(LL) -0.2 Vert(TL) -0.6 Horz(TL) 0.1	in (la 4 L 1 L 5	loc) L-N L-N J	l/defl >999 >627 n/a	L/d 240 180 n/a	PLATES MT20 MT18H Weight: 2	44 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4	SP No.2 SP No.2 SP No.3 SP No.3	<u> </u>	BRACING- TOP CHORD BOT CHORD WEBS	St Ri 1 I M b	tructu igid co Row MiTek be ins	ral wood eiling dire at midpt recomm talled dur ation guid	sheathing di ectly applied (ends that St ring truss ere de.	irectly applied or a or 2-2-0 oc bracii G-N, E-N tabilizers and requection, in accorda	3-0-9 oc ng. uired cro nce with	; purlins. oss bracing h Stabilizer
REACTIONS. AI (lb) - Ma Ma Ma	I bearings 4-0-8 except (jt=length) B=0-3-8 x Horz B=133(LC 10) x Uplift All uplift 100 lb or less at joint(s) E x Grav All reactions 250 lb or less at joint J=1302(LC 1), J=1302(LC 1)	8, J (s) K, K except B=1487(LC	1),							
FORCES. (Ib) - M TOP CHORD B-	ax. Comp./Max. Ten All forces 250 (lb) o -C=-2572/360, C-E=-2327/346, E-F=-1642 =-2486/373	r less except when shown. '319, F-G=-1643/319, G-I=-2	2249/358,							
BOT CHORD B- WEBS F- C	P=-255/2230, N-P=-144/1828, L-N=-148/1 N=-160/1100, G-N=-601/187, G-L=-20/39 P=-316/157	796, K-L=-268/2144, J-K=-2 5, I-L=-293/160, E-N=-643/18	268/2144 80, E-P=-8/466,							
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-10 MWERS (operation	live loads have been considered for this dr 0; Vult=115mph (3-second gust) Vasd=91r	esign. nph; TCDL=6.0psf; BCDL=6	6.0psf; h=30ft; Cat. II;	Exp	B; en	closed;				WHILE.

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are MT20 plates unless otherwise indicated.5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, J, J.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSNITP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			35-9-0		
Plate Offsets (X,Y)	[Z:0-1-12,0-0-0], [AA:0-0-0,0-1-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.16 BC 0.12 WB 0.16 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(TL) 0.01 Horz(TL) 0.01	(loc) l/defl L/d A n/r 120 A n/r 90 T n/a n/a	PLATES GRIP MT20 244/190 Weight: 228 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI OTHERS 2x4 SI	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dir Rigid ceiling directly applied c 1 Row at midpt K.	ectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing. -AC

REACTIONS. All bearings 35-9-0.

Max Horz B=130(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) B, AD, AE, AF, AG, AH, AI, AJ, AB, Z,

Y, X, W, V, U

All reactions 250 lb or less at joint(s) B, AC, AD, AE, AF, AG, AH, AI, AB, Max Grav Z, Y, X, W, V, T except AJ=310(LC 21), U=305(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, AD, AE, AF, AG, AH, AI, AJ, AB, Z, Y, X, W, V, U.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Installation guide.

🔔 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		0-3-4		10-	0-0		23-	0-12			32-0-0	
I		8-3-4	1	7-8	-12	1	7-8	8-12		I	8-3-4	I
Plate Offsets (2	X,Y) [K:	0-4-8,0-3-0]										
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2012/TP	2-0-0 1.15 1.15 YES I2007	CSI. TC BC WB Matrix	0.78 0.69 0.34 <-MS	DEFL. Vert(LL) Vert(TL) Horz(TL)	in -0.11 -0.34 0.12	(loc) J-K J-K H	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 2-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt G-K, C-K

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) B=1340/0-3-8, H=1340/0-3-8 Max Horz B=-111(LC 11) Max Uplift B=-51(LC 10), H=-51(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD B-C=-2195/276, C-E=-1513/261, E-G=-1513/261, G-H=-2195/276

BOT CHORD B-L=-130/1874, K-L=-130/1874, J-K=-130/1874, H-J=-130/1874

WEBS E-K=-68/831, G-K=-725/169, G-J=0/308, C-K=-725/169, C-L=0/308

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, H.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.16 BC 0.12 WB 0.16	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.00 S n/r 120 MT20 244/190 Vert(TL) 0.01 S n/r 90 MT20 244/190	
BCDL	10.0	Code IBC2012/TPI2007	Matrix-S	Weight: 193 lb FT = 20%	

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 32-0-0.

(lb) - Max Horz B=-111(LC 11)

Max Uplift All uplift 100 b or less at joint(s) B, AA, AB, AC, AD, AE, AF, Y, X, W, V, U, T Max Grav All reactions 250 lb or less at joint(s) B, Z, AA, AB, AC, AD, AE, Y, X, W, V, U, R except AF=310(LC

Grav All reactions 250 lb or less at joint(s) B, Z, AA, AB, AC, AD, AE, Y, X, W, V, U, R except AF=310(21), T=310(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, AA, AB, AC, AD, AE, AF, Y, X, W, V, U, T.

818 Soundside Road Edenton, NC 27932

- BOT CHORD C-P=-76/1318, O-P=-421/4678, N-O=-171/2489, F-N=-5/788, I-K=-144/1866,
- B-P=-416/4671 WEBS C-O=-2213/253, E-O=0/559, E-N=-1139/199, K-N=0/1382, F-K=-152/586, H-K=-458/222

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) B considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B, I.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2				RD S	Structur	al wood	sheathing o	directly applied or 6-0-0	oc purlins,
10.0	Code IBC2012/TPI2007	Matrix-R	1012(12)	0.00		n/a	n/u	Weight: 131 lb	FT = 20%
0.0 *	Ren Stress Incr YES	WB 0.18	Horz(TL)	0.00	N	n/a	90 n/a		
20.0	Plate Grip DOL 1.15	IC 0.25 BC 0.15	Vert(LL)	-0.00	M	n/r	120	MT20	244/190
	20.0 10.0 0.0 * 10.0 ER- HORD 2x4 SF	20.0 Plate Grp DOL 1.15 10.0 Lumber DOL 1.15 0.0 * Rep Stress Incr YES 10.0 Code IBC2012/TPI2007 ER- HORD 2x4 SP No.2 HORD 2x4 SP No.2	20.0 Plate Grip DOL 1.15 IC 0.25 10.0 Lumber DOL 1.15 BC 0.15 0.0 * Rep Stress Incr YES WB 0.18 10.0 Code IBC2012/TPI2007 Matrix-R ER- HORD 2x4 SP No.2 HORD 2x4 SP No.2	20.0 Plate Grip DOL 1.15 IC 0.25 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 10.0 Code IBC2012/TPI2007 Matrix-R BRACING- ER- BRACING- TOP CHOF HORD 2x4 SP No.2 TOP CHOF	20.0 Plate Grip DOL 1.15 IC 0.25 Vert(LL) -0.00 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.00 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 0.00 10.0 Code IBC2012/TPI2007 Matrix-R BRACING- ER- BRACING- TOP CHORD 2x4 SP No.2	20.0 Plate Grip DOL 1.15 IC 0.25 Vert(LL) -0.00 M 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.00 L 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 0.00 L 10.0 Code IBC2012/TPI2007 Matrix-R BRACING- TOP CHORD Structur HORD 2x4 SP No.2 TOP CHORD Structur Vertificities Structur	20.0 Plate Grip DOL 1.15 IC 0.25 Vert(LL) -0.00 M n/r 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.00 L n/r 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 0.00 N n/a ER- BRACING- HORD 2x4 SP No.2 SP No.2 Structural wood ovropt and wort	20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) -0.00 M n/r 120 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.00 L n/r 90 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 0.00 N n/a n/a 10.0 Code IBC2012/TPI2007 Matrix-R BRACING- TOP CHORD Structural wood sheathing or parent and upticals	20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) -0.00 M n/r 120 M120 10.0 Lumber DOL 1.15 BC 0.15 Vert(LL) -0.00 M n/r 120 M120 0.0 * Rep Stress Incr YES WB 0.18 Horz(TL) 0.00 N n/a n/a 10.0 Code IBC2012/TPI2007 Matrix-R Matrix-R BRACING- Weight: 131 lb ER- HORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 or const and worticals or const and worticals

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

BOT CHORD

Installation guide.

Rigid ceiling directly applied or 10-0-0 oc bracing MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

REACTIONS. All bearings 20-0-0.

- Max Horz X = -192(|C|8)(lb) -
 - Max Uplift All uplift 100 lb or less at joint(s) X, N, U, V, Q, P except W=-146(LC 10), O=-144(LC 11)
 - All reactions 250 lb or less at joint(s) X, N, U, V, W, Q, P, O except Max Grav T=333(LC 20), R=333(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) X, N, U, V, Q, P except (jt=lb) W=146, O=144.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) L, H.

3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) K, G.

Max Uplift A=-18(LC 10), C=-25(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

Plate Offsets (X,Y)	[B:0-2-8,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2012/TPI2007	CSI. TC 0.08 BC 0.24 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(TL) n/a Horz(TL) 0.00	n (loc) l/defi L/d - n/a 999 - n/a 999 C n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.2 2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 5-4-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.		

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) A=175/5-4-1, C=175/5-4-1 Max Horz A=28(LC 9) Max Uplift A=-3(LC 10), C=-3(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift A=-18(LC 10), C=-25(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

Plate Offsets (X,Y)	[B:0-2-8,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2012/TPI2007	CSI. TC 0.08 BC 0.24 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(TL) n/a Horz(TL) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 C n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 5-3-9 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.		

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) A=173/5-3-9, C=173/5-3-9 Max Horz A=28(LC 7) Max Uplift A=-3(LC 10), C=-3(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) A, C.

