

Hydraulic Calculations by HydraCALC

Carolina Fire Protection 4055 Hodges Chapel Rd. Dunn, NC 28334 910-892-1700

Job Name Drawing

: Lillington FD : OFFICE

Location

: Lillington, NC

Remote Area : 1

Contract

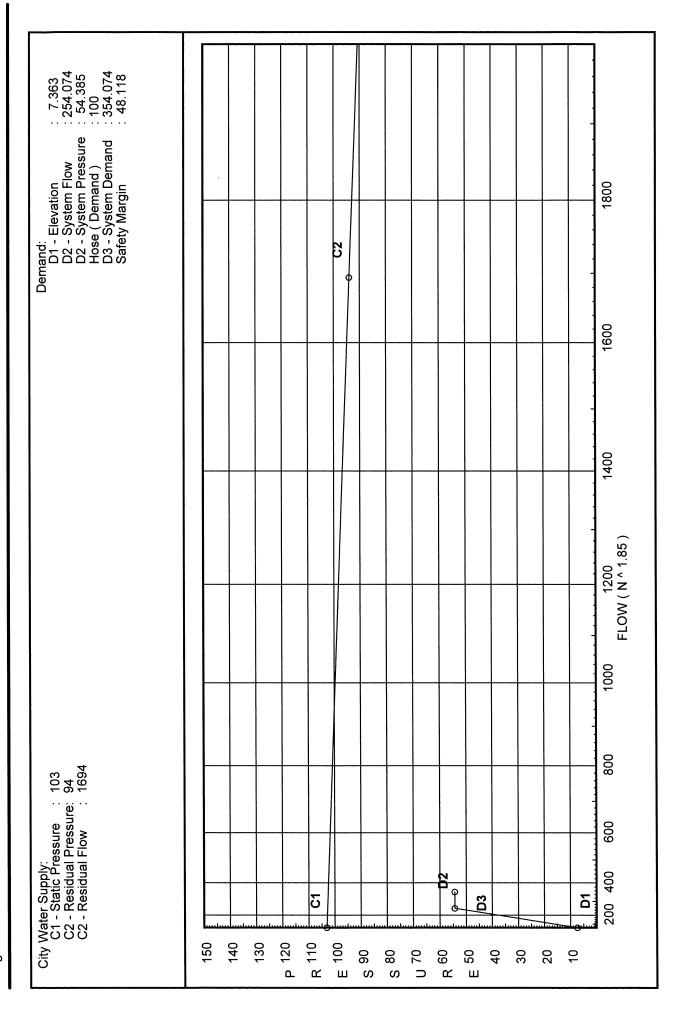
: 25C999

Data File

: Project1 Area OFFICE-Manual.WXF

Computer Programs by Hydratec Inc. Revision: 50.5520.727

G


Ε

Horizontal Barriers Provided:

Hydraulic Design Information Sheet Date - 04-01-2025 Name - Lillington FD Location - Lillington, NC System No. - 1 Building - OFFICE Contractor - Carolina Fire Protection Contract No. - 25C999 Calculated By - Austin Lee Construction: () Combustible (X) Non-Combustible Drawing No. -Ceiling Height - VARIES Occupancy - LIGHT Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. S (X) NFPA 13 (X) Lt. Haz. () NFPA 231 () NFPA 231C () Figure Curve Y Other S \mathbf{T} Specific Ruling Made By Date Ε M Area of Sprinkler Operation - 1152 System Type Sprinkler/Nozzle - 0.1 (X) Wet Make VICTAULIC Density Model V2708 Area Per Sprinkler - 225 () Dry D Ε Elevation at Highest Outlet - 10.9 () Deluge Size 1/2" () Preaction K-Factor 5.6 Hose Allowance - Inside S () Other Temp.Rat.155 Ι Rack Sprinkler Allowance Hose Allowance - Outside - 100 G Ν Not.e Calculation Flow Required - 354.074 Press Required - 54.385 Summary C-Factor Used: 120 Overhead 150 Ur Underground W Water Flow Test: Pump Data: Tank or Reservoir: Date of Test - 02-25-2025 Cap. -Α Time of Test - 11AM Т Rated Cap.-Elev.-- 103 Static Press @ Press - \mathbf{E} Residual Press - 94 Elev. Well R - 1694 Proof Flow Flow S Elevation - 0 U Ρ Location - Lillington, NC Ρ L Source of Information - Austin Lee & Wayne Dunn Y С Commodity Class Location Aisle W. 0 Storage Ht. Area M Storage Method: Solid Piled Palletized Rack Μ () Auto. Storage) Single Row () Conven. Pallet () Encap. () Slave Pallet () Solid Shelf () Non S R () Double Row Т () Mult. Row () Open Shelf Α 0 С Flue Spacing Clearance: Storage to Ceiling R K Α Longitudinal Transverse

2

Page Date

Fittings Used Summary

Carolina Fire Protection Lillington FD

Fitting Legend Abbrev. Nam	egend Name	1/2	3,4	_	17,4	11%	2	21/2	က	31/2	4	. 2	9	8	10	12	4	16	18	20	24
ш	NFPA 13 90' Standard Elbow	0	2	7	ო	4	2	9	7	ω	10	12	4	18	22	27	35	40	45	20	61
ტ	NFPA 13 Gate Valve	0	0	0	0	0	-	_	_	_	7	7	က	4	2	9	7	ω	9	7	13
-	NFPA 13 90' Flow thru Tee	က	4	2	9	œ	9	12	15	17	20	25	30	35	20	09	71	81	91	101	121
Zce	Colt C300 Vert	Fittin	g genera	ates a F	Fitting generates a Fixed Loss Base	s Based	on Flow														

က

Page Date

Units Summary

Diameter Units Inches
Length Units Feet
Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA. Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values

Carolina Fire Protection Lillington FD

Page 4 Date

	SUP	PLY	ANAL	LYSIS
--	-----	-----	------	-------

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	103.0	94	1694.0	102.503	354.07	54.385

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
10A	10.0	5.6	16.31	22.61	0.1	225	
10	11.83		24.36				
7	11.83		24.71				
8	11.83		24.75				
6	11.83		26.33				
73	11.83		37.05				
N1	15.56		37.31				
22	15.56		38.67				
TOR	5.56		43.23				
BOR	0.42		49.89				
UG1	-7.0		53.16				
TEST	-7.0		54.39	100.0			
9	11.83		24.13				
11	11.83		24.24				
70	11.83		25.03				
F1	15.56		23.89				
14	19.5		23.85				
. 13	19.5		33.93				
9A	10.0	5.6	16.14	22.5	0.1	225	
11A	10.0	5.6	16.29	22.6	0.1	225	
8A	10.0	5.6	16.56	22.79	0.1	225	
7A	10.0	5.6	16.97	23.07	0.1	225	
5A	10.0	5.6	16.86	22.99	0.1	225	
5	11.83		24.81				
71	11.83		25.01				
4	11.83		24.81				
3 2	11.83		25.0				
2	11.83		25.45				
1	11.83		27.36				
72	11.83		36.94				
4A	10.0	5.6	17.02	23.11	0.1	225	
3A	10.0	5.6	17.05	23.12	0.1	225	
2A	10.0	5.6	17.3	23.29	0.1	225	
6A	10.0	5.6	18.07	23.81	0.1	225	
1A	10.0	5.6	18.64	24.18	0.1	225	

Lillington	FD									Date
Node1 to	Elev1	К	Qa	Nom	Fitting)	Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
404	40	5.00	00.04	4		5 0	0.400	400	40.000	
10A to	10	5.60	22.61	1	T Eql	5.0 43.0	6.190 48.000	120	16.306 -0.793	
10	11.830		22.61	1.049	-4.		54.190	0.1633	8.851	Vel = 8.39
10	11.830		0.0	1.5	Т	9.9	11.250	120	24.364	
to 7	11.830		22.61	1.682			9.900 21.150	0.0164	0.0 0.346	Vel = 3.26
7	11.830		23.07	1.5			0.670	120	24.710	
to	44 020		4E 60	1.682			0.670	0.0612	0.0 0.041	Vel = 6.60
<u>8</u> 8	11.830 11.830		45.68 22.79	1.502			12.450	120	24.751	Vei - 0.00
to									0.0	
6	11.830		68.47	1.682			12.450	0.1271	1.583	Vel = 9.89
6 to	11.830		23.81	1.5	Т	9.9	38.610 9.900	120	26.334 0.0	
73	11.830		92.28	1.682			48.510	0.2210	10.719	Vel = 13.32
73	11.830		95.16	3	2E	18.815	18.370	120	37.053	
to N1	15.560		187.44	3.26	Т	20.159	38.974 57.344	0.0326	-1.615 1.872	Vel = 7.20
N1	15.560		66.63	3	Т	20.159	3.580	120	37.310	
to	45 500		054.07	2.26			20.159	0.0574	0.0 1.362	Vel = 9.77
22 22	15.560 15.560		254.07 0.0	3.26 4	E	13.167	23.739 1.330	0.0574 120	38.672	Vei - 9.77
to					_	10.107	13.167		4.331	
TOR	5.560		254.07	4.26		40.40=	14.497	0.0156	0.226	Vel = 5.72
TOR to	5.560		0.0	4	E Zce	13.167 0.0	13.130 22.516	120	43.229 6.109	* * Fixed Loss = 3.883
BOR	.420		254.07	4.26	Eql	0.0	35.646	0.0156	0.555	Vel = 5.72
BOR	.420		0.0	6	Е	21.583	9.750	150	49.893	
to UG1	-7		254.07	6.09			21.583 31.333	0.0018	3.214 0.057	Vel = 2.80
UG1	-7		0.0	6	2E	43.166		150	53.164	
to	7		254.07	6.09	3G 3T	13.875 138.748	195.789 675.249	0.0018	0.0 1.221	Vel = 2.80
TEST	-7		254.07 100.00	6.09	31	130.740	073.249	0.0010	1.221	Qa = 100.00
TEST			354.07					- 1000	54.385	K Factor = 48.01
9	11.830		22.50	1.5			6.780	120	24.126	
to 11	11.830		22.5	1.682			6.780	0.0162	0.0 0.110	Vel = 3.25
11	11.830		22.60	1.5	Т	9.9	3.580	120	24.236	
to	44.000		AE A	1 600			9.900	0.0500	0.0	Vol - 6.51
70 70	11.830 11.830		45.1 21.53	1.682 2.5	2E	16.474	13.480 18.300	0.0588 120	0.792 25.028	Vel = 6.51
to						10.414	16.474		-1.615	
F1	15.560		66.63	2.635			34.774	0.0136	0.472	Vel = 3.92
F1 to	15.560		0.0	1.5	Т	9.9	3.940 9.900	120	23.885 -1.706	
14	19.500		66.63	1.682			13.840	0.1210	1.674	Vel = 9.62
14	19.500		0.0	1.5	2E	9.9	73.390	120	23.853	
to 13	19.500		66.63	1.682			9.900 83.290	0.1210	0.0 10.077	Vel = 9.62
. •	. 5.555		20.00				- J.—J•			

Carolina Fire Protection Lillington FD

Page 6 Date

Lillington	FD									Date	9	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
13	19.500		0.0	1.5	Т	9.9	3.940	120	33.930			
to N1	15.560		66.63	1.682			9.900 13.840	0.1210	1.706 1.674	Vel = 9.	62	
N1	13.300		0.0 66.63	1.002			13.040	0.1210	37.310	K Factor		
9A	10	5.60	22.50	1	Т	5.0	6.230	120	16.143			
to	44.000		00.5	4 0 4 0	Eql	43.0	48.000	0.4040	-0.793	\/al = 0	25	
9	11.830		22.5 0.0	1.049			54.230	0.1618	8.776	Vel = 8.	35	
9			22.50						24.126	K Factor	= 4.58	
11A	10	5.60	22.60	1	Т	5.0	5.530	120	16.292			
to	44.000			4.040	Eql	43.0	48.000	0.4000	-0.793		00	
11	11.830		22.6	1.049			53.530	0.1632	8.737	Vel = 8.	39	
11			0.0 22.60						24.236	K Factor	= 4.59	
8A	10	5.60	22.79	1	T	5.0	6.220	120	16.560			***************************************
to					Eql	43.0	48.000		-0.793			
8	11.830		22.79	1.049			54.220	0.1657	8.984	Vel = 8.	46	
8			0.0 22.79						24.751	K Factor	= 4.58	
7A	10	5.60	23.07	1	Т	5.0	2.390	120	16.966			
to					Eql	43.0	48.000		-0.793			
	11.830		23.07	1.049			50.390	0.1694	8.537	Vel = 8.	56	
7			0.0 23.07						24.710	K Factor	= 464	
5A	10	5.60	22.99	1	Т	5.0	3.870	120	16.861	111 40101	1.01	
to		0.00			Eql	43.0	48.000		-0.793			
_5	11.830		22.99	1.049			51.870	0.1685	8.738	Vel = 8.	53	
5 to	11.830		-1.46	1.5	T	9.9	3.580 9.900	120	24.806 0.0			
າປ 71	11.830		21.53	1.682			13.480	0.0150	0.202	Vel = 3.	.11	
71	11.830		0.0	2.5			11.950	120	25.008			
to	44.000		04.50	0.005			44.050	0.0047	0.0	\/-I =4	07	
70	11.830		21.53	2.635			11.950	0.0017	0.020	Vel = 1.	.21	
70			0.0 21.53						25.028	K Factor	= 4.30	
5	11.830		1.46	1.5			7.750	120	24.806			
to								0.0004	0.0		0.4	
4	11.830		1.46	1.682	 		7.750	0.0001	0.001	Vel = 0	.21	
4 to	11.830		23.11	1.5			10.030	120	24.807 0.0			
3	11.830		24.57	1.682			10.030	0.0191	0.192	Vel = 3	.55	
3	11.830		23.12	1.5			6.990	120	24.999			
to	11 020		47.60	1 692)		6.990	0.0651	0.0	Vel = 6	80	
2	11.830 11.830		47.69 23.29	1.682 1.5	•		14.000	0.0651 120	0.455 25.454	vei - 0	.00	
to 1	11.830		70.98	1.682	<u>.</u>		14.000	0.1360	0.0 1.904	Vel = 10).25	
•	. 1.555		. 5.55		-			3300				

Final Calculations: Hazen-Williams

Carolina Fire Protection

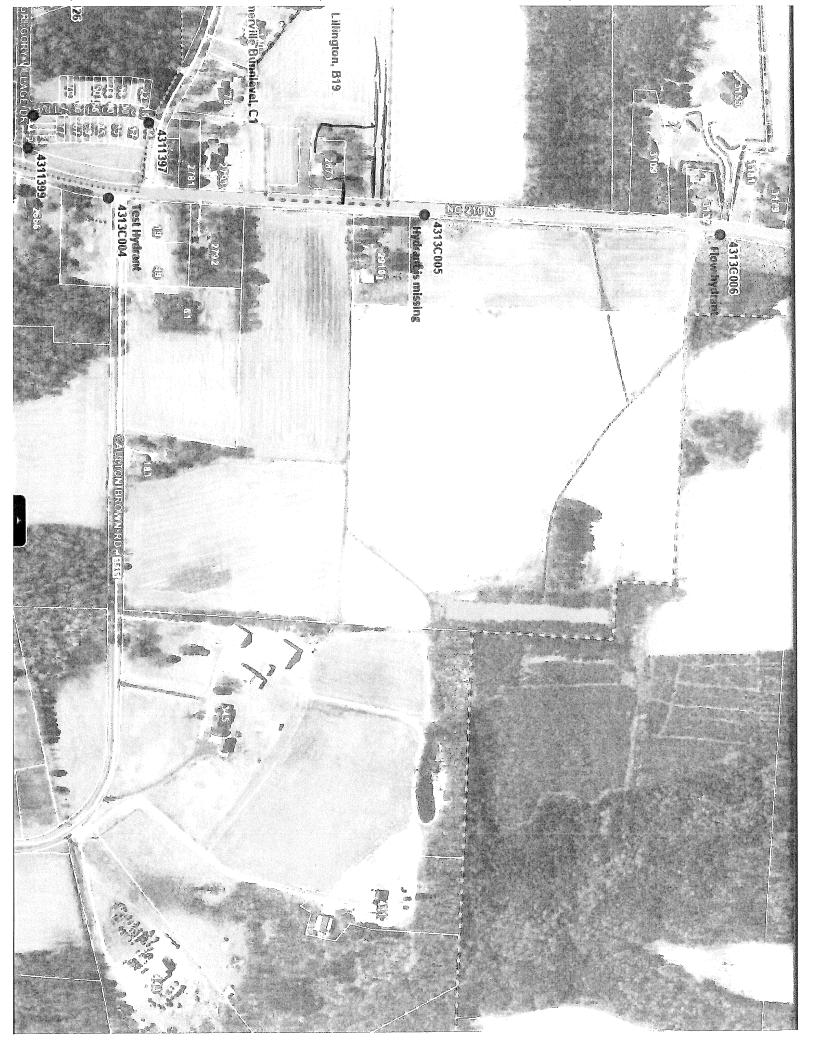
Lillington	FD	Collon								Date	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		
1	11.830		24.18	1.5	Т	9.9	31.070	120	27.358		
to	44.000		05.40	4.000			9.900	0.0000	0.0	\/al = 40.74	
72	11.830		95.16	1.682			40.970	0.2339	9.584	Vel = 13.74	
72 to	11.830		0.0	3			11.950	120	36.942 0.0		
73	11.830		95.16	3.26			11.950	0.0093	0.111	Vel = 3.66	
73			0.0 95.16						37.053	K Factor = 15.63	
4A	10	5.60	23.11	1	Т	5.0	2.450	120	17.025		
to	11 020		23.11	1.049	Eql	43.0	48.000 50.450	0.1700	-0.793 8.575	Vel = 8.58	
4	11.830	MATERIAL SOCIETY OF THE SOCIETY OF T	0.0	1.049			50.450	0.1700	0.575	Vei - 0.30	
4			23.11						24.807	K Factor = 4.64	
3A	10	5.60	23.12	1	Т	5.0	3.370	120	17.049		
to					Eql	43.0	48.000		-0.793		
3	11.830		23.12	1.049			51.370	0.1702	8.743	Vel = 8.58	
3			0.0 23.12						24.999	K Factor = 4.62	
2A	10	5.60	23.29	1	Т	5.0	3.880	120	17.298	111 4.02	
to	10	0.00	20.20	•	Eql	43.0	48.000	120	-0.793		
2	11.830		23.29	1.049			51.880	0.1725	8.949	Vel = 8.65	
2			0.0 23.29						25.454	K Factor = 4.62	
6A	10	5.60	23.81	1	T	5.0	2.390	120	18.075		
to	44.000		00.04	4 0 4 0	Eql	43.0	48.000	0.4700	-0.793	Val = 0.04	
6	11.830		23.81 0.0	1.049			50.390	0.1796	9.052	Vel = 8.84	
6			0.0 23.81						26.334	K Factor = 4.64	
1A	10	5.60	24.18	1	Т	5.0	3.430	120	18.643		
to		2.00			Eql	43.0	48.000		-0.793		
1	11.830		24.18	1.049	-		51.430	0.1849	9.508	Vel = 8.98	
			0.0							WE / 105	
1			24.18						27.358	K Factor = 4.62	

Page 7

Lillington Fire Department

Flow Test for Hydrant 4311 444

Start Time: 2024-08-16 11:02:19 End Time: 2024-08-16 11:03:05 Tested By: Roberts III, James L


Test Hydrant

1 cst myurant	
Static Pressure:	70.0 (
Residual Pressure:	69.0
Desired Pressure:	20.0
Volume at Desired Pressure:	11096.0

Flow Hydrants

Downstream Hydrant	Port Diameter	Friction Coefficient	Pitot Pressure	Flow (Calculated)
ID				
	2.5	0.9000000000000000002	64.0	1342.0

Victaulic® FireLock™ Series FL-QR Standard Coverage, Quick Response Upright, Pendent and Recessed Pendent Sprinklers K2.8 (4.0), K4.2 (6.1), K5.6 (8.1), K8.0 (11.5)

1.0 PRODUCT DESCRIPTION

	QUICK RES	PONSE UPRIGHT SPRINKL	ERS	
SIN	V2815	V4215	V2704	V3402
ORIENTATION	UPRIGHT	UPRIGHT	UPRIGHT	UPRIGHT
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.l.	8.0 lmp./11.5 S.l.
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	1/2" NPT/15mm BSPT/IGS	3/4" NPT/20mm BSPT/IGS
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa cULus 250 psi /1725 kPa	175 psi/1200 kPa
GLOBE RE-DESIGNATION	GL2815	GL4215	-	_
GLOBE EQUIVALENT	_	_	GL5615	GL8118

	QUICK RES	PONSE PENDENT SPRINKI	LERS	
SIN	V2801	V4201	V2708	V3406
ORIENTATION	PENDENT	PENDENT	PENDENT	PENDENT
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.l.	8.0 lmp./11.5 S.I.
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	1/2" NPT/15mm BSPT/IGS	34" NPT/20mm BSPT/IGS
MAX. WORKING PRESSURE	175 psi /1200 kPa	175 psi /1200 kPa	175 psi /1200 kPa cULus 250 psi/1725 kPa	175 psi/1200 kPa
GLOBE RE-DESIGNATION	GL2801	GL4201	_	_
GLOBE EQUIVALENT	-	_	GL5601	GL8101

	QUICK RESPONS	E RECESSED PENDENT SP	RINKLERS	
SIN	V2801	V4201	V2708	V3406
ORIENTATION	PENDENT	PENDENT	PENDENT	PENDENT
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.l.	8.0 lmp./11.5 S.I.
CONNECTION	1/2" NPT/15mm BSPT	½" NPT/15mm BSPT	½" NPT/15mm BSPT/IGS	34" NPT/20mm BSPT/IGS
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa cULus 250 psi/1725 kPa	175 psi/1200 kPa
ESCUTCHEON	Recessed	Recessed	Recessed	Recessed
GLOBE RE-DESIGNATION	GL2801	GL4201	_	_
GLOBE EQUIVALENT	_	_	GL5601	GL8101

	AVAII	LABLE GUARDS/SHIELDS		
SPRINKLER	V28	V42	V27	V34
Upright				
Pendent				

	AVAILABLE WRENCHES						
SPRINKLER	V56-2 Recessed	V56 Open End	V27-2 Recessed	V27 Open End	V34-2 Recessed	V34 Open End	3∕16 Hex-Bit
V2815 and V4215							
V2707 and V2704							
V3402							
V2801, and V4201							
V2706 and V2708							
V3406							

For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.0.

Factory Hydrostatic Test: 100% @ 500 psi/3447 kPa/34 Bar

Min. Operating Pressure: UL/FM: 7 psi/48 kPa/.5 Bar

VdS: 5 psi/35 kPa/.35 Bar (Upright only)

Temperature Rating: See tables in section 2.0

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

2.0 CERTIFICATIONS/LISTINGS

796	VõS	2

UPRIGHT APPROVALS/LISTINGS				
SIN	V2815	V4215	V2704	V3402
Nominal K Factor Imperial	2.8	4.2	5.6	8.0
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5
Orientation	UPRIGHT	UPRIGHT	UPRIGHT	UPRIGHT
		Approved Temper	rature Ratings F°/C°	
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
FM	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
LPCB/UKCA	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
VdS/CE	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
CCC K-ZSTZ	-	-	155°F/68°C 175°F/79°C 286°F/141°C	155°F/68°C 286°F/141°C

² For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

	PE	ENDENT APPROVALS/LISTING	GS	
SIN	V2801	V4201	V2708	V3406
Nominal K Factor Imperial	2.8	4.2	5.6	8.0
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5
Orientation	PENDENT	PENDENT	PENDENT	PENDENT
Escutcheon	Flush/Extended	Flush/Extended	Flush/Extended	Flush/Extended
	Approved Temperature Ratings F°/C°			
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
FM	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
CCC K-ZSTX	-	-	155°F/68°C 200°F/93°C 286°F/141°C	155°F/68°C 286°F/141°C

² For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

NOTES

- Reference the specific agency website listings for the most up-to-date certification information.
- Where cULus Listed, Polyester and VC-250 Coatings Listed as Corrosion Resistant (V3402 with VC-250 Only)
- Where FM Approved, VC-250 Coating Approved as Corrosion Resistant
- New York City Acceptance All UL Listed and/or FM Approved sprinklers acceptable to NYC per section 28-113 of the Administrative Code and the OTCR Rule.

victaulic.com

2.0 CERTIFICATIONS/LISTINGS (CONTINUED)

RECESSED PENDENT APPROVALS/LISTINGS				
SIN	V2801	V4201	V2708	V3406
Nominal K Factor Imperial	2.8	4.2	5.6	8.0
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5
Orientation	PENDENT	PENDENT	PENDENT	PENDENT
Escutcheon	Recessed	Recessed	Recessed	Recessed
	Арр	proved Temperature Ratings F	°/C°	
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
FM WITH ½" ADJUSTMENT ESCUTCHEON ONLY	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C
CCC K-ZSTX	-	-	155°F/68°C 200°F/93°C 286°F/141°C	155°F/68°C 286°F/141°C

² For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

NOTES

- Reference the specific agency website listings for the most up-to-date certification information.
- Where cULus Listed, Polyester and VC-250 Coatings Listed as Corrosion Resistant (V3402 with VC-250 Only)
- Where FM Approved, VC-250 Coating Approved as Corrosion Resistant
- New York City Acceptance All UL Listed and/or FM Approved sprinklers acceptable to NYC per section 28-113 of the Administrative Code and the OTCR Rule.

victaulic.com 3

3.0 SPECIFICATIONS - MATERIAL

Deflector: Bronze

Bulb Nominal Diameter: 3.0 mm

Load Screw: Bronze **Pip Cap:** Bronze

Spring Seal: PTFE coated Beryllium nickel alloy

Frame: Brass

Lodgement Spring: Stainless steel **Installation Wrench:** Ductile iron

Sprinkler Frame Finishes:

Plain brass

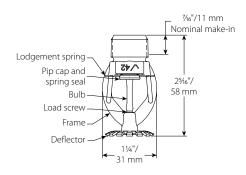
Chrome plated

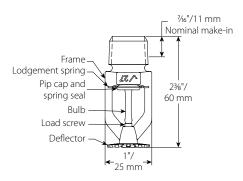
White polyester painted^{3, 4}

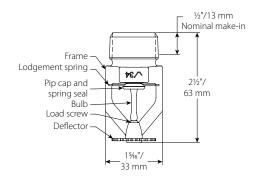
Flat black polyester painted^{3, 4}

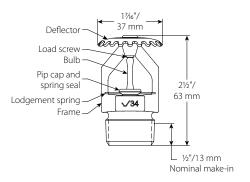
• Custom polyester painted3,4

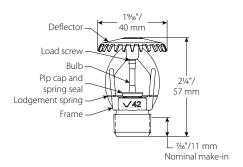
VC-250⁵

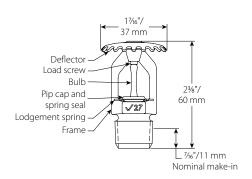

Not available on the Intermediate Level Style Pendent.

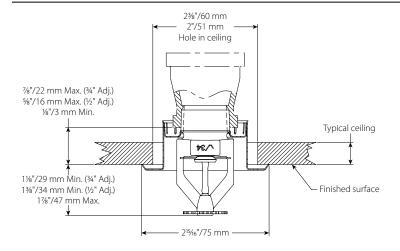

⁴ UL Listed for corrosion resistance.

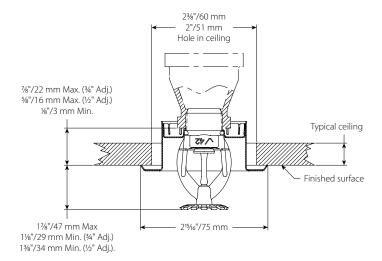

⁵ UL Listed and FM Approved for corrosion resistance.

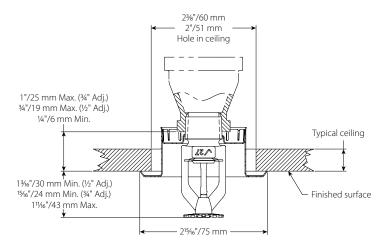

NOTE


• For cabinets and other accessories, refer to separate sheet.









4.0 DIMENSIONS

5.0 PERFORMANCE

Sprinkler systems are to be designed to and installed per NFPA, FM Datasheets, and any local standards.

6.0 NOTIFICATIONS

WARNING

- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.
- It is the system designer's responsibility to verify suitability of materials for use with the intended fluid media within the piping system and external environment.
- The material specifier shall evaluate the effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on materials to confirm system life will be acceptable for the intended service.

Failure to follow installation requirements and local and national codes and standards could compromise system integrity or cause system failure, resulting in death or serious personal injury and property damage.

7.0 REFERENCE MATERIALS

Ratings: All glass bulbs are rated for temperatures from -67°F/-55°C.

I-40: Victaulic FireLock™ Automatic Sprinklers Installation and Maintenance Instructions
I-V9: Style V9 Victaulic FireLock™ IGS™ Installation-Ready™ Sprinkler Coupling Installation Instructions

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for determining the suitability of Victaulic products for their end-use application, in accordance with industry standards, project specifications, and Victaulic's published performance, maintenance, and safety data, as well as all warnings and installation instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, warranty, installation instructions, or this disclaimer.

Installation

Always refer to and follow the <u>Victaulic Installation Handbook</u> or installation instructions for the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Intellectual Property Rights

No statement concerning the use of any material, product, service, or design is intended, or should be construed, to grant any license under any patent or other intellectual property right of Victaulic or any of its affiliates, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries. Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

Note

All products bearing a Victaulic trademark are manufactured by Victaulic or to Victaulic specifications. All products are to be installed only in accordance with the applicable Victaulic installation instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Victaulic® FireLock™ Series FL-QR/SW Standard Coverage, Quick Response Horizontal Sidewall and Recessed Horizontal Sidewall Sprinklers K2.8 (4.0), K4.2 (6.1), K5.6 (8.1), K8.0 (11.5)

1.0 PRODUCT DESCRIPTION

QUICK RESPONSE HORIZONTAL SIDEWALL				
SIN V2826 V4226 V2710 V3410				
ORIENTATION	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.I.	8.0 lmp./11.5 S.I.
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	½" NPT/15mm BSPT/IGS	3/4" NPT/ 20mm BSPT/IGS
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa
GLOBE RE-DESIGNATION	GL2826	GL4226		
GLOBE EQUIVALENT			GL5626	GL8127

QUICK RESPONSE RECESSED HORIZONTAL SIDEWALL				
SIN	V2826	V4226	V2710	V3410
ORIENTATION	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall
K-FACTOR ¹	2.8 lmp./4.0 S.I.	4.2 lmp./6.1 S.l.	5.6 lmp./8.1 S.I.	8.0 lmp./11.5 S.I.
CONNECTION	½" NPT/15mm BSPT	½" NPT/15mm BSPT	½" NPT/15mm BSPT	¾" NPT/ 20mm BSPT
MAX. WORKING PRESSURE	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa	175 psi/1200 kPa
ESCUTCHEON	Recessed	Recessed	Recessed	Recessed
GLOBE RE-DESIGNATION	GL2826	GL4226		
GLOBE EQUIVALENT			GL5626	GL8127
AVAILABLE GUARDS				
SPRINKLER	V28	V42	V27	V34
Horizontal Sidewall				

AVAILABLE WRENCHES							
Sprinkler	V56-2 Recessed	V56 Open End	V27-2 Recessed	V27 Open End	V34-2 Recessed	V34 Open End	3∕16 Hex-Bit
V2826 and V4226							
V2710							
V3410							

Factory Hydrostatic Test: 100% @ 500 psi/3447 kPa/34 bar

Min. Operating Pressure: UL/FM: 7psi/48 kPa/.5 bar

Temperature Rating: See tables in section 2.

 $^{\rm 1}$ $\,$ For K-Factor when pressure is measured in bar, multiply S.I. units by 10.0.

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

2.0 CERTIFICATION/LISTINGS

HORIZONTAL SIDEWALL APPROVALS/LISTINGS				
SIN	V2826	V4226	V2710	V3410
Nominal K Factor Imperial	2.8	4.2	5.6	8
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5
Orientation	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall
Escutcheon	Flush Extended	Flush Extended	Flush Extended	Flush Extended
		Approved Tempera	ature Ratings F°/C°	
cULus 4" – 12" Deflector Distance	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
FM	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-
LPCB	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-
CE, UKCA	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	-

RECESSED HORIZONTAL SIDEWALL APPROVALS/LISTINGS				
SIN	V2826	V4226	V2710	V3410
Nominal K Factor Imperial	2.8	4.2	5.6	8
Nominal K Factor S.I. ²	4.0	6.1	8.1	11.5
Orientation	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall	Horizontal Sidewall
Escutcheon	RECESSED	RECESSED	RECESSED	RECESSED
	Approved Temperature Ratings F°/C°			
cULus 4" – 12" Deflector Distance ½" and ¾" Adjustment Escutcheon "	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C
FM ½" Adjustment Escutcheon Only	-	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	-

For K-Factor when pressure is measured in Bar, multiply S.I. units by 10.

NOTES

- Listings and approval as of printing.
- Where cULus Listed, Polyester and VC-250 Coatings Listed as Corrosion Resistant
- Where FM Approved, VC-250 Coating Approved as Corrosion Resistant
- New York City Acceptance All UL Listed and/or FM Approved sprinklers acceptable to NYC per section 28-113 of the Administrative Code and the OTCR Rule

3.0 SPECIFICATIONS - MATERIAL

Deflector: Bronze

Bulb Nominal Diameter: 3.0mm

Load Screw: Bronze **Pip Cap:** Bronze

Spring Seal: PTFE coated Beryllium nickel alloy

Frame: Brass

Lodgement Spring: Stainless steel Installation Wrench: Ductile iron Sprinkler Frame Finishes:

Plain brass

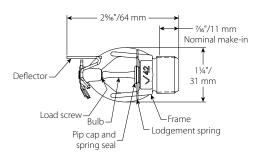
Chrome plated

White polyester painted^{3, 4}

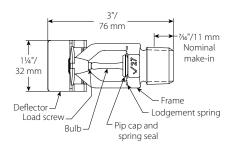
• Flat black polyester painted^{3, 4}

• Custom polyester painted^{3, 4}

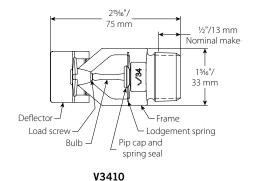
VC-250⁵

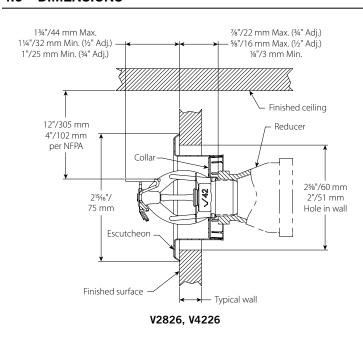

Not available on the Intermediate Level Style Pendent.

⁴ UL Listed for corrosion resistance.

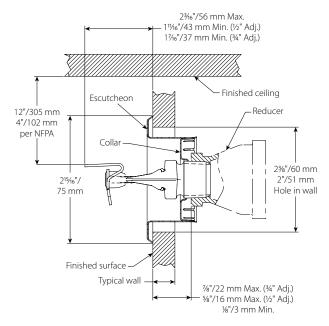

UL Listed and FM Approved for corrosion resistance.

NOTE

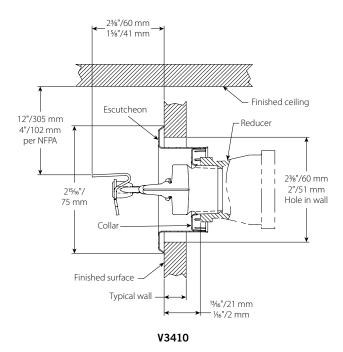

• For cabinets and other accessories refer to separate sheet.


V2826, V4226

V2710



4.0 DIMENSIONS

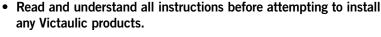


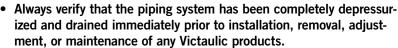
4.0 DIMENSIONS (CONTINUED)

V2710

4

victaulic.com


PERFORMANCE 5.0


Sprinkler is to be installed and designed as per NFPA, FM Datasheets, or any local standards.

6.0 **NOTIFICATIONS**

Wear safety glasses, hardhat, and foot protection.

Failure to follow these instructions could result in death or serious personal injury and property damage.

- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.
- It is the system designer's responsibility to verify suitability of materials for use with the intended fluid media within the piping system and external environment.
- The material specifier shall evaluate the effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on materials to confirm system life will be acceptable for the intended service.

Failure to follow installation requirements and local and national codes and standards could compromise system integrity or cause system failure, resulting in death or serious personal injury and property damage.

REFERENCE MATERIALS 7.0

Ratings: All glass bulbs are rated for temperatures from -67°F/-55°C.

1-40: Victaulic FireLock™ Automatic Sprinklers Installation and Maintenance Instructions I-V9: Style V9 Victaulic FireLock™ IGS™ Installation-Ready™ Sprinkler Coupling Installation Instructions

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidiaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

Engineering Specification

Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

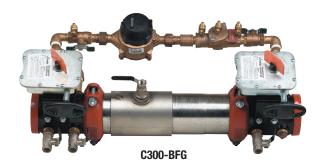
Colt[™] Series C300, C300N

Double Check Detector Assemblies

Sizes: 21/2" - 10"

The Colt C300 and C300N Double Check Detector Assemblies are designed to protect drinking water supplies from dangerous cross-connections in accordance with national plumbing codes and water authority requirements for non-potable service applications such as irrigation, fire line, or industrial processing. Both assemblies may be installed under continuous pressure service and may be subjected to backpressure for non-toxic applications. The Colt C300 and C300N are used primarily on fire line sprinkler systems when it is necessary to monitor unauthorized use of water, and are for use in non-health hazard applications.

Features


- Extremely compact design
- 70% Lighter than traditional designs
- 304 (Schedule 40) Stainless steel housing & sleeve
- · Groove fittings allow integral pipeline adjustment
- Patented Tri-Link Check provides lowest pressure loss
- Unmatched ease of serviceability
- · Available with grooved butterfly valve shutoffs
- May be used for horizontal, vertical or N pattern installations
- Replaceable check disc rubber
- Includes an integrated supervisory tamper switch on each gate valve of the OSY model

A WARNING

It is illegal to use this product in any plumbing system providing water for human consumption, such as drinking or dishwashing, in the United States. Before installing standard material product, consult your local water authority, building and plumbing codes.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

Specification

The Colt C300, C300N Double Check Detector Assemblies shall consist of two independent Tri-Link Check modules within a single housing, sleeve access port, four test cocks, and two drip tight shutoff valves. Tri-Link Check shall be removable and serviceable, without the use of special tools. The housing shall be constructed of 304 (Schedule 40) stainless steel pipe with groove end connections. Tri-Link Checks shall have reversible elastomer discs and in operation shall produce drip tight closure against the reverse flow of liquid caused by backpressure or backsiphonage. The bypass assembly shall consist of a meter, which registers in either gallon or cubic measurement, a double check valve assembly, and required test cocks.

The integrated supervisory tamper switch on the OSY model shall have continuity with the valve fully open and activate within two (2) turns from open. The device consists of two SPDT switches and is designed to send a tamper signal when the valve is closed and when the switch is removed from the valve. In the neutral position, the switch indicates the valve is fully open. Closing the valve causes the switch rod to come out of the valve stem groove, activating the switch. Removing the tamper switch also activates the switch. Assembly shall be a Colt C300, C300N as manufactured by Ames Fire & Waterworks.

Configurations

- Horizontal
- Vertical up
- "N" pattern horizontal

Materials

- Housing & Sleeve: 304 (Schedule 40) stainless steel
- · Elastomers: EPDM, silicone, and Buna 'N'
- Tri-Link Checks: Noryl®, stainless steel
- · Check Discs: Reversible silicone or EPDM
- Test Cocks: Lead Free* bronze body
- Pins & Fasteners: 300 Series stainless steel
- Springs: Stainless steel

Available Models

Suffix:

OSY-TS — UL/FM outside stem and yoke resilient seated

gate valves with integrated tamper switch

BFG — UL/FM grooved gear operated butterfly valves

with tamper switch

OSY FxG** — Flanged inlet gate connection and grooved

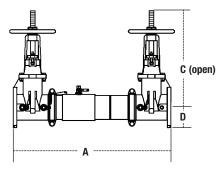
outlet gate connection

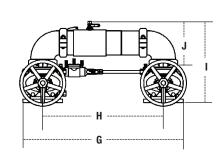
OSY GxF** — Grooved inlet gate connection and flanged

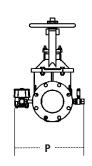
outlet gate connection

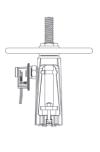
OSY GxG** — Grooved inlet gate connection and grooved

outlet gate connection

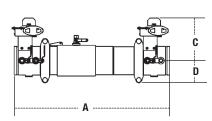

** Consult factory for the following:

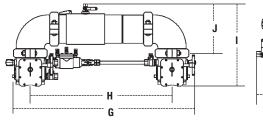

- Grooved NRS gate valves
- Post-indicator plate and operating nut
- Dimensions

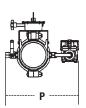

Pressure - Temperature


Temperature Range: 33°F – 140°F (0.5°C – 60°C) Maximum Working Pressure: 175psi (12.1 bar)

Dimensions - Weights







C300, C300N

SIZE								DIMEN	ISIONS									WEI	GHT	
	A	Ą	C (0	OSY))	(3		Н			J		F)	C3	800	C30	OON
in.	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lb	kg	lb	kg
21/2	303/4	781	163/8	416	31/2	89	291/16	738	21½	546	15½	393	813/16	223	133/16	335	144	65	152	69
3	313/4	806	187/8	479	311/16	94	301/4	768	221/4	565	171//8	435	93/16	233	141/2	368	164	74	177	80
4	33¾	857	223/4	578	4	102	33	838	231/2	597	181/2	470	915/16	252	153/16	386	180	81	203	92
6	431/2	1105	301//8	765	5½	140	443/4	1137	331/4	845	233/16	589	131/16	332	19	483	314	142	355	161
8	493/4	1264	37¾	959	611/16	170	541//8	1375	401//8	1019	277/16	697	15 ¹¹ / ₁₆	399	213/16	538	499	226	574	260
10	573/4	1467	45¾	1162	83/16	208	66	1676	491/2	1257	321/2	826	175/16	440	24	610	800	363	970	440

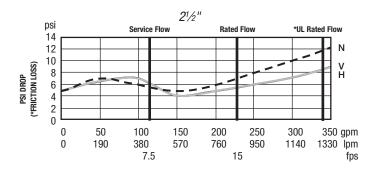
C300BFG, C300NBFG

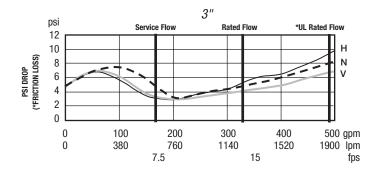
SIZE								DIMEN	ISIONS									WEI	GHT	
	l l	A	()	G	ì		1			J		F)	C300	OBFG	C300	NBFG
in.	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lb	kg	lb	kg
21/2	273/4	705	8	203	31/2	89	297/8	759	21½	546	14 ¹⁵ / ₁₆	379	813/16	223	13	330	70	32	78	35
3	281/4	718	85/16	211	311/16	94	3011/16	779	221/4	565	15 ⁷ / ₁₆	392	93/16	233	13½	343	68	31	81	37
4	29	737	815/16	227	311/16	94	3115/16	811	231/2	597	161/4	412	915/16	252	14	356	75	34	98	44
6	361/2	927	10	254	5	127	43¾16	1097	331/4	845	19 ¹¹ / ₁₆	500	131/16	332	141/2	368	131	59	171	78
8	423/4	1086	121/4	311	61/2	165	511/16	1297	401/8	1019	235/16	592	1511/16	399	18¾16	462	275	125	351	159

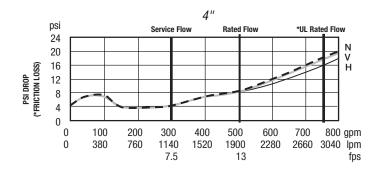
Noryl® is a registered trademark of SHPP Global Technologies B.V.

^{*}The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Approvals

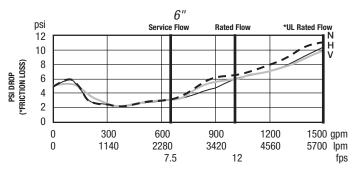

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC)
- AWWA C510-97

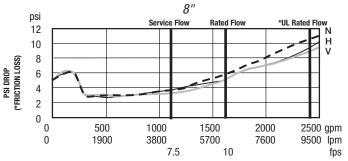

For additional approval information, contact the factory or check Ames Fire & Waterworks at watts.com.

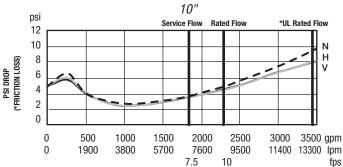


Capacity

UL/FM Certified Flow Characteristics Flow characteristics collected using butterfly shutoff valves

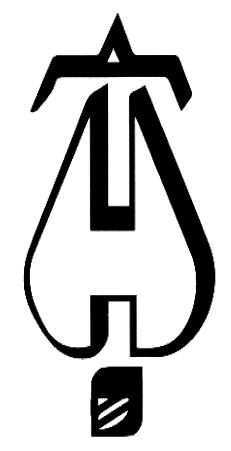





Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps.

- Service Flow is typically determined by a rated velocity of 7.5fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.

___Horizontal _____Vertical _____ N - Pattern



A WATTS Brand

ES-A-C300-C300N 2205 © 2022 Watts

Hydraulic Calculations by HydraCALC

Carolina Fire Protection 4055 Hodges Chapel Rd. Dunn, NC 28334 910-892-1700

Job Name

: Lillington FD Drawing : Truck Bay : Lillington, NC

Location Remote Area : 1

Contract

: 25C999

Data File

: Project1 Area TRUCK BAY-Manual.WXF

Date

Hydraulic Design Information Sheet

```
Name - Lillington FD
                                                                  Date - 03-31-2025
Location - Lillington, NC
Building - Truck Bay
                                                          System No. - 1
Contractor - Carolina Fire Protection
                                                          Contract No. - 25C999
Calculated By - Austin Lee
Construction: ( ) Combustible (X) Non-Combustible
                                                         Drawing No. -
                                                         Ceiling Height - VARIES
Occupancy - ORDINARY HAZARD 2
                                  Ord.Haz.Gp. ( ) 1 (X) 2 ( ) 3 ( ) Ex.Haz.
S
    (X) NFPA 13 ( ) Lt. Haz.
    ( ) NFPA 231 ( ) NFPA 231C
                                   ( ) Figure
Y
S
    Other
Т
    Specific Ruling
                                             Made By
                                                                   Date
Ε
                                                System Type
                                                                 Sprinkler/Nozzle
     Area of Sprinkler Operation - 1565
M
                                                (X) Wet
                                                                 Make VICTAULIC
     Density
                                   - .20
                                                                 Model V2704
     Area Per Sprinkler
                                   - 130
                                                () Dry
D
     Elevation at Highest Outlet - 19.5
                                                                Size 1/2"
                                                ( ) Deluge
Ε
                                                () Preaction K-Factor 5.6
     Hose Allowance - Inside
S
     Rack Sprinkler Allowance
                                                ( ) Other
                                                                Temp.Rat.155
Ι
G
     Hose Allowance - Outside
                                   - 250
Ν
     Note
Calculation Flow Required - 643.476 Press Required - 60.808 Summary C-Factor Used: 120 Overhead 150 Ur
                                                        150 Underground
W
    Water Flow Test:
                                      Pump Data:
                                                               Tank or Reservoir:
                                                              Cap. -
    Date of Test - 02/25/2025
Α
                                   Rated Cap. -
    Time of Test
                  - 11AM
                                                            Elev.-
Т
    Static Press - 103
                                   @ Press
Ε
                                                                   Well
R
    Residual Press - 94
                                   Elev.
                                                                 Proof Flow
    Flow
                    - 1694
S
    Elevation
U
Ρ
    Location - Lillington, NC
Ρ
    Source of Information - Austin Lee & Wayne Dunn
\mathbf{L}
Y
C
    Commodity
                                         Class
                                                       Location
0
    Storage Ht.
                                         Area
                                                       Aisle W.
M
    Storage Method:
                        Solid Piled
                                                Palletized
                                                                      Rack
M
                          ( ) Conven. Pallet
                                                ( ) Auto. Storage
         ) Single Row
                                                                      () Encap.
                                                ( ) Solid Shelf
                                                                      ( ) Non
S
   R
        ( ) Double Row
                          ( ) Slave Pallet
Т
   Α
        ( ) Mult. Row
                                                 ( ) Open Shelf
0
   C
                                              Clearance:Storage to Ceiling
        Flue Spacing
R
   K
        Longitudinal
Α
                                              Transverse
G
E
        Horizontal Barriers Provided:
```

2

Page Date

11.477 393.476 60.364 250 643.476 Demand:
D1 - Elevation
D2 - System Flow
D2 - System Pressure :
Hose (Demand)
D3 - System Demand :
Safety Margin 1800 1600 1400 1200 FLOW (N ^ 1.85) 1000 800 City Water Supply:
C1 - Static Pressure : 103
C2 - Residual Pressure: 94
C2 - Residual Flow : 1694 9 2 200 400 ပ · E 100 R 110 140 120 150 130 s 80 s 90 U 70 R 60 E 50 20 10 4 30 ۵

Fittings Used Summary

Carolina Fire Protection Lillington FD

Fitting L Abbrev.	Fitting Legend Abbrev. Name	1/2	3/4	-	7,1	11%	2	21/2	3	31/2	4	5	9	80	10	12	4	16	18	20	24
ш	NFPA 13 90' Standard Elbow	0	7	7	က	4	2	9	7	œ	10	12	4	18	22	27	35	40	45	20	61
ഗ	NFPA 13 Gate Valve	0	0	0	0	0	_	_	_	_	7	2	က	4	2	9	7	œ	10	=	13
-	NFPA 13 90' Flow thru Tee	က	4	2	9	œ	9	12	15	17	20	22	30	35	20	09	71	8	91	101	121
Zce	Colt C300 Vert	Fitting	Fitting generates a Fixed I	ates a F	ixed Loss Ba	sec	d on Flow														

ı

ო

Page Date

Units Summary

Diameter Units Inches
Length Units Feet
Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA. Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values

Page 4 Date

SH	PP	I Y	ΔΛ	ΙΔΙ	LYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	103.0	94	1694.0	101.498	643.48	60.364

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	۸	lotes	
103	19.5	5.6	21.56	26.0	0.2	130	
102	19.5	5.6	21.69	26.08	0.2	130	
101	19.5	5.6	22.31	26.45	0.2	130	
30	19.5		27.55				
N7	17.79		30.27				
N6	17.79		30.33				
N5	17.79		30.51				
N4	17.79		30.9				
N3	17.79		31.43				
N2	17.79		32.24				
N1	17.79		35.32				
13	19.5		33.48				
14	19.5		26.9				
F1	16.25		27.21				
F2	16.25		27.11				
F3	16.25		26.83				
F4	16.25		26.37				
F5	16.25		25.64				
F6	16.25		25.3				
F7	16.25		25.18				
18	19.5	5.0	22.49	00.40	2.2	400	
105	19.5	5.6	21.87	26.19	0.2	130	
104	19.5	5.6	21.57	26.01	0.2	130	
25	19.5	F 0	22.59	20.25	0.0	420	
110	19.5	5.6 5.6	21.97	26.25	0.2	130	
109	19.5	5.6	21.66	26.06 26.05	0.2	130	
108	19.5 19.5	5.6 5.6	21.64 21.78	26.05 26.13	0.2 0.2	130 130	
107 106	19.5	5.6	22.39	26.13 26.5	0.2	130	
31	19.5	5.0	27.62	20.5	0.2	130	
32	19.5		22.88				
32 115	19.5	5.6	22.24	26.41	0.2	130	
114	19.5	5.6	21.92	26.22	0.2	130	
113	19.5	5.6	21.9	26.21	0.2	130	
112	19.5	5.6	22.02	26.28	0.2	130	
111	19.5	5.6	22.63	26.64	0.2	130	
38	19.5	5.0	27.82	20.04	0.2	100	
39	19.5		25.61				
40	19.5		29.51				
41	19.5		26.08				
42	19.5		30.04				
43	19.5		26.42				
10	10.0		20.12				

Carolina Fire Protection Lillington FD

Page 5 Date

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
44	19.5		30.78		
22	17.79		38.38		
TOR	17.79		39.34		
BOR	5.04		52.28		
UG1	-7.0		57.62		
TEST	-7.0		60.36	250.0	

Carolina Fire Protection Lillington FD

Page 6 Date

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		110100	
102	10 F	F 60	20.22	4 5			10.000	400	24 550			
103 o	19.5	5.60	20.33	1.5			10.000	120	21.556 0.0			
102	19.5		20.33	1.682			10.000	0.0135	0.135	Vel = 2.9	94	
102 o	19.5	5.60	26.08	1.5			10.000	120	21.691 0.0			
101	19.5		46.41	1.682			10.000	0.0619	0.619	Vel = 6.7	70	
101 o	19.5	5.60	26.45	1.5	E	4.95	31.780 4.950	120	22.310 0.0			
30	19.5		72.86	1.682			36.730	0.1427	5.242	Vel = 10.	52	
30	19.5		0.0	1.5	Т	9.9	3.940	120	27.552			
o N7	17.79		72.86	1.682			9.900 13.840	0.1427	0.741 1.975	Vel = 10.	52	
N7 o	17.79		0.0	3			11.000	120	30.268 0.0		-	
N6	17.790		72.86	3.26			11.000	0.0056	0.062	Vel = 2.8	30	
N6 o	17.790		72.76	3			9.000	120	30.330 0.0			
N5	17.790		145.62	3.26			9.000	0.0204	0.184	Vel = 5.6	30	
N5 o	17.790		72.46	3			9.000	120	30.514 0.0			
N4	17.790		218.08	3.26			9.000	0.0432	0.389	Vel = 8.3	38	
N4 0	17.790		39.89	3			9.000	120	30.903		_	
N3	17.790		257.97	3.26			9.000	0.0590	0.531	Vel = 9.9	92	
N3 o	17.790		40.20	3			10.500	120	31.434 0.0			
N2	17.790		298.17	3.26	-	00.450	10.500	0.0771	0.810	Vel = 11.	46	
N2 0	17.790		42.36	3	Т	20.159	11.040 20.159	120	32.244 0.0			
N1 N1	17.790 17.790		340.53 52.95	3.26 3	Т	20.159	31.199 3.580	0.0986 120	3.075 35.319	Vel = 13.	09	
0					•	20.100	20.159		0.0			
22	17.790		393.48	3.26			23.739	0.1288	3.057	Vel = 15.	12	
22			0.0 393.48						38.376	K Factor	= 63.52	
N1	17.790		-52.95	1.5	Т	9.9	3.940	120	35.319	111 45151	00.02	
o 13	19.5		-52.95	1.682			9.900 13.840	-0.0790	-0.741 -1.094	Vel = 7.6	26	
13	19.5		0.0	1.502	2E	9.9	73.390	120	33.484	VEI - 7.0	33	
0						0.0	9.900		0.0			
14	19.5		-52.95	1.682	T	0.0	83.290	-0.0791	-6.586	Vel = 7.6	55	
14 0	19.5		0.0	1.5	Т	9.9	3.940 9.900	120	26.898 1.408	\/al = - 7 t	25	
F1 F1	16.250 16.250		-52.95 0.0	1.682 2.5			13.840 12.000	-0.0790 120	-1.094 27.212	Vel = 7.6	oo	
0									0.0	Val = 2	10	
F2 F2	16.250 16.250		-52.95 -42.35	2.635 2.5			12.000 10.500	-0.0089 120	-0.107 27.105	Vel = 3.	12	
F2 :0	10.250		-4 ∠.35	2.0			10.500	120	0.0			

5.60

5.60

5.60

108

107

107

106

106

to

to

to

31

31

N6

to

19.5

19.5

19.5

19.5

19.5

19.5

19.5

17.790

1.5

1.5

1.5

1.5

1.682

1.682

1.682

1.682

Ε

T

26.05

20.13

26.13

46.26

26.50

72.76

0.0

72.76

Final Calculations: Hazen-Williams Carolina Fire Protection Page 7 Date Lillington FD Elev1 Κ Qa Nom **Fitting** Pipe **CFact** Pt Node1 ***** ***** **Ftngs** Pe **Notes** or Pf Total Pf/Ft Elev2 Fact Qt Act Eqiv Len Node2 F3 16.250 -40.21 2.5 9.000 120 26.828 0.0 to -0.0504 -0.454 16.250 -135.51 2.635 9.000 Vel = 7.97F4 26.374 F4 16.250 -39.89 2.5 9.000 120 0.0 to -0.733 -0.0814 Vel = 10.32F5 16.250 -175.4 2.635 9.000 120 25.641 F5 16.250 59.29 2.5 9.000 0.0 to -0.0380 -0.342Vel = 6.832.635 9.000 F6 16.250 -116.11 120 25.299 F6 58.24 2.5 11.000 16.250 0.0 to -0.0105 -0.115 -57.87 2.635 11.000 Vel = 3.4016.250 F7 T 120 25.184 F7 16.250 0.0 1.5 9.9 3.940 9.900 -1.408to -57.87 1.682 13.840 -0.0932 -1.290Vel = 8.3619.5 18 Е 120 22.486 18 19.5 0.0 1.5 4.95 1.610 4.950 0.0 to -0.0931 -0.611 Vel = 8.361.682 6.560 105 19.500 -57.87 105 19.500 5.60 26.19 1.5 10.000 120 21.875 0.0 to 19.5 -31.68 1.682 10.000 -0.0306 -0.306 Vel = 4.57104 120 21.569 104 19.5 5.60 26.01 1.5 10.000 0.0 to -5.67 1.682 10.000 -0.0013 -0.013 Vel = 0.82103 19.5 0.0 21.556 K Factor = -1.22103 -5.67 T 9.9 120 25.299 F6 16.250 -58.23 1.5 3.940 -1.4089.900 to -58.23 1.682 13.840 -0.0943-1.305Vel = 8.4125 19.5 4.95 1.610 120 22.586 25 19.5 0.0 1.5 E 4.950 0.0 to -58.23 1.682 6.560 -0.0942 -0.618Vel = 8.41110 19.5 10.000 120 21.968 110 5.60 26.24 1.5 19.5 0.0 to 109 19.5 -31.99 1.682 10.000 -0.0311 -0.311 Vel = 4.62109 19.5 5.60 26.07 1.5 10.000 120 21.657 0.0 to -5.921.682 10.000 -0.0014 -0.014 Vel = 0.85108 19.5

Computer Programs by Hydratec Inc. Revision: 50.5520.727

4.95

9.9

10.000

10.000

10.000

10.000

31.780

36.730

4.950

3.940

9.900

13.840

120

120

120

120

0.0132

0.0616

0.1423

0.1423

21.643

0.132

21.775

0.616

5.228

27.619

0.741

1.970

22.391

0.0

0.0

Vel = 2.91

Vel = 6.68

Vel = 10.51

Vel = 10.51

0.0

Carolina Fire Protection Lillington FD

Page 8 Date

Lillington	FD									Date		
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
N6			0.0 72.76						30.330	K Factor =	: 13.21	
F5 to	16.250		-59.30	1.5	Т	9.9	3.940 9.900	120	25.641 -1.408			
32	19.5		-59.3	1.682			13.840	-0.0975	-1.349	Vel = 8.5	6	
32 to	19.5		0.0	1.5	E	4.95	1.610 4.950	120	22.884 0.0			
115	19.500		-59.3	1.682			6.560	-0.0976	-0.640	Vel = 8.5	6	, 41-1787812-141-111-1
115 to	19.500	5.60	26.42	1.5			10.000	120	22.244 0.0			
114	19.5		-32.88	1.682			10.000	-0.0327	-0.327	Vel = 4.7	5	
114 to	19.5	5.60	26.21	1.5			10.000	120	21.917 0.0			
113	19.5		-6.67	1.682			10.000	-0.0017	-0.017	Vel = 0.9	6	
113 to	19.5	5.60	26.21	1.5			10.000	120	21.900 0.0			
112	19.5		19.54	1.682			10.000	0.0125	0.125	Vel = 2.8	2	
112 to	19.5	5.60	26.28	1.5			10.000	120	22.025 0.0	\/.\ 0.0		
111	19.5	F 60	45.82	1.682		4.05	10.000	0.0605	0.605	Vel = 6.6	2	
111 to 38	19.5 19.5	5.60	26.64 72.46	1.5 1.682	E	4.95	31.780 4.950 36.730	120 0.1413	22.630 0.0 5.189	Vel = 10.4	16	
38	19.5		0.0	1.502	T	9.9	3.940	120	27.819	VCI - 10	+0	
to N5	17.790		72.46	1.682	•	0.0	9.900 13.840	0.1412	0.741 1.954	Vel = 10.4	16	
110	17.700		0.0	1.002			10.040	0.1712	1.004	VCI - 10	1 0	
N5			72.46						30.514	K Factor =	: 13.12	
F4 to	16.250		39.89	1.5	Т	9.9	3.940 9.900	120	26.374 -1.408			
39	19.5		39.89	1.682	MATERIAL DESCRIPTION OF THE PARTY OF THE PAR		13.840	0.0468	0.648	Vel = 5.7	6	
39 to	19.5		0.0	1.5	2E	9.9	73.390 9.900	120	25.614 0.0			
40	19.5		39.89	1.682			83.290	0.0468	3.901	Vel = 5.7	6	MANAGE TO A STATE OF THE STATE
40 to	19.5		0.0	1.5	Т	9.9	3.940 9.900	120	29.515 0.741			
N4	17.790		39.89	1.682			13.840	0.0467	0.647	Vel = 5.7	'6	
N4			0.0 39.89						30.903	K Factor =	7.18	
F3 to	16.250		40.21	1.5	Т	9.9	3.940 9.900	120	26.828 -1.408			
41	19.5		40.21	1.682			13.840	0.0475	0.658	Vel = 5.8	81	
41 to	19.5		0.0	1.5	2E	9.9	73.390 9.900	120	26.078 0.0			
42	19.5	- Washington	40.21	1.682			83.290	0.0475	3.958	Vel = 5.8	31	
42 to	19.5		0.0	1.5	Т	9.9	3.940 9.900	120	30.036 0.741			
N3	17.790		40.21	1.682			13.840	0.0475	0.657	Vel = 5.8	31	

TEST

643.48

Carolina Lillington	Fire Prot FD	ection								Page 9 Date
Node1	Elev1	K	Qa	Nom	Fitting	1	Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
N3			0.0 40.21						31.434	K Factor = 7.17
F2	16.250		42.35	1.5	Т	9.9	3.940	120	27.105	
to							9.900		-1.408	
43	19.5		42.35	1.682			13.840	0.0524	0.725	Vel = 6.11
43	19.5		0.0	1.5	2E	9.9	73.390	120	26.422	
to							9.900		0.0	
44	19.5		42.35	1.682			83.290	0.0523	4.357	Vel = 6.11
44	19.5		0.0	1.5	Т	9.9	3.940	120	30.779	
to							9.900		0.741	
N2	17.790		42.35	1.682			13.840	0.0523	0.724	Vel = 6.11
			0.0							
N2			42.35						32.244	K Factor = 7.46
22	17.790		393.48	4	Т	26.334	1.330	120	38.376	
to							26.334		0.0	
TOR	17.790		393.48	4.26			27.664	0.0350	0.969	Vel = 8.86
TOR	17.790		0.0	4	Е	13.167	13.130	120	39.345	
to					Zce	0.0	22.516		11.686	* * Fixed Loss = 6.164
BOR	5.04		393.48	4.26	Eql	0.0	35.646	0.0350	1.247	Vel = 8.86
BOR	5.04		0.0	6	E	21.583	9.750	150	52.278	
to							21.583		5.215	
UG1	-7		393.48	6.09			31.333	0.0041	0.127	Vel = 4.33
UG1	-7		0.0	6	2E	43.166	479.460	150	57.620	
to					3G	13.875	195.789		0.0	
TEST	-7		393.48	6.09	3T	138.748	675.249	0.0041	2.744	Vel = 4.33
			250.00							Qa = 250.00

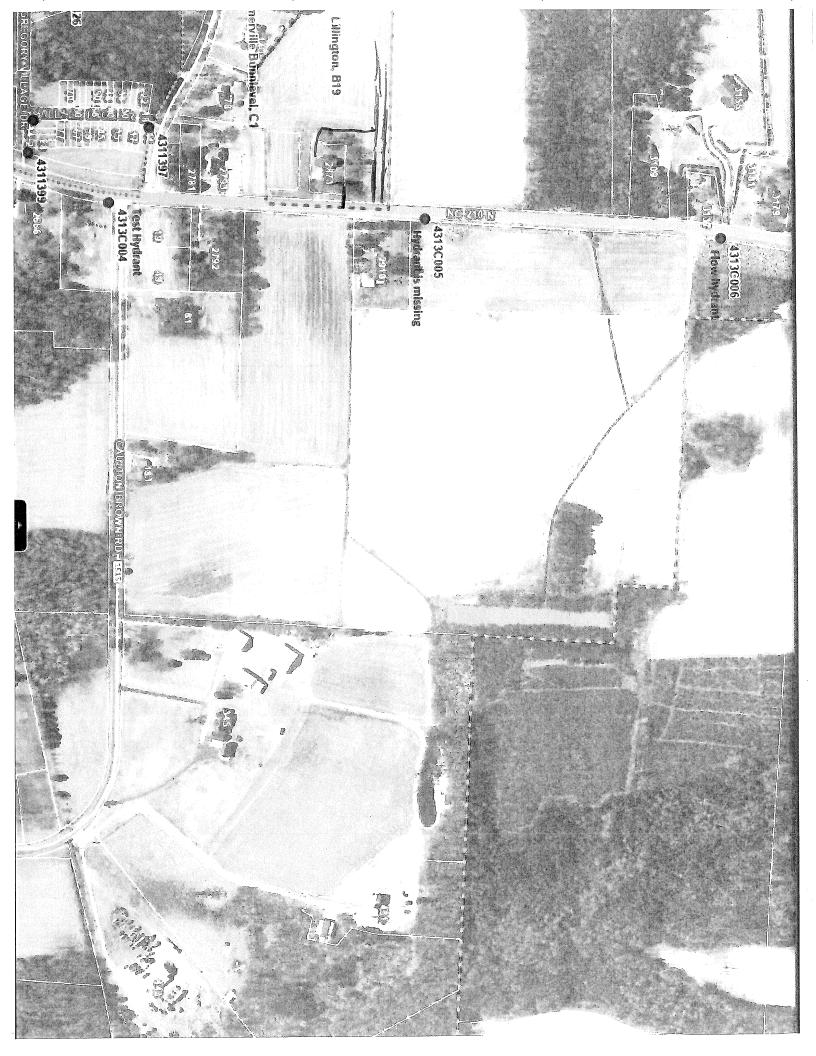
K Factor = 82.82

60.364

Lillington Fire Department

Flow Test for Hydrant 4311 444

Start Time: 2024-08-16 11:02:19 End Time: 2024-08-16 11:03:05 Tested By: Roberts III, James L


Test Hydrant

1 est 11 yur ant	
Static Pressure:	70.0
Residual Pressure:	69.0
Desired Pressure:	20.0
Volume at Desired Pressure:	11096.0

Flow Hydrants

Downstream Hydrant	Port Diameter	Friction Coefficient	Pitot Pressure	Flow (Calculated)
ID				
	2.5	0.9000000000000000002	64.0	1342.0

