Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Sheet:
Property ID:
Lot #:
File #:
Code:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

Owner:	Applicant:			
Address:	•	Date Evaluated:	`	
Proposed Facility:	380cm	Design Flow (.1949): 3605	Property Size:	
Location of Site:		Property Recorded:		
Water Supply:	Public	□ Individual □ Well	☐ Spring	Other
Evaluation Method:	Auger Boring	☐ Pit ☐	Cut	_
Type of Wastewater	:: Sewa	ge Industrial Process	☐ Mixed	
			-	

Profile Prof	Type	of Wastewate	er:	Sewage	Industrial	Process Mixed				
# Slope % (In) Structure Consistence Meaness Soil Sapro Rest Class A LTAR 1	R			.1941		PROFILE FACTORS				
1 0-2 0-17 G SL VAN NS/NP 17738 93262 AL SS/SP 22 0-14 G SL VAN NS/NP 17-12 535K XLL FN SS/SP 17:3 10 17 0-2 0-17 G SL VAN NS/NP 17:3 18:20 33K CL FN SS/SP 18:20 35K CL FN SS/SP				Structure/	Consistence	Wetness/	Soil	Sapro	Restr	Class
2 0-4 C = 1 VM NSMP 17-12 534 XLL FM 53bP 1832 354 CL FM 53bP 1832 764 C FN 5/P 1833 764 C FN 5/P 1833 764 C FN 5/P	l		0-17	G SL	MU MIND					
2 0-4 G = 1 MR N3 N8 (153) 18-22 35K CL FR 53 bP 18-32 35K CL FR 5			8K~[1	58 L 62	FIL 53/5P					
17-12 53K XII - FO SOBP 18-12 53K XII - FO SOBP 3 0 FR G SL VERNESHAP 18-22 33K (L FR SOBP 18-22 38K C FO SIP 18-23 38K C FO SIP 18-24 38K C FO SIP			28 478	58KC	F12 5/P					P5 .3
17-12 53K XII - FO SOBP 18-12 53K XII - FO SOBP 3 0 FR G SL VERNESHAP 18-22 33K (L FR SOBP 18-22 38K C FO SIP 18-23 38K C FO SIP 18-24 38K C FO SIP	a		クージ	6 = 1	100					
3 0 47 C S.L VAN NESTUP 18-32 33 x C.L Fin solsp 18-32 35 x C.L Fin					·					15
			W	SEK C	FI SIY	10 YR 7/2 C45				
	3		040	G SL	VAD NEJAP					
			18-31	38K CL	Fin solsp					
			KAC	78K C	Fa s/P					P.5 .3
				:						

Description	Initial	Repair System	Other Factors (.1946):
	System		Site Classification (.1948): $0 \le$
Available Space (.1945)	V	J	Evaluated By:
System Type(s)	28-7	RED	Others Present:
Site LTAR	(3)	13	