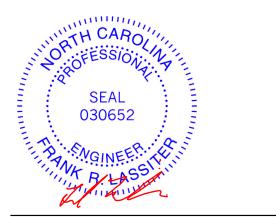


Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0916-4688 H&H\Biltmore A&B


The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E9831662 thru E9831687

My license renewal date for the state of North Carolina is December 31, 2016.

North Carolina COA: C-0844

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

September 9,2016

Lassiter, Frank

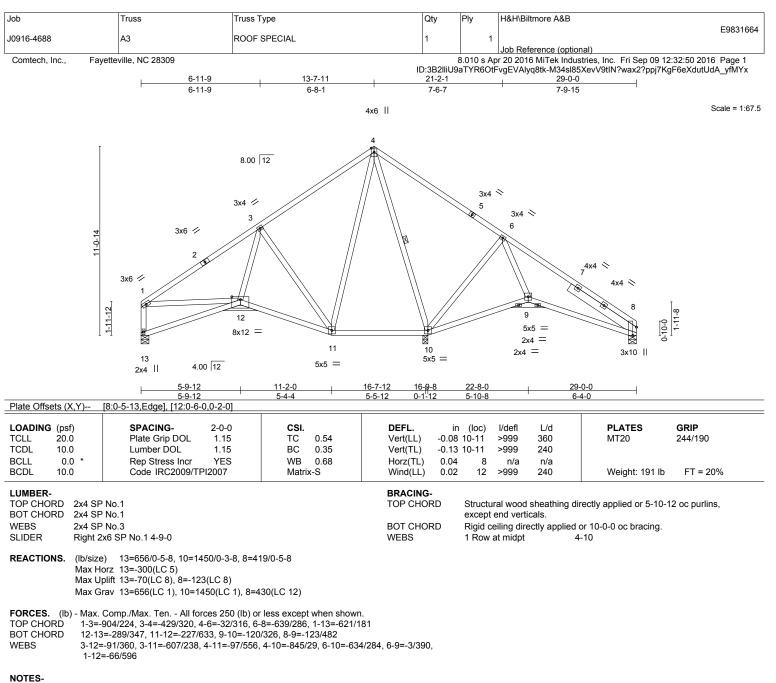
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdictions(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to Trenco. Any project specific information included is for Trenco's customer's file reference purpose only, and was not taken into account in the preparation of these designs. Trenco has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of the design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply H8	&H\Biltmore A&B		
J0916-4688	A1	GABLE	1	1	b Reference (optional)		E9831662
Comtech, Inc., Faye	etteville, NC 28309		ID:3B2lliU9aT	8.010 s Apr 20	0 2016 MiTek Industries lyg8tk-ttWUXo4vtbNIF8		
		<u>13-7-11</u> 13-7-11		<u>29-0-0</u> 15-4-5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>29-10</u> 8 0-10-8	
		4x	4 =				Scale = 1:66.9
					2 13 14 20 19	4x4 * 15 17 000-0	
	34 33 4.00 12	3x4 =	6 25 24 23 3x4 =	22 22-8-0	x4 = 18 29-0-0	3x10	
Plate Offsets (X,Y)	5-9-12		-7-8	5-10-8	6-4-0	1	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1	5 TC 0.15 5 BC 0.08	Vert(LL) 0.0 Vert(TL) 0.0	00 17 1	n/r 120 n/r 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YE Code IRC2009/TPI2007		Horz(TL) 0.0)2 16 r	n/a n/a	Weight: 213 lb	FT = 20%
REACTIONS. All bea	No.1 No.3		BRACING- TOP CHORD BOT CHORD WEBS	except end Rigid ceiling 6-0-0 oc bra T-Brace: Fasten (2X (0.131"x3")	g directly applied or 10 acing: 30-31,21-22,20	D-0-0 oc bracing, -21,19-20,18-19. SPF Stud - 8-26, 7- Irrow edge of web I minimum end dist	Except: 27, 9-25 with 10d
Max Up	blift All uplift 100 lb or less at j 34=-174(LC 5), 31=-232(L 16=-118(LC 6), 29=-100(L0 av All reactions 250 lb or less	oint(s) 27, 30, 32, 25, 23, 22, 21, C 6), 28=-105(LC 5), 24=-106(LC C 7), 33=-146(LC 7), 18=-185(LC s at joint(s) 34, 28, 24, 20, 16, 27, 18 except 31=285(LC 5), 26=405(5), 20=-164(LC 6), 8) 29, 30,				
TOP CHORD 5-6=-3 11-12: BOT CHORD 33-34* 28-29: 23-24* 18-19:	37/273, 6-7=-36/351, 7-8=-40/4 =-175/296, 12-13=-228/306, 13 =-299/364, 32-33=-285/354, 3 =-283/353, 27-28=-266/331, 26	50 (lb) or less except when shown 13, 8-9=-42/422, 9-10=-77/384, 1 -14=-259/297, 14-16=-395/359 -32=-289/355, 30-31=-285/352, 2 -27=-266/331, 25-26=-266/331, 2 -22=-285/353, 20-21=-283/349, 1	0-11=-127/328, 29-30=-285/353, 24-25=-266/331,				1111111 A 55
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-05; 10 C-C Exterior(2) zone; 3) Truss designed for w Gable End Details as 4) All plates are 2x4 MT 5) Gable requires contin 6) Gable studs spaced a 7) This truss has been between the bottom c 9) Provide mechanical c 22, 21, 19 except (jt= 10) Beveled plate or sh	loads have been considered for 00mph; TCDL=6.0psf; BCDL=6 C-C for members and forces & applicable, or consult qualifier 20 unless otherwise indicated. 10 uous bottom chord bearing. at 2-0-0 oc. designed for a 10.0 psf bottom of designed for a 10.0 psf bottom of designed for a 10.0 psf bottom of and any other members, connection (by others) of truss ib) 34=174, 31=232, 28=105, 2 im required to provide full bear	.0psf; h=15ft; Cat. II; Exp C; enclo MWFRS for reactions shown; Lu iss only. For studs exposed to wi building designer as per ANSI/TI chord live load nonconcurrent witt 0psf on the bottom chord in all are	mber DOL=1.60 plate nd (normal to the face) Pl 1. n any other live loads. eas with a clearance gr anding 100 lb uplift at jr , 33=146, 18=185. nt(s) 31, 20, 29, 30, 32	grip DOL=1.60 , see Standard reater than 6-0- pint(s) 27, 30, 3 , 33, 23, 22, 21	-0 32, 25, 23, , 19, 18.	NK R.	• -
Design valid for use on a truss system. Before building design. Bracin is always required for s fabrication, storage, de	ly with MiTek® connectors. This design use, the building designer must verify in g indicated is to prevent buckling of inu- tability and to prevent collapse with po livery, erection and bracing of trusses a	ON THIS AND INCLUDED MITEK REFERE is based only upon parameters shown, an he applicability of design parameters and p ividual truss web and/or chord members o ssible personal injury and property damage ind truss systems, see ANSI/TPI1 N. Lee Street, Suite 312, Alexandria, VA 22	d is for an individual building properly incorporate this designly. Additional temporary and For general guidance rega Quality Criteria, DSB-89 and	component, not gn into the overall d permanent braci rding the	ng	818 Soundside Edenton, NC 2	

NOTES-

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

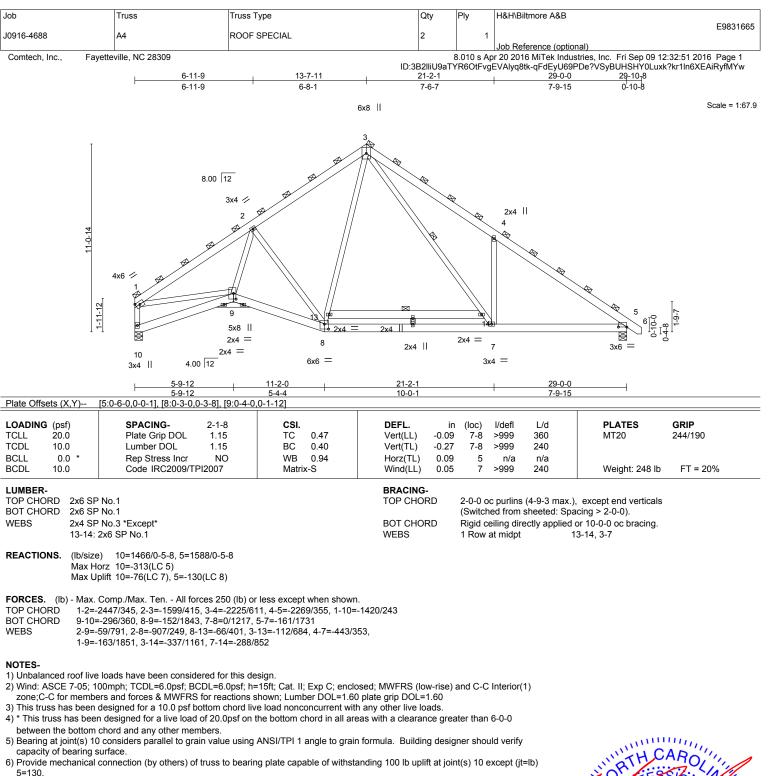
5) Bearing at joint(s) 14, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 8=157.

1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.


5) Bearing at joint(s) 13, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 8=123.

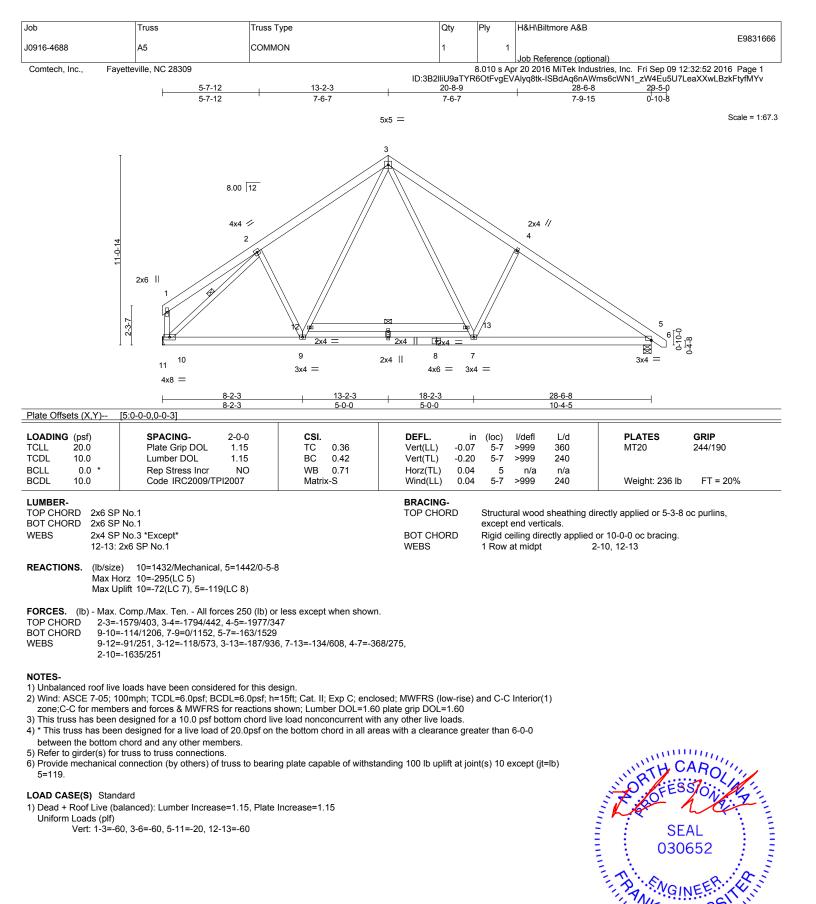
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

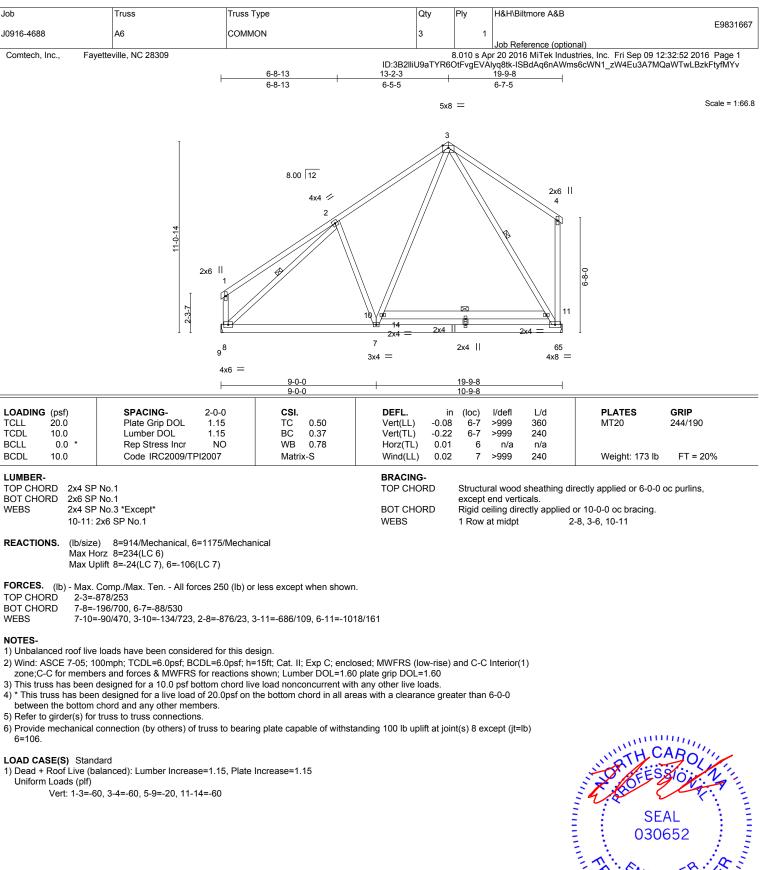
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

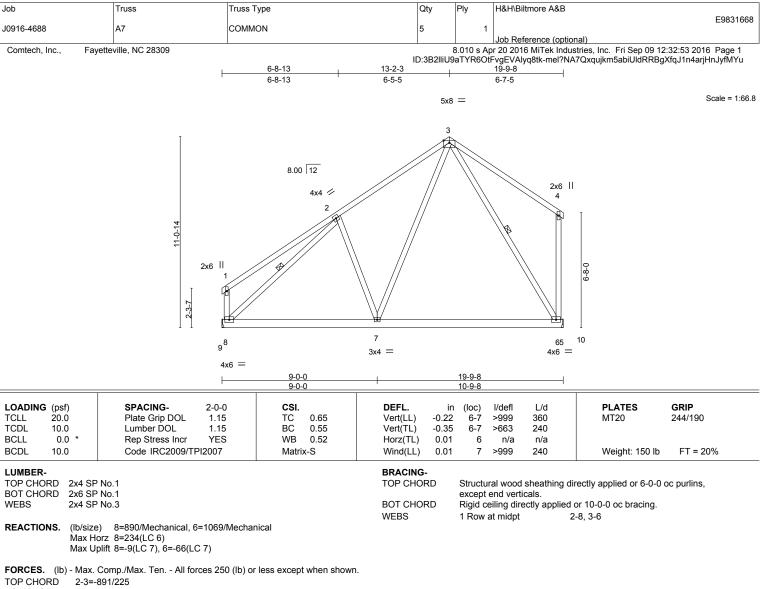
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-64, 3-6=-64, 9-10=-21, 8-9=-21, 5-8=-21, 13-14=-60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design is based only upon parameters and properly incorporate this design into the overall
 building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPTI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design is based only upon parameters and properly incorporate this design into the overall
 building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPTI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BOT CHORD 7-8=-175/708, 6-7=-52/382

WEBS 2-7=-210/252, 3-7=-99/739, 2-8=-922/0, 3-6=-685/90

NOTES-

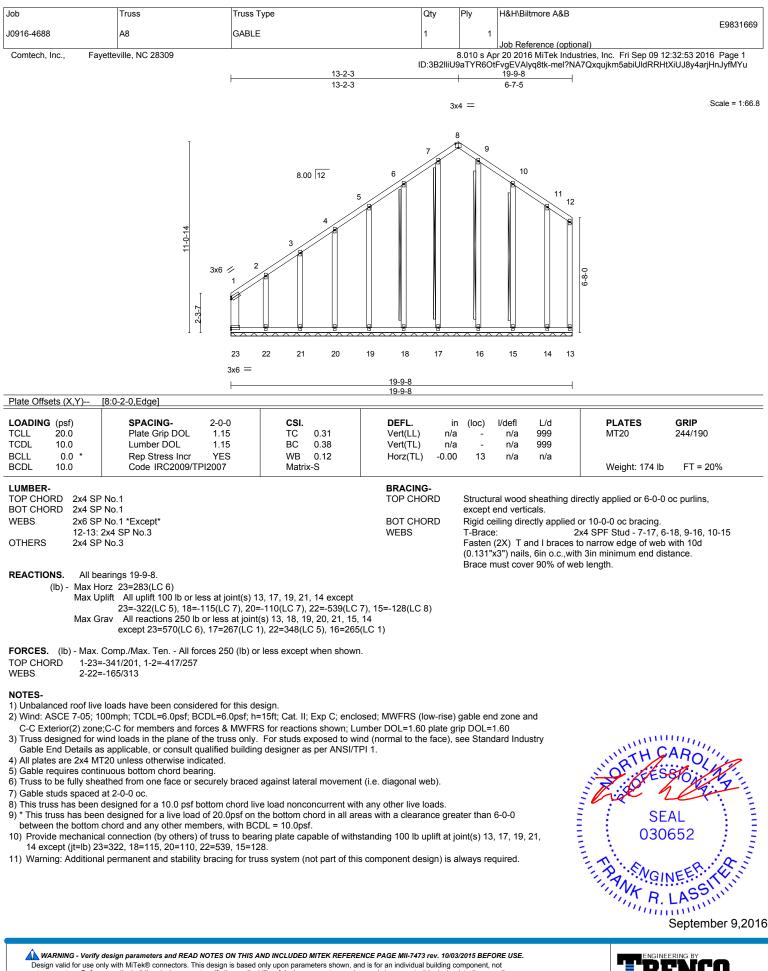
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

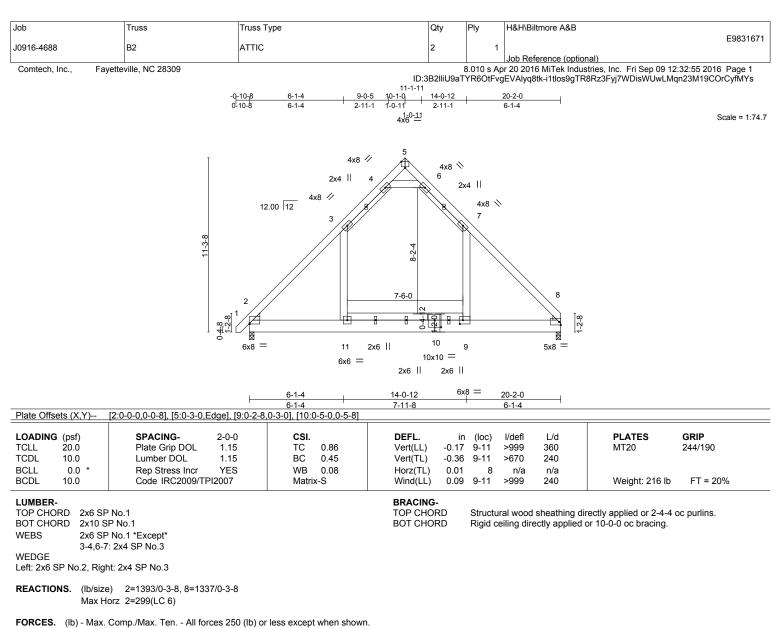

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design is based only upon parameters and properly incorporate this design into the overall
 building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPTI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

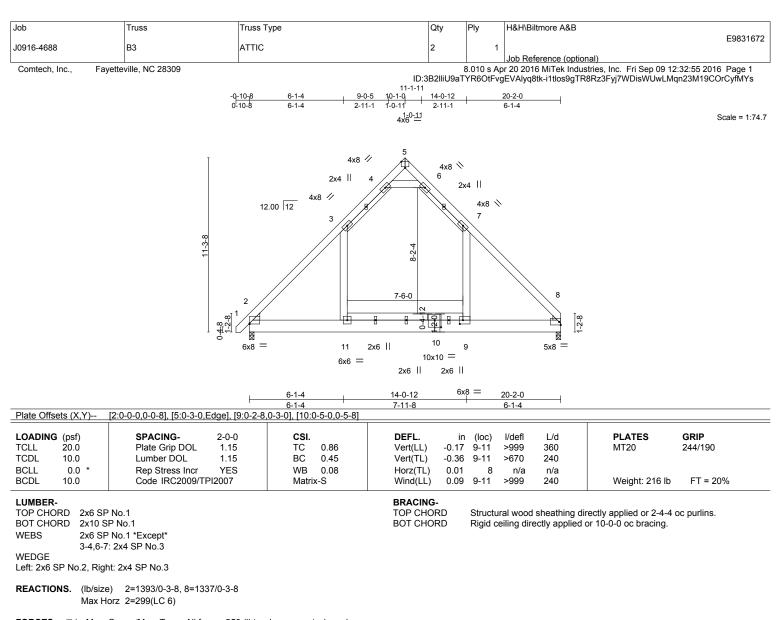
818 Soundside Road Edenton, NC 27932


	Truss	Truss Type	Qty	Ply	H&H\Biltmore A&B		
0916-4688	B1	ATTIC	1		1		E9831670
					Job Reference (option		
Comtech, Inc., Fay	etteville, NC 28309		ID:3B2lliU9a		Apr 20 2016 MiTek Indus vgEVAlyq8tk-EqJNbW82		
		-Q-10-8 6-1-4 I	11-1-11 9-0-5 10-1-0 14-0-12		20-2-0	3 -	
			-11-1 1-0-11 2-11-1		6-1-4		
			4x6 ⁻¹¹				Scale = 1:74
	Ţ	4x8	5 11 A				
		2x4	4x8 ×	2			
				2x4			
		12.00 12 4x8 //	x k	4x8	\mathbf{i}		
		3		7			
	8		_	\mathbb{N}			
	11-3-8		8-2-4	$ \land$	\mathbf{X}		
			7.0.0		8		
		2	7-6-0	1	$\langle \rangle$ °		
	•			<u>1</u>			
			2×6 II 10		⊠		
		6x8 = 11 6x6 =	2.0 11	9	5x8 =		
		0X0 -	2x6 2x6	1			
		0.4.4	44.0.40 f	ix8 =	<u></u>		
		<u> </u>	14-0-12 ⁶ 7-11-8	1	20-2-0 6-1-4		
Plate Offsets (X,Y)	[<u>2:0-0-0,0-0-8], [5:0-3-0,Edg</u>	e], [9:0-2-8,0-3-0], [10:0-5-0,0-5-8]					
LOADING (psf)		2-0-0 CSI .		n (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0		1.15 TC 0.86 1.15 BC 0.45	Vert(LL) -0.1 Vert(TL) -0.3	7 9-11 6 9-11	>999 360 >670 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr	YES WB 0.08	Horz(TL) 0.0	1 8	n/a n/a		
BCDL 10.0	Code IRC2009/TPI2	007 Matrix-S	Wind(LL) 0.1	3 9-11	>999 240	Weight: 216 lb	FT = 20%
	No.4		BRACING- TOP CHORD	Ctructu	rel wood choothing dir	actly applied or 0.4.4	
TOP CHORD 2x6 SP BOT CHORD 2x10 SF			BOT CHORD		ural wood sheathing dir eiling directly applied c		oc punins.
	No.1 *Except*						
3-4,6-7: WEDGE	2x4 SP No.3						
_eft: 2x6 SP No.2, Righ	t: 2x4 SP No.3						
REACTIONS. (Ib/size) 2=1393/0-3-8, 8=1337/0)-3-8					
	orz 2=373(LC 6) blift 2=-32(LC 7)						
		s 250 (lb) or less except when show =-145/690, 5-6=-139/681, 6-7=-858					
BOT CHORD 2-11=	0/888, 9-11=0/888, 8-9=0/8	88					
VEBS 4-6=-7	1857/451, 3-11=-54/705, 7-9	9=-60/663					
NOTES-							
	loads have been considere	d for this design. _=6.0psf; h=15ft; Cat. II; Exp C; end	closed: MWERS (low-rise) aable ei	nd zone and		
C-C Exterior(2) zone	C-C for members and force	es & MWFRS for reactions shown; I	Lumber DOL=1.60 plate g				
,		om chord live load nonconcurrent w 20.0psf on the bottom chord in all a		ator than	6-0-0		
between the bottom	chord and any other membe	ers.	Ŭ	alei liidi	10-0-0		uuun.
	0.0 psf) on member(s), 3-4.	6-7, 4-6; Wall dead load (5.0psf) o	n member(s).3-11, 7-9			11 C	AD 11
		pottom chord dead load (10.0 psf) a				THU	ARO MA

8) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- TOP CHORD 2-3=-1596/0, 3-4=-848/99, 4-5=-89/690, 5-6=-84/681, 6-7=-858/105, 7-8=-1565/0
- BOT CHORD 2-11=0/888, 9-11=0/888, 8-9=0/888
- WEBS 4-6=-1857/283, 3-11=-16/705, 7-9=-21/663


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)
- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11
- 7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road Edenton, NC 27932

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1596/0, 3-4=-848/99, 4-5=-89/690, 5-6=-84/681, 6-7=-858/105, 7-8=-1565/0
- BOT CHORD 2-11=0/888, 9-11=0/888, 8-9=0/888
- WEBS 4-6=-1857/283, 3-11=-16/705, 7-9=-21/663

NOTES-

1) Unbalanced roof live loads have been considered for this design.

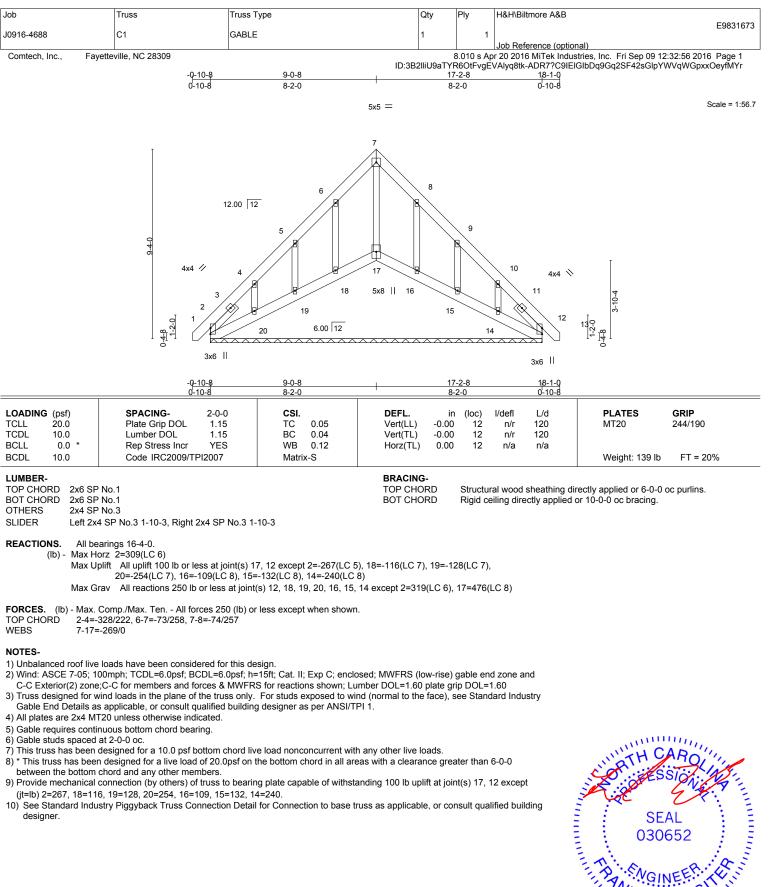
2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

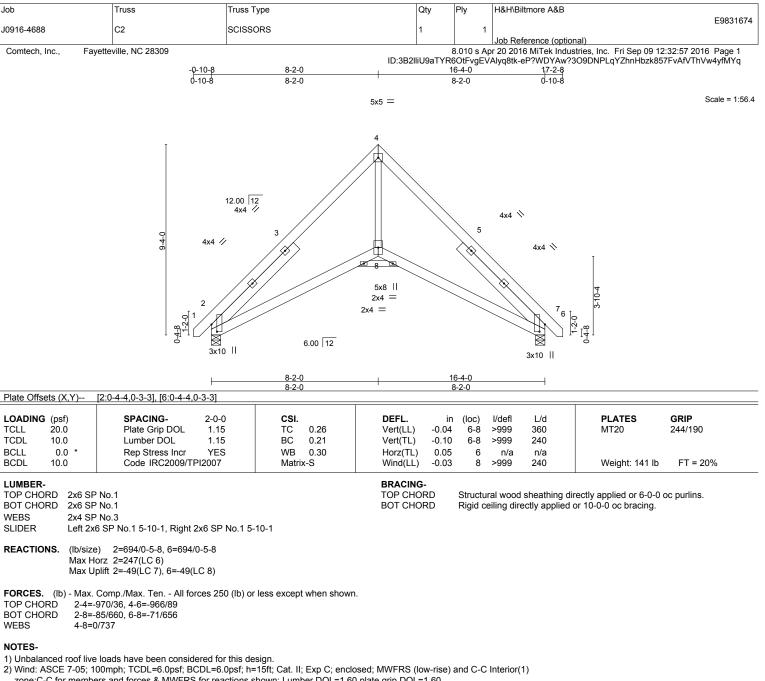
5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9


6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11

7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932


10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

minn

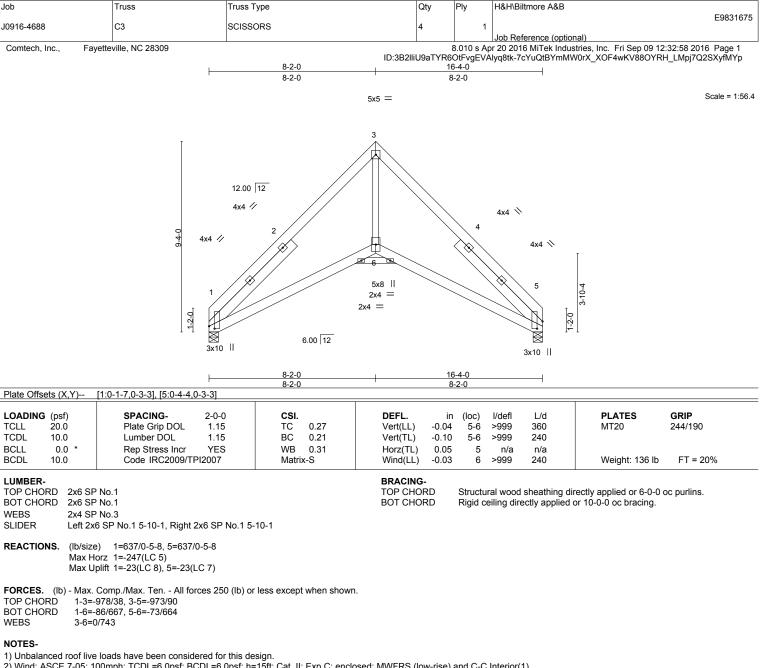
September 9,2016

SEAL 030652

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members. 5) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

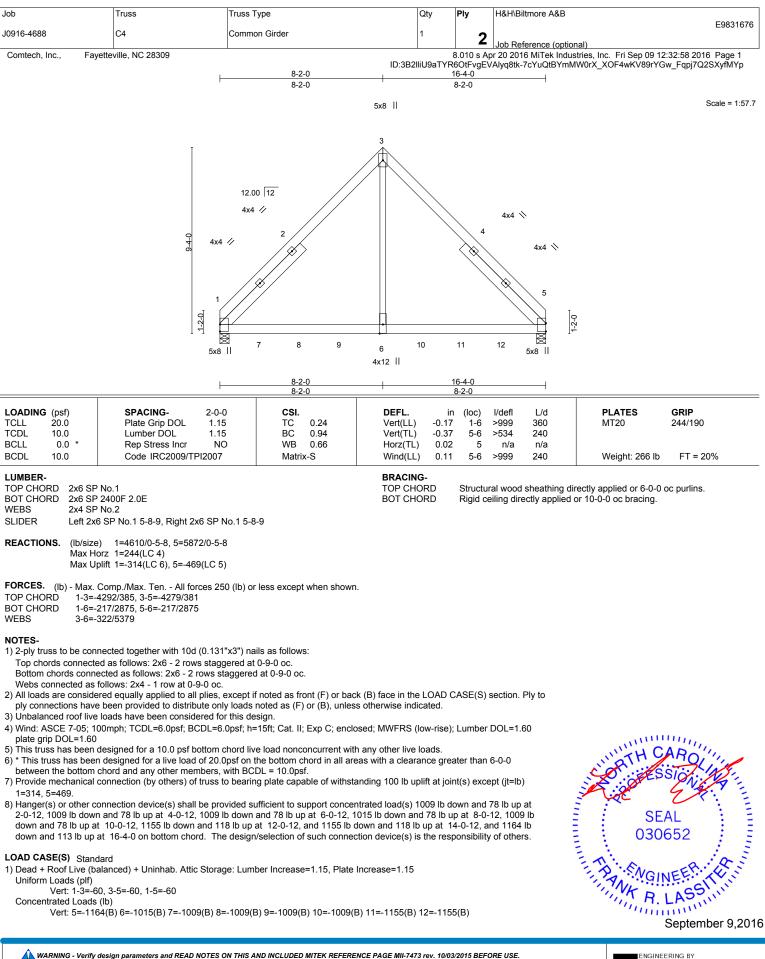
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

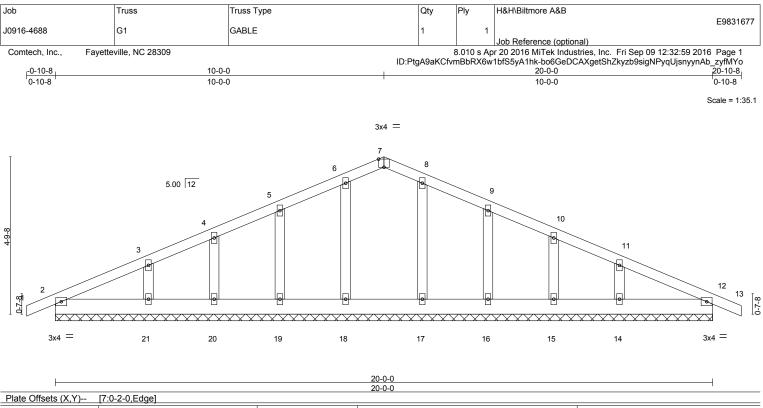
zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0


between the bottom chord and any other members.

5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. This design is based only upon parameters and properly incorporate this design into the overall
 building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPTI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 2=-67(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 21, 17, 16, 15, 14 All reactions 250 lb or less at joint(s) 2, 12, 18, 19, 20, 21, 17, 16, 15, 14 Max Grav

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

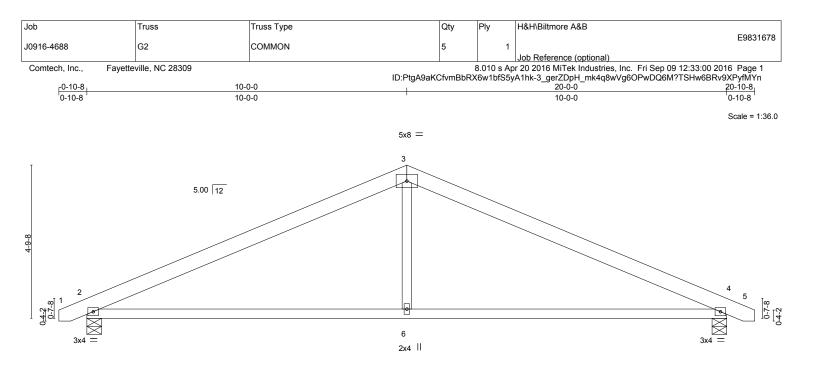
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.


7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 21, 17, 16, 15, 14.

	<u> </u>	<u>10-0-0</u> 10-0-0							20-0-0 10-0-0		
LOADING (psf TCLL 20.0 TCDL 10.0	0 Plate Grip DOL 0 Lumber DOL	1.15	CSI. TC BC	0.57 0.74	DEFL. Vert(LL) Vert(TL)	in -0.16 -0.45	(loc) 4-6 4-6	l/defl >999 >525	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	0 * Rep Stress Inc. 0 Code IRC2009		WB Matrix	0.17 -S	Horz(TL) Wind(LL)	0.04 0.05	4 2-6	n/a >999	n/a 240	Weight: 91 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

REACTIONS. (lb/size) 2=837/0-5-8, 4=837/0-5-8 Max Horz 2=-54(LC 8) Max Uplift 2=-81(LC 7), 4=-81(LC 8)

3-6=0/453

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1182/182, 3-4=-1182/182

 BOT CHORD
 2-6=-66/1003, 4-6=-66/1003

WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

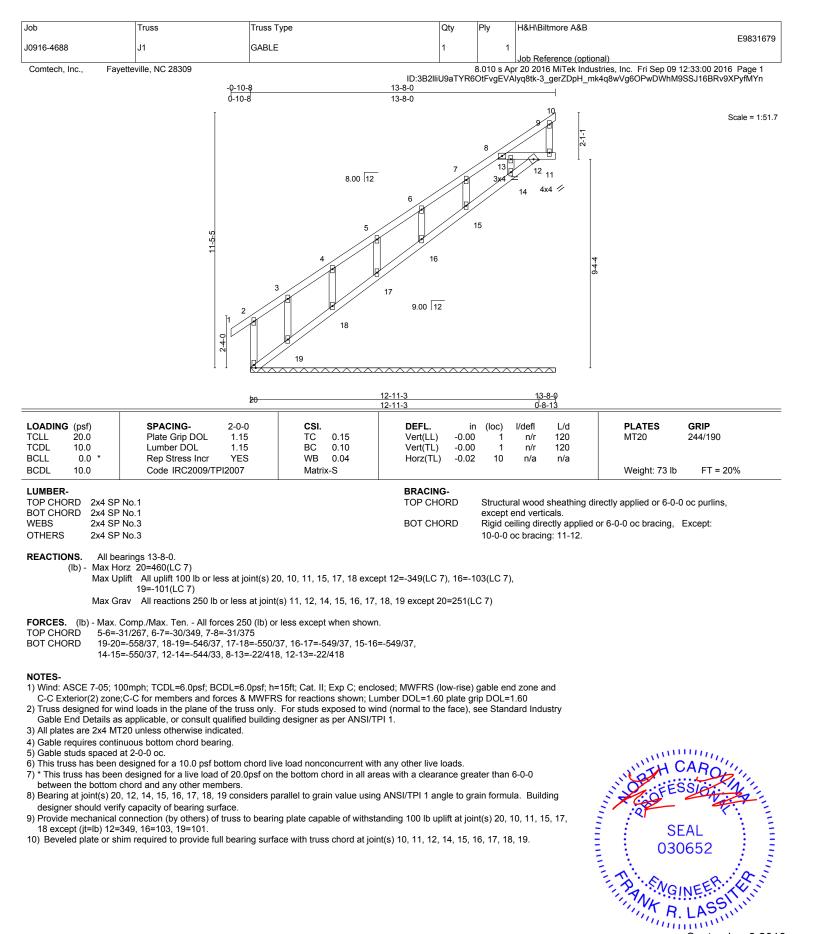
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

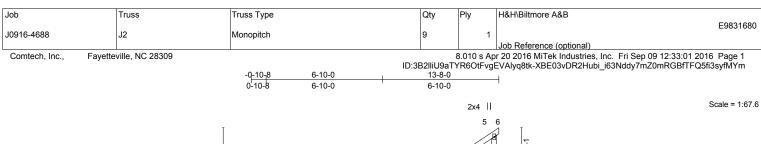
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

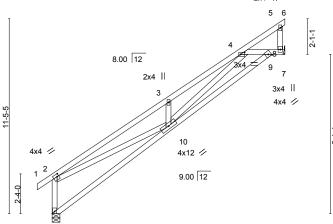
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 5-6-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




SEAL 030652 September 9,2016

September 9,2016

11 3x4 ||

WB

Matrix-S

0.47

Plate Offsets (X,Y) [2:0-1-4,0-1-12], [4:0-2-14,0-1-8]	6-10-0 6-10-0	<u> 12-11-3 13-8-0</u> 6-1-3 0-8-13	
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15	CSI. TC 0.69 BC 0.32	DEFL. in (loc) I/defl L/d Vert(LL) -0.07 10-11 >999 360 Vert(TL) -0.21 10-11 >748 240	PLATES GRIP MT20 244/190

Horz(TL)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

8

10 >999

0.04

0.07

except end verticals.

n/a

n/a

240

Rigid ceiling directly applied or 8-5-7 oc bracing.

Weight: 81 lb

Structural wood sheathing directly applied or 4-5-11 oc purlins,

FT = 20%

L	11	м	R	F	R-	

BCLL

BCDL

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 WEBS

0.0

10.0

REACTIONS. (lb/size) 11=593/0-5-8, 8=539/Mechanical Max Horz 11=323(LC 7) Max Uplift 8=-206(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-11=-592/313, 2-3=-1489/522, 3-4=-1415/659

Rep Stress Incr

Code IRC2009/TPI2007

BOT CHORD 10-11=-530/167, 9-10=-544/937, 4-9=-653/378

WEBS 2-10=-288/1142, 3-10=-325/242, 4-10=-334/561

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

YES

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=206.

818 Soundside Road Edenton, NC 27932

ob	Truss	Truss T	уре		Qty	Ply	H&H\Biltmore A&	В	
0916-4688	J3	MONO	PITCH		1				E983168
Comtech, Inc., Fay	etteville, NC 28309					8.010 s A	Job Reference (o Apr 20 2016 MiTek I	ndustries, Inc. Fri Sep 09	12:33:01 2016 Page 1
		-(-10-8 6-9-0	ID:3	B2lliU9a 13	TYR6OtF -6-0	FvgEVAlyq8tk-XBE0	3vDR2Hubi_i63Nddy7mcl	mP5Bj0FQ5fi3syfMYm
		C	-10-8 6-9-0	I		9-0			
									Scale: 3/16"=
							2x4 5 6		
		Ī					P		
				8.00 12					
				3x6 💋	//				
				4					
		Ρ	3x4 🖊						
		11-4-0	3		\mathbf{X}		×		
			I		\mathcal{N}				
		3	x6 💋			Ð			
		, .	2						
		9							
		2-4-0							
		1 1					8 7 11		
			10 2x4	9 3x4 =			87 ¹¹ 3x10 =		
			6-9-0		10	-6-0			
			6-9-0			9-0			
OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.		n (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.48 BC 0.46	Vert(LL) Vert(TL)	-0.12 -0.17		>999 360 >908 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.25	Horz(TL)	-0.01		n/a n/a		
3CDL 10.0	Code IRC2009/T	PI2007	Matrix-S	Wind(LL)	0.00	9	>999 240	Weight: 97 lb	FT = 20%
UMBER-				BRACING		-			
TOP CHORD 2x4 SP 30T CHORD 2x4 SP				TOP CHO	RD		ural wood sheathin t end verticals.	g directly applied or 6-0-0	0 oc purlins,
WEBS 2x4 SP				BOT CHO	RD	Rigid o	ceiling directly appl	ied or 9-11-7 oc bracing.	
REACTIONS. (Ib/size) 8=713/Mechanical,	10=651/0-5-8		WEBS		1 Row	at midpt	5-8, 4-8	
Max Ho	orz 10=319(LC 7)								
Max Up	olift 8=-199(LC 7)								

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-573/0, 2-10=-610/13

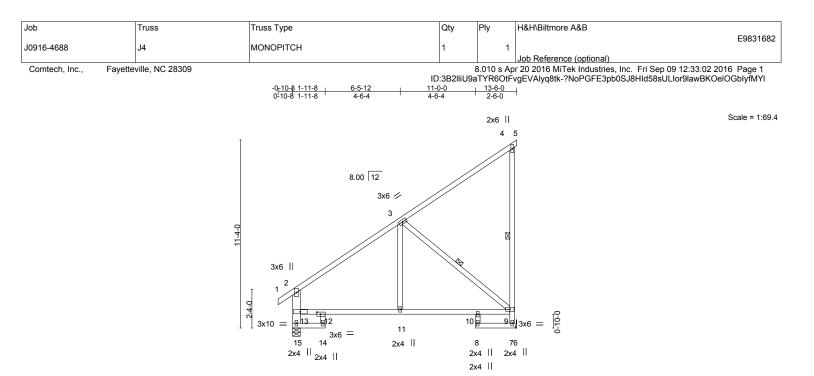
BOT CHORD 9-10=-395/58, 8-9=-178/395

WEBS 4-8=-544/248, 2-9=0/353

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=199.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

1-11-8	6-5-12	11-0-0	13-6-0
1-11-8	4-6-4	4-6-4	2-6-0

		1-11-0 4-0-4	4-0-4 2-0-0		
Plate Offsets (X,Y)	[12:0-2-8,0-1-8]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.43	Vert(LL) -0.05 10-11	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.51	Vert(TL) -0.15 10-11	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.18	Horz(TL) 0.03 7	n/a n/a	
BCDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL) 0.07 11-12	>999 240	Weight: 94 lb FT = 20%
			5540000		

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.1 *Except*		except end verticals.
	12-14,8-10: 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	2x4 SP No.3 *Except*	WEBS	1 Row at midpt 4-7, 3-9
	2-15: 2x6 SP No.1		•

REACTIONS. (Ib/size) 7=528/Mechanical, 15=589/0-5-8 Max Horz 15=320(LC 7) Max Uplift 7=-200(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-524/0, 7-9=-488/285, 13-15=-516/89, 2-13=-488/93

- BOT CHORD 14-15=-318/0, 12-13=0/529, 11-12=-242/348, 10-11=-242/348, 9-10=-257/350
- WEBS 3-9=-432/310, 3-11=-3/250

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=200.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. September 9,2016

Job	Truss	Truss Type	Qty	Ply	H&H\Biltmore A&B
					E9831683
J0916-4688	J5	ROOF SPECIAL	6	1	Job Reference (optional)
Comtech, Inc.,	Fayetteville, NC 28309	- <u>q-10-81-11-8 6-5-12</u> 0-10-8 1-11-8 4-6-4	ID:3B2IIiU 11-0-0 4-6-4	8.010 s A 9aTYR6OtF 13-6-0 2-6-0	noo Neisenie (opudustries, Inc. Fri Sep 09 12:33:03 2016 Page 1 FvgEVAlyq8tk-TZMnTbFhav8JxIsVBog51YrwGZ4zfePYtP8p7kyfMYk ⊣
				2x6 4	
		$3x10 = \frac{13}{3x6} = 1$		8 7	76 $3x_6 = I \overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}{\overset{\text{off}}{\overset{\text{off}}}}{\overset{\text{off}}}}{\overset{\text{off}}}{\overset{\text{off}}}{\overset{\text{off}}}}{\overset{\text{off}}}{\overset{\text{off}}}{\overset{\text{off}}}}{\overset{\text{off}}}}{\overset{\overset{off}}}{\overset{\overset{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}{\overset{{off}}}}{\overset{{off}}}{\overset{{off}}}}}}}}}}$

Plate Offsets (X,Y)	[2:0-1-0,0-1-8], [12:0-2-8,0-1-8]				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/de	efl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.58	Vert(LL) -0.08 10-11 >99	99 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.50	Vert(TL) -0.25 10-11 >65	50 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.19	Horz(TL) 0.05 6 r	n/a n/a	
3CDL 10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL) 0.06 11-12 >99	99 240	Weight: 94 lb FT = 20%

11-0-0 13-6-0 13₁9₁8

LOWIDER-		DRACING-		
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.1 *Except*		except end verticals.	
	12-14,8-10: 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applie	d or 10-0-0 oc bracing, Except:
WEBS	2x4 SP No.3 *Except*		6-0-0 oc bracing: 14-15,12	-14.
	2-15: 2x6 SP No.1	WEBS	1 Row at midpt	4-7, 3-9

6-5-12

REACTIONS. (Ib/size) 15=605/0-5-8, 6=515/0-3-8 Max Horz 15=320(LC 7) Max Uplift 6=-192(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-554/2, 7-9=-541/311, 13-15=-531/96, 2-13=-508/103

- BOT CHORD 14-15=-313/0, 12-13=0/563, 11-12=-253/372, 10-11=-253/372, 9-10=-216/262
- WEBS 3-9=-457/322, 3-11=-20/278

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-11-8

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=192.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in ((loc) l/defl	L/d	PLATES GRIP
TCLL Ž0.Ó	Plate Grip DOL 1.15	TC 0.55	Vert(LL) -0.00	`í n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.49	Vert(TL) -0.00	1 n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.18	Horz(TL) -0.00	10 n/a	n/a	
BCDL 10.0	Code IRC2009/TPI2007	Matrix-S				Weight: 121 lb FT = 20%

14

13

TOP CHORD

BOT CHORD

WEBS

12

11

10

15

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x6 SP No.1 *Except*
	9-10: 2x4 SP No.3
OTHERS	2x4 SP No.3

Structural wood sheathing directly applied or 5-11-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF Stud - 9-10, 8-11, 7-12 T-Brace: Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 13-6-0.

(lb) - Max Horz 17=452(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 17, 10, 11, 12, 13 except

14=-116(LC 7), 16=-1045(LC 7)

Max Grav All reactions 250 lb or less at joint(s) 10, 12, 13, 14, 15, 16 except 17=1054(LC 7), 11=254(LC 1)

6x6 ||

17 16

3x6 =

ł

2-4-0

3

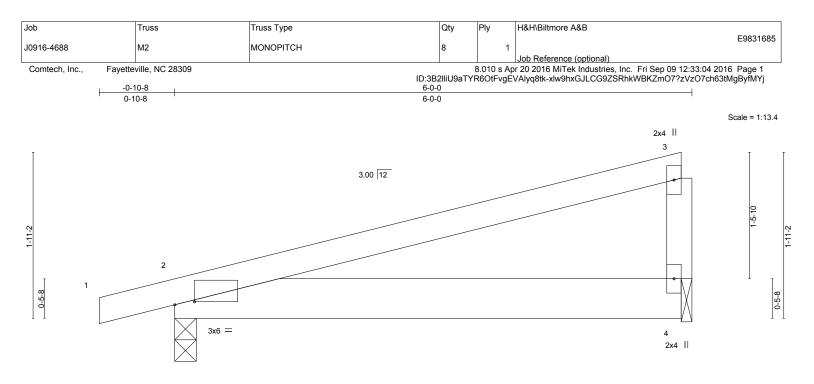
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-17=-647/49, 2-3=-720/61, 3-4=-380/39, 4-5=-335/34, 5-6=-257/33

WEBS 3-16=-78/599

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 10, 11, 12, 13 except (jt=lb) 14=116, 16=1045.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

September 9,2016

Plate Offsets (X,Y)	[2:0-2-12.0-0-7]		<u>6-0-0</u> 6-0-0	I					
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.45 BC 0.13	DEFL. Vert(LL)	in -0.01	(loc) 2-4	l/defl >999	L/d 360 240	PLATES MT20	GRIP 244/190
3CLL 0.0 * 3CDL 10.0	Rep Stress Incr YES Code IRC2009/TPI2007	WB 0.00 Matrix-S	Vert(TL) Horz(TL) Wind(LL)	-0.04 0.00 0.00	2-4 4 2	>999 n/a ****	240 n/a 240	Weight: 26 lb	FT = 20%
UMBER-			BRACING-						

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

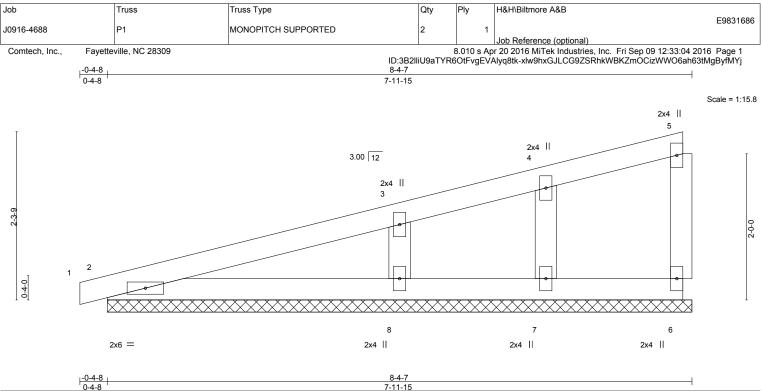
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=294/0-3-0, 4=223/0-1-8 Max Horz 2=57(LC 5)

Max Uplift 2=-59(LC 5), 4=-26(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)
- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

September 9,2016

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-4-8					7-11-15						
LOADING (psf))	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0		Plate Grip DOL	1.15	TC	0.15	Vert(LL)	0.00	1	n/r	120	MT20	244/190
TCDL 10.0		Lumber DOL	1.15	BC	0.09	Vert(TL)	0.00	1	n/r	120		
BCLL 0.0	*	Rep Stress Incr	YES	WB	0.07	Horz(TL)	0.00	6	n/a	n/a		
BCDL 10.0		Code IRC2009/TF	PI2007	Matrix	k-S						Weight: 30 lb	FT = 20%
LUMBER-						BRACING-						

LUNDER-

2X4 SP No.1
2x4 SP No.1
2x4 SP No.3
2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

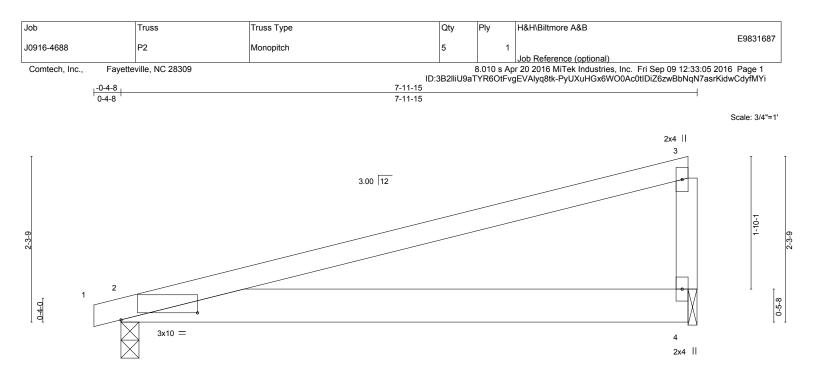
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-11-15.

(lb) - Max Horz 2=96(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7 except 8=-101(LC 5) Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=323(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7 except (jt=lb) 8=101.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

ENGINEERING BY AMITER ATILIATE 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

I	
GRIP	
244/190	
FT = 20%	
rectly applied or 2-2-0 oc purlins,	
o parinio,	
c	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

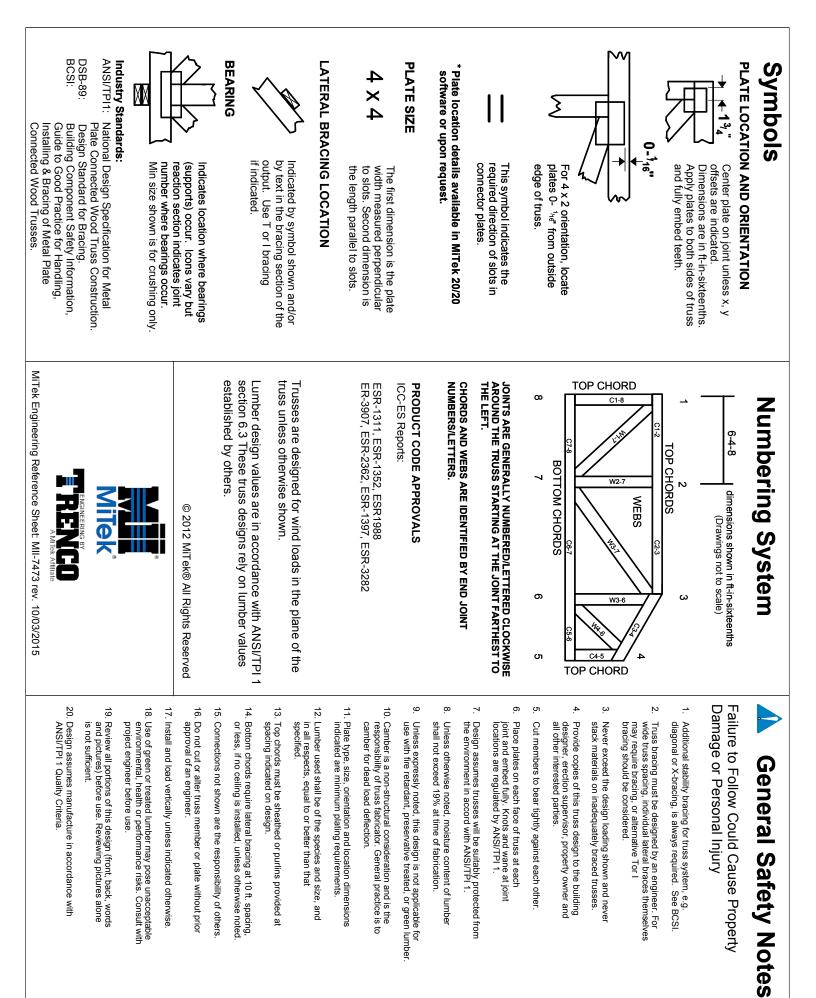
REACTIONS. (lb/size) 2=340/0-3-0, 4=307/0-1-8 Max Horz 2=69(LC 5) Max Uplift 2=-141(LC 5), 4=-135(LC 5)

2x4 SP No.3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS


- 1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=141, 4=135

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

