

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0318-1246 Prelude C

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E11596760 thru E11596781

My license renewal date for the state of North Carolina is December 31, 2018.

North Carolina COA: C-0844

March 29,2018

Gilbert, Eric

IMPORTANT NOTE: Truss Engineer's responsibility is solely for design of individual trusses based upon design parameters shown on referenced truss drawings. Parameters have not been verified as appropriate for any use. Any location identification specified is for file reference only and has not been used in preparing design. Suitability of truss designs for any particular building is the responsibility of the building designer, not the Truss Engineer, per ANSI/TPI-1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ENGINEERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

REACTIONS. (lb/size) 2=1811/0-3-8, 8=1811/0-3-8 Max Horz 2=-150(LC 7) Max Uplift 2=-277(LC 6), 8=-277(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3289/986, 3-5=-2963/981, 5-7=-2963/981, 7-8=-3289/986

BOT CHORD 2-13=-705/2830, 10-13=-308/1865, 8-10=-705/2830

WEBS 5-10=-277/1219, 7-10=-557/432, 5-13=-277/1219, 3-13=-557/432

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=277, 8=277.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

		12-8-9		2-3-7	8-0-0	2-3-7		12-8-9	1
Plate Offs	sets (X,Y)	[2:0-3-4,0-2-0], [8:0-3-4,0)-2-0]						
LOADING	G (psf)	SPACING-	2-3-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0	.63 Vert(LL)	-0.45 10-15	>999 360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0	.94 Vert(TL)	-0.65 10-15	>699 240		
BCLL	0.0 *	Rep Stress Incr	NO	WB 0	.78 Horz(TL)	0.14 8	n/a n/a		
	10.0	Code IBC2000/TI	70001	Motrix S	Minod/LL	0 11 10 15	>000 240	Woight: 261 lb	ET - 200/

Wind(LL)

0 11 10-15 >000

Weight: 261 lb

FT = 20%

240

DODL I	0.0	0000 11(02000/11/12007	Matrix 0	Wind(LE) 0.1	1 10 10 9000	240	Weight. 201 lb
LUMBER-				BRACING-			
TOP CHORE) 2x6 SP	9 No.1		TOP CHORD	2-0-0 oc purli	ns (3-4-7 max.))
BOT CHORE) 2x6 SP	9 No.1			(Switched fro	m sheeted: Spa	acing > 2-0-0).
WEBS	2x4 SP	PNo.3 *Except*		BOT CHORD	Rigid ceiling	directly applied	or 8-6-0 oc bracing.
	11-14:	2x6 SP No.1			0 0	,	C C

Matrix_S

- REACTIONS. (lb/size) 2=2179/0-3-8, 8=2179/0-3-8 Max Horz 2=-169(LC 7) Max Uplift 2=-311(LC 6), 8=-311(LC 7)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-3997/1114, 3-5=-3631/1107, 5-7=-3631/1107, 7-8=-3997/1114

Code IRC2000/TPI2007

BOT CHORD 2-15=-796/3448, 10-15=-349/2277, 8-10=-796/3448

WEBS 5-10=-314/1530, 7-10=-624/485, 5-15=-314/1530, 3-15=-624/485

NOTES-

BCDI

10.0

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=311, 8=311.

6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

WFBS

TOP CHORD

BOT CHORD

REACTIONS. (lb/size) 2=1811/0-3-8, 8=1811/0-3-8 Max Horz 2=-150(LC 7) Max Uplift 2=-277(LC 6), 8=-277(LC 7)

2x6 SP No.1

2x6 SP No.1

2x4 SP No.3 *Except*

11-14: 2x6 SP No.1

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3241/990, 3-5=-2940/984, 5-7=-2940/984, 7-8=-3241/990

BOT CHORD 2-15=-708/2811, 10-15=-310/1849, 8-10=-708/2811

WEBS 5-10=-279/1207, 7-10=-562/432, 5-15=-279/1207, 3-15=-562/432

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 14-7-3, Exterior(2) 14-7-3 to 19-0-0, Interior(1) 23-4-13 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=277.8=277.

Structural wood sheathing directly applied or 3-10-10 oc purlins.

Rigid ceiling directly applied or 9-3-2 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

RTH CAR O William Martinette SEAL 036322 G "minimi March 29,2018

		12-8-9	15-0-0	23-0-0	25-3-7		38-0-0	
		12-8-9	2-3-7	8-0-0	2-3-7	1	12-8-9	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.48	Vert(LL)	-0.40 11-16	>999 360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.86	Vert(TL)	-0.58 11-16	>776 240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.48	Horz(TL)	0.13 9	n/a n/a		
BCDL	10.0	Code IRC2009/TPI2007	Matrix-S	Wind(LL)	0.14 2-16	>999 240	Weight: 255 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.3 *Except*
	12-15: 2x6 SP No.1

REACTIONS. (lb/size) 2=1942/0-3-8, 9=1940/0-3-8 Max Horz 2=-135(LC 7) Max Uplift 2=-265(LC 6), 9=-265(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3577/1148, 3-5=-3228/1061, 5-6=-2251/952, 6-8=-3212/1056, 8-9=-3568/1150

BOT CHORD 2-16=-863/3114, 11-16=-463/2251, 9-11=-864/3107

WEBS 3-16=-540/435, 5-16=-208/1164, 6-11=-202/1155, 8-11=-546/436

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 10-9-5, Exterior(2) 10-9-5 to 27-2-11, Interior(1) 27-2-11 to 34-3-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=265, 9=265.

```
SEAL
036322
March 29,2018
```

Structural wood sheathing directly applied or 3-9-13 oc purlins.

Rigid ceiling directly applied or 8-4-14 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	9-6-14	19-0-0		28-5-2	38-0-0		
	9-6-14	9-5-2		9-5-2	9-6-14	1	
Plate Offsets (X,Y	') [2:0-3-4,0-2-0], [9:0-3-4,0-2-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2009/TPI2007 Code IRC2009/TPI2007	CSI. TC 0.35 BC 0.65 WB 0.44 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(TL) -0.37 Horz(TL) 0.11 Wind(LL) 0.08	(loc) I/defl L/d 13-15 >999 360 13-15 >999 240 9 n/a n/a 13 >999 240	PLATES MT20	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP No.1 BRACING- TOP CHORD 5x6 SP No.1 BOT CHORD 2x6 SP No.1 TOP CHORD Structural wood sheathing directly applied or 3-9-14 oc purlins. BOT CHORD 7x6 SP No.1 WEBS 2x4 SP No.3 BOT CHORD (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c							
REACTIONS. (I M M	b/size) 2=1937/0-3-8, 9=1937/0-3-8 lax Horz 2=-121(LC 7) lax Uplift 2=-252(LC 6), 9=-252(LC 7)						
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3632/1191, 3-5=-3417/1216, 5-6=-2634/997, 6-8=-3417/1216, 8-9=-3632/1191 BOT CHORD 2-15=-912/3146, 13-15=-575/2468, 11-13=-575/2468, 9-11=-912/3146 WEBS 3-15=-364/364, 5-15=-272/865, 5-13=-17/492, 6-11=-272/865, 8-11=-364/364							
NOTES-	of live loads have been considered for this d						

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-9-5, Exterior(2) 8-9-5 to 29-2-11, Interior(1) 29-2-11 to 34-3-13 zone; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=252, 9=252.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

L	9-6-14	19-0-0	28-5-2		38-0-0		
I	9-6-14	9-5-2	9-5-2	I	9-6-14		
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [8:0-3-4,0-2-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.21 BC 0.41 WB 0.33 Matrix-S	DEFL. in (loc) //def Vert(LL) -0.10 12 >999 Vert(TL) -0.26 12-14 >999 Horz(TL) 0.09 8 n/a Wind(LL) 0.10 12 >999	l L/d 9 360 9 240 a n/a 9 240	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP No.1 BRACING- BOT CHORD 2x6 SP No.1 TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3 BOT CHORD 2x6 SP No.1 REACTIONS. (lb/size) 2=1560/0-3-8, 8=1560/0-3-8 Max Horz 2=106(LC 6) Max Uplift 2=-236(LC 7) Baracing-							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2808/1275, 3-4=-2551/1206, 4-5=-2251/1177, 5-6=-2251/1177, 6-7=-2551/1206, 7-8=-2808/1275 BOT CHORD 2-14=-999/2441, 12-14=-680/1970, 10-12=-680/1970, 8-10=-999/2441 WEBS 3-14=-344/345, 4-14=-167/538, 4-12=-142/539, 5-12=-427/299, 6-12=-142/539, 6-10=-167/538, 7-10=-344/345							
NOTES- 1) Unbalanced roof li 2) Wind: ASCE 7-05; -0-8-10 to 3-8-3, Ir	ve loads have been considered for this d 110mph; TCDL=6.0psf; BCDL=5.0psf; h nterior(1) 3-8-3 to 6-9-5, Exterior(2) 6-9-5	esign. =15ft; Cat. II; Exp C; enclosed to 31-2-11, Interior(1) 31-2-11	I; MWFRS (low-rise) and C-C Exter to 34-3-13 zone;C-C for members	ior(2) and			

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=236, 8=236.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	H	11-0-0	19-0-0	27-0	-0		38-0-0	
Plate Offs	ets (X,Y)	[2:0-1-0,0-1-12], [4:0-6-10,Edge], [6:0-	-6-10,Edge], [8:0-1-0,0-1-12]	8-0-	0		11-0-0	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.72 BC 0.49 WB 0.40 Matrix-S	DEFL. in Vert(LL) -0.14 Vert(TL) -0.37 Horz(TL) 0.11 Wind(LL) 0.14	(loc) l/defl 12 >999 2-14 >999 8 n/a 12 >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 221 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling dir T-Brace: Fasten (2X) T (0.131"x3") naii Brace must cov	d sheathing dired ectly applied or 2x4 and I braces to r ls, 6in o.c.,with 3 ver 90% of web I	ctly applied or 2-2-0 o 7-10-3 oc bracing. SPF No.2 - 5-14, 5- narrow edge of web v Sin minimum end dist ength.	oc purlins. 10 with 10d ance.	
REACTIO	NS. (Ib/size Max H Max U	e) 2=1570/0-3-8, 8=1570/0-3-8 orz 2=-93(LC 7) plift 2=-227(LC 6), 8=-227(LC 7)					-	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2750/1285, 3-4=-2449/1121, 4-5=-2152/1079, 5-6=-2152/1079, 6-7=-2449/1121, 7-8=-2750/1285 7-8=-2750/1285 -4=-2449/1121, 4-5=-2152/1079, 5-6=-2152/1079, 6-7=-2449/1121, 7-8=-2150/1285								

 BOT CHORD
 2-14=-1006/2360, 12-14=-958/2642, 10-12=-958/2642, 8-10=-1006/2360

 WEBS
 3-14=-263/326, 4-14=-207/692, 5-14=-713/291, 5-10=-713/291, 6-10=-207/692, 7-10=-263/326

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 4-9-5, Exterior(2) 4-9-5 to 11-0-0, Interior(1) 17-2-11 to 20-9-5, Exterior(2) 27-0-0 to 38-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=227, 8=227.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

—	9-0-0	19-0-0		29-0-0			38-0-0	
Plate Offsets (X Y)	<u>9-0-0</u> [2:0-3-4 0-2-0] [8:0-3-4 0-2-0]	10-0-0		10-0-0			9-0-0	·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.50 BC 0.47 WB 0.45 Matrix-S	DEFL. in Vert(LL) -0.14 Vert(TL) -0.38 Horz(TL) 0.12 Wind(LL) 0.14	(loc) 12 10-12 8 12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S REACTIONS. (lb/siz Max H	P No.1 P No.1 P No.3 e) 2=1560/0-3-8, 8=1560/0-3-8 forz 2=-78(LC 7)		BRACING- TOP CHORD BOT CHORD WEBS	Structu Rigid cr T-Brace Fasten (0.131" Brace r	ral wood : eiling dire e: (2X) T a (2X) T a (x3") nails must cove	sheathing dira ectly applied o 2x nd I braces to , 6in o.c.,with er 90% of web	ectly applied or 3-11-0 r 7-4-5 oc bracing. t4 SPF No.2 - 4-14, 6- narrow edge of web v 3in minimum end dist length.	oc purlins. 10 with 10d ance.
Max Uplitt 2=-209(LC 5), 8=-209(LC 4) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2763/1148, 3-4=-2336/1133, 4-6=-3184/1401, 6-7=-2336/1133, 7-8=-2763/1148 BOT CHORD 2-14=-832/2358, 12-14=-1141/3113, 10-12=-1141/3113, 8-10=-832/2358 WEBS 3-14=-139/784, 4-14=-1045/375, 4-12=0/251, 6-12=0/251, 6-10=-1045/375, 7-10=-139/784								

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-10 to 15-2-11, Interior(1) 15-2-11 to 22-9-5, Exterior(2) 22-9-5 to 29-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=209, 8=209.

7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

L	9-6-14	19-0-0	28	8-5-2	38-0-0	
	9-6-14	9-5-2	9	9-5-2	9-6-14	1
Plate Offsets (X,Y)	[2:0-3-4,0-2-0], [3:0-0-0,0-0-0], [7:0-0-0	,0-0-0], [8:0-3-4,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2009/TPI2007	CSI. TC 0.30 BC 0.55 WB 0.97 Matrix-S	DEFL. in Vert(LL) -0.20 Vert(TL) -0.51 Horz(TL) 0.14 Wind(LL) 0.19	(loc) l/defl L/d 12 >999 360 10-12 >882 240 8 n/a n/a 12 >999 240	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 P No.1 P No.3	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing Rigid ceiling directly applie	directly applied or 3-8-7 d or 6-6-5 oc bracing.	oc purlins.	
REACTIONS. (Ib/size Max H Max U	e) 2=1560/0-3-8, 8=1560/0-3-8 orz 2=64(LC 6) plift 2=-239(LC 5), 8=-239(LC 4)					
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-14= WEBS 3-14= 7-10= 7-10=	Comp./Max. Ten All forces 250 (lb) o 2804/1170, 3-4=-3041/1272, 4-6=-4085 888/2437, 12-14=-1464/3987, 10-12=- 236/1046, 4-14=-1185/518, 4-12=0/27 236/1046	less except when shown. /1649, 6-7=-3041/1272, 7-8=-2 1464/3987, 8-10=-888/2437 2, 6-12=0/272, 6-10=-1185/518	2804/1170 8,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-05; 1 -0-8-10 to 13-2-11, I reactions shown: Lu	e loads have been considered for this de 10mph; TCDL=6.0psf; BCDL=5.0psf; h= nterior(1) 13-2-11 to 24-9-5, Exterior(2) mber DOI =1 60 plate grip DOI =1 60	esign. =15ft; Cat. II; Exp C; enclosed; 24-9-5 to 31-0-0 zone;C-C for	MWFRS (low-rise) a members and forces	nd C-C Exterior(2) s & MWFRS for		

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=239, 8=239.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		7-10-11	15-3	-9	22-8	-7		30-1-5		38-0-0	
	1	7-10-11	7-4-	14	7-4-	14		7-4-14		7-10-11	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC (D.16	Vert(LL)	-0.23 13-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC (0.33	Vert(TL)	-0.59 13-14	>769	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB 0	0.53	Horz(TL)	0.12 9	n/a	n/a		
BCDL	10.0	Code IRC2009/T	PI2007	Matrix-S	3	Wind(LL)	0.26 13-14	>999	240	Weight: 469 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP 2400F 2.0E

 BOT CHORD
 2x6 SP 2400F 2.0E

 WEBS
 2x4 SP No.3

REACTIONS. (Ib/size) 2=2582/0-3-8, 9=2585/0-3-8 Max Horz 2=50(LC 13) Max Uplift 2=-703(LC 4), 9=-704(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-4886/1455, 3-4=-6205/1775, 4-6=-8913/2582, 6-7=-8918/2583, 7-8=-6217/1777, 8-9=-4897/1458

- BOT CHORD 2-16=-1274/4291, 14-16=-2477/8210, 13-14=-2804/9394, 11-13=-2451/8219,
- 9-11=-1241/4300

 WEBS
 3-16=-630/2578, 4-16=-2398/907, 4-14=-95/958, 6-14=-601/341, 6-13=-595/341, 7-13=-94/953, 7-11=-2394/906, 8-11=-628/2581

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60
 plate grip DOL=1.60

- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=703, 9=704.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 96 lb down and 74 lb up at 5-0-0, 77 lb down and 74 lb up at 7-0-12, 77 lb down and 74 lb up at 9-0-12, 77 lb down and 74 lb up at 11-0-12, 77 lb down and 74 lb up at 13-0-12, 77 lb down and 74 lb up at 13-0-12, 77 lb down and 74 lb up at 15-0-12, 77 lb down and 74 lb up at 13-0-12, 77 lb down and 74 lb up at 15-0-12, 77 lb down and 74 lb up at 12-0-12, 77 lb down and 74 lb up at 12-0-12, 77 lb down and 74 lb up at 23-0-12, 77 lb down and 74 lb up at 23-0-12, 77 lb down and 74 lb up at 23-0-12, 77 lb down and 74 lb up at 23-0-12, 77 lb down and 74 lb up at 23-0-12, 77 lb down and 74 lb up at 30-0-12, 77 lb down and 74 lb up at 29-0-12, and 77 lb down and 74 lb up at 30-0-12, 56 lb down at 74 lb up at 33-0-0 on top chord, and 263 lb down and 76 lb up at 50-0, 56 lb down at 7-0-12, 56 lb down at 9-0-12, 56 lb down at 13-0-12, 56 lb down at 13-0-12, 56 lb down at 23-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down at 70-12, 56 lb down at 23-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down and 76 lb up at 32-0-12, 56 lb down at 30-11-4, and 263 lb down at 70-12, 56 lb down at 30-11-4, and 263 lb down at 30-11-4, and 263 lb down at 30-11-4, and 263 lb down at 30-1

Continued on page 2 LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **NSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	Prelude C
500404040					E11596770
B0318-1246	A10	Hip Girder	1	2	lob Peference (ontional)
	E			0.400 - 14-	
Comtecn, Inc.,	Fayetteville, NC 28309			8.130 s Mar	11 2018 MITEK INDUSTRIES, INC. WED Mar 28 16:48:28 2018 Page 2

8.130 s Mar 11 2018 MiTek Industries, Inc. Wed Mar 28 16:48:28 2018 Page 2 ID:qBVty8JxTR2c0jvIHgLUvLzeJa3-WhWa3NEoDCAUR8tvp0tqw2qekDnvf_Q8OZ_I?7zWLTH

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 2-9=-20

Concentrated Loads (lb)

Vert: 3--77(B) 5--77(B) 8=-77(B) 14=-28(B) 6=-77(B) 17=-77(B) 18=-77(B) 19=-77(B) 20=-77(B) 21=-77(B) 22=-77(B) 23=-77(B) 24=-77(B) 25=-77(B) 26=-77(B) 27=-77(B) 28=-263(B) 29=-28(B) 30=-28(B) 31=-28(B) 32=-28(B) 33=-28(B) 35=-28(B) 35=-28(B) 36=-28(B) 36=-28(B) 38=-28(B) 39=-28(B) 40=-28(B) 41=-263(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=106, 10=105.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NoISITPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=128, 4=128.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-1	_	-0
6-1	1	-6

BOT CHORD

LOADIN	G (psf)	SPACING-	2-0-0	CSL		DEFL	in	(loc)	l/defl	I /d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.02	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	-0.06	2-6	>999	240		
BCLL	10.0	Code IRC2009/T	PI2007	Matri	0.00 k-P	Wind(LL)	0.00	2	11/a ****	1/a 240	Weight: 40 lb	FT = 20%
LUMBER TOP CH	R- ORD 2x6 SF	P No.1		1		BRACING- TOP CHOF	RD	Structu	iral wood	sheathing d	irectly applied or 6-0-0) oc purlins,

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No 3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=263/Mechanical, 2=341/0-4-9 Max Horz 2=116(LC 3) Max Uplift 6=-75(LC 3), 2=-107(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=107.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb up at 4-2-8, and 25 lb up at 4-2-8 on top chord, and at 4-2-8, and at 4-2-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

BRACING

TOP CHORD

BOT CHORD

5x5 =

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No 3 OTHERS

REACTIONS. All bearings 20-0-0

(lb) - Max Horz 2=-67(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 12, 19, 20, 21, 22, 17, 16, 15, 14, 2

Max Grav All reactions 250 lb or less at joint(s) 12, 18, 19, 20, 21, 22, 17, 16, 15, 14, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 5-7-3, Corner(3) 5-7-3 to 10-0-0, Exterior(2) 14-4-13 to 16-5-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 19, 20, 21, 22, 17, 16, 15, 14, 2.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔔 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		10-0-0 10-0-0						20-0-0		
Plate Offsets (2	X,Y)	[2:0-0-15,Edge], [4:0-0-15,Edge]						10 0 0		
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	f) 0 0 0 * 0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.59 BC 0.78 WB 0.17 Matrix-S	DEFL. Vert(LL) Vert(TL) Horz(TL) Wind(LL)	in -0.17 -0.48 0.05 0.07	(loc) 2-7 2-7 4 2-7	l/defl >999 >491 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER-TOP CHORD2x6 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3			BRACING- TOP CHOF BOT CHOF	RD RD	Structu Rigid c	ural wood ceiling dire	sheathing dir ectly applied o	rectly applied or 5-0-1 or 9-1-5 oc bracing.	3 oc purlins.	
REACTIONS.	(Ib/size Max Ho Max Up	e) 4=838/0-3-8, 2=838/0-3-8 brz 2=-54(LC 7) blift 4=-180(LC 5), 2=-180(LC 4)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1438/620, 3-4=-1438/620 BOT CHORD 2-7=-462/1294 WEBS 3-7=0/455										
NOTES-										

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) -0-8-3 to 3-8-10, Interior(1) 3-8-10 to 5-7-3, Exterior(2) 5-7-3 to 10-0-0, Interior(1) 14-4-13 to 16-3-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=180.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

		Г		5-0-0	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL	20.0	Plate Grip DOL 1.15	TC 0.36	Vert(LL) -0.01 2-4 >999 360 MT20 244/190	
TCDL	10.0	Lumber DOL 1.15	BC 0.09	Vert(TL) -0.02 2-4 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.00 3 n/a n/a	
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 22 lb FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=137/Mechanical, 2=259/0-3-8, 4=48/Mechanical Max Horz 2=119(LC 6) Max Uplift 3=-86(LC 6), 2=-69(LC 6) Max Grav 3=137(LC 1), 2=259(LC 1), 4=96(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	2-11-11										
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.00 2 >999 360 MT20 244/190							
TCLL	20.0	Plate Grip DOL 1.15	TC 0.09								
TCDL	10.0	Lumber DOL 1.15	BC 0.03	Vert(TL) -0.00 2-4 >999 240							
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL) -0.00 3 n/a n/a							
BCDL	10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 14 lb FT = 20%							

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-11-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=72/Mechanical, 2=183/0-3-8, 4=28/Mechanical Max Horz 2=80(LC 6) Max Uplift 3=-45(LC 6), 2=-66(LC 6) Max Grav 3=72(LC 1), 2=183(LC 1), 4=55(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2)

- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X, Y)	[2:0-6-0,0-1-5], [5:0-3-7,Edge], [6:0-3-8	,Edgej					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI. TC 0.61 BC 0.38 WB 0.06 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(TL) -0.15 Horz(TL) -0.00 Wind(LL) 0.15	l (loc) l/defl 7-8 >999 7-8 >517 6 n/a 7-8 >496	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 32 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.1 2 No.1	BRACING- TOP CHORD	Structural wood except end vert	sheathing dir cals.	rectly applied or 6-0-0	oc purlins,	

2x4 SP No.3 WFBS 2x4 SP No.3 OTHERS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=321/0-3-8, 6=247/0-1-8 Max Horz 2=214(LC 6)

Max Uplift 2=-135(LC 6), 6=-147(LC 6)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=135, 6=147.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		6-8-0	1
LOADING (psf) SPACING- 2- TCLL 20.0 Plate Grip DOL 1 TCDL 10.0 Lumber DOL 1 BCLL 0.0 * Rep Stress Incr Y BCDL 10.0 Code IRC2009/TPl200 10	0-0 CSI. 15 TC 0.63 15 BC 0.51 7ES WB 0.00 07 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.09 2-4 >883 360 Vert(TL) -0.22 2-4 >353 240 Horz(TL) -0.00 4 n/a n/a Wind(LL) 0.23 2-4 >335 240	PLATES GRIP MT20 244/190 Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS

- (lb/size) 2=321/0-3-8, 4=247/0-1-8 REACTIONS. Max Horz 2=152(LC 6) Max Uplift 2=-173(LC 6), 4=-178(LC 6)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-184/274

NOTES-

- 1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=173, 4=178.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	[2:1-0-11,0-1-2]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.52	Vert(LL)	-0.05	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(TL)	-0.12	2-4	>775	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(TL)	-0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2009/TPI2007	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 47 lb	FT = 20%

TOP CHORD BOT CHORD	2x6 SP No.1 2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
WEBS OTHERS	2x4 SP No.3 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=359/0-3-8, 4=303/0-1-8 Max Horz 2=161(LC 4) Max Uplift 2=-161(LC 4), 4=-151(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-226/440

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=161, 4=151.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)-	[2:0-2-7,Edge]	1 1					T	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.37	DEFL. Vert(LL) -0.	in (loc 05 2-4) l/defl 4 >999	L/d 360	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2009/TPI2007	WB 0.00 Matrix-P	Horz(TL) -0. Horz(TL) 0. Wind(LL) 0.	12 2-4 00 4 12 2-4	+ >775 4 n/a 4 >743	240 n/a 240	Weight: 43 lb	FT = 20%
LUMBER-		11	BRACING-					

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD WFBS 2x4 SP No 3

REACTIONS. (lb/size) 2=359/0-3-8, 4=303/0-1-8 Max Horz 2=113(LC 4) Max Uplift 2=-206(LC 4), 4=-196(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-226/277

NOTES-

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=206, 4=196.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with these contractions. This besign is based only upon parameters shown, and is to rain individual outdarg component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

