

Structural Calculations for: Circle K Main Building – Angier, NC

Angier, NC

January 31, 2023

Index of Calculations

1
2
15
16
33
34
35
36
41
46
58

Note - Engineer's seal on this calculation booklet only applies to calculations and information provided by Pinnacle Engineering, Inc. It does not apply to manufacturer information and documentation (pages 46 through 59). The engineering data provided only applies to PorterSIPs panel systems.

GENERAL DESIGN INFORMATION

PROJECT DESCRIPTION

A one story SIP structure with pre-fabricated wood trusses and concrete footings

STORE BUILDING PARAMETERS

Building Width	Width = 35.5 ft
Building Length	Length = 88 ft
Roof Slope (per foot)	Slope ₁₂ = 0.25:12
Roof slope (degrees)	Slope _{Deg} = 1.19°
Eave height	h _{eave} = 16.75 ft
Parapet height (from eave height)	h _p = 3.917 ft
Height for wind calcs (mean or t/parapet)	h _w = 20.667

TYPICAL LOAD PARAMETERS

Occupancy Category	II
Ground Snow	P _g = 15 psf
Wind Speed	116 mph
Terrain Category/Exposure	С
Mapped Spectral Response (0.2 second)	$S_{S} = 0.172$
Mapped Spectral Response (1 second)	$S_1 = 0.083$
Seismic Site Class	D

TYPICAL MATERIALS

Concrete (strengths at 28 days):

Footings:	3000 psi
Walls:	4000 psi
Slabs, interior:	4000 psi
Slabs, exterior:	4500 psi
Rebar:	ASTM A615 or A996, Grade 60, deformed

Rough Carpentry

2x4 and 2x6:	Spruce Pine Fir, Stud Grade
2x8, 2x10, 2x12:	Southern Pine, No. 2 Grade
LVL:	$F_{b} = 2600 \text{ psi}, \text{ E} = 1800 \text{ ksi}$
LSL:	$F_{b} = 1700 \text{ psi}, \text{ E} = 1300 \text{ ksi}$
Bolts:	ASTM A307

Structurally Insulated Panels (SIPs)

6.5" Panels:	5.625 in Core Thickness
8.25" Panels:	7.375 in Core Thickness

REFERENCES

- NCBC-2018, North Carolina State Building Code
- ASCE 7-10, Minimum Design Loads for Buildings and Other Structures
- ACI 318-14, Building Code Requirements for Structural Concrete
- ANSI/AF&PA NDS-2015, National Design Specification (NDS) for Wood Construction
- PorterCorp ESR-4692 issued April 2022 •

Client: <u>PorterSIPS</u> Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>2</u> 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

SERVICEABILITY LIMITS

DEFLECTION LIMITS:
Roof members:
Live, Snow, or Wind Load
Total Load

Members supporting masonry:	
Live, Snow, or Wind Load	L / 600
Total Load	L / 400

LATERAL DRIFT LIMITS:

Wind Load Drift Limit (as calculated under ultimate I	oad per ASCE7)
Overal building drift limit:	H / 168 (equivalent to H / 400 at 0.7 of 0.6 of ultimate load load)
Seismic Load Drift Limit (as calcluated under ultimat	e load per ASCE7)
Interstory drift limit:	0.025 x H (Per ASCE 7, Table 12.12-1)

L /360 L /240

DEAD LOADING

DEAD LOAD CONSTRUCTION

Roof

Material	Thickness	γ	Weight
	(in)	(lb/ft ³)	(lb/ft ²)
40mil Dura-Last	0.040		0.3
8.25" SIP	8.250		3.6
FRP Ceiling	0.100		0.8
Sprinklers	0.000		3.0
HVAC	0.000		3.0
Misc.	0.000		2.0
Wood Truss	40.000		3.0
Plasterboard	0.250	60	1.2
Totals	48.640		17.0
Exterior Walls			
Material	Thickness	γ	Weight
	(in)	(lb/ft ³)	(lb/ft ²)
EnduraWall	0.500		3.0
6.5" SIP	6.500		3.6
FRP	0.100		0.8
Nichiha Panels	0.625		1.0
Totals	7.725		8.4
Interior Walls			
Material	Thickness	γ	Weight
	(in)	(lb/ft ³)	(lb/ft ²)
Framing	5.500		2.0
Plasterboard	1.250	60	6.3
Totals	6.750		8.3

Client: PorterSIPS

LIVE LOADS

Non-Decupied Areas20 psf (reduced where applicable per building code section 1607.11.2)NON-Decupied Areas20 psf (reduced where applicable per building code section 1607.11.2)NOW LOADINGIn accordance with ASCE7.10Tedds calculation version 1.0.10Building detailsRoof typeFlatWidth of roofb = 88.00 ftGround snow loadGround snow load (Figure 7-1)p ₂ = 15.00 lb/ft ² Care 1.00Thermal condition (Table 7-2)Partially exposedExposure condition (Table 7-2)C _p = 1.00Thermal condition (Table 7-3)Cilser with cold roofsThermal condition (Table 7-3)Cilser with colspan="2">Cilser with colspan="2">Cilser with colspan="2">Non-Deculter with colspan="2">Cilser with colspan="2">Tome with colspan="2">Cilser with col	FLOOR LIVE LOAD (BUILDING CODE SECTIO Bestaraunts	<u>100 psf</u>	
Non-Occupied Areas20 psf (reduced where applicable per building code section 1607.11.2)NON-Occupied Areas20 psf (reduced where applicable per building code section 1607.11.2)NOW LOADING In accordance with ASCE7-10Texts calculation version 1.0.10Building details Foot typeFlatWord or ofb = 88.00 ftGround snow loadGround snow loadGround snow loadGround snow load (Figure 7.1)p. = 15.00 lb/f ² Density of snowTerrain typeSect. 26.7CExposure control (Table 7.2)Partially exposedExposure control (Table 7.2)C = 1.00Thermal condition (Table 7.3)C = 1.00Importance category (Table 1.5-1)IIImportance category (Table 1.5-2)I = 10Min snow load for low slope roots (Sect 7.3.4)p. = $0.7 \times C_e \times C_e \times L_e \times p_a = 11.55$ DifferLeft parapetHeight from balance load to top of left parapetheight $P_{10} \times p_{10} = 0.75 \times (0.43 \times (max(20 ft, luppet) \times 1ft5)10 × (p_2 / 11b/t2 + 10)114 - 1.51Diff height of right parapetheight of right parapetheight of right parapetheight of right parapetheig$			
Non-Occupied AreasZ0 psl (reduced where applicable per building code section 1607.11.2)NOW LOADING In accordance with ASCE7-10Tedds calculation version 1.0.10Building details Roof typeFlatRoof typeFlatWidth of roofb = 88.00 ftGround snow load Ground snow load Ground snow load (Figure 7-1) $p_g = 15.00$ lb/ft ² Density of snow $\gamma = min(0.13 \times p_g/1 ft + 14lb/ft3, 30lb/ft3) = 15.95 lb/ft3Terrain typeSect. 26.7CExposure condition (Table 7-2)C_e = 1.00Thermal code (Table 7-3)Others with cold roofsThermal factor (Table 7-3)C, = 1.10Importance category (Table 1.5-1)IIImportance category (Table 1.5-2)Is = 1.00Mensow load for low slope roofs (Sect 7.3.4)p_{-unite} = I_x X p_y = 15.50 lb/ft^2Left parapetHeight to fleft parapetHeight of left parapeth_0 = p_r / \gamma = 0.72 t1Height of left parapeth_{0, gput} = 0.75 \times (0.43 \times (max(20 ft, I_{0, gput}) \times 1ft2)^{1/3} \times (p_g / 1lb/ft2 + 10)^{1/4} - 1.516) = 2.08 ftDrift height - left parapeth_{0, gput} = min(h_{0, 1, gput}, h_{0, s} - 3.19 ftInt surcharge load - left parapeth_{0, gput} = min(h_{0, 1, gput}, h_{0, s} - 3.19 ftInt grape apptHeight from balance load to top of right parapetHeight from balance load to top of right parapeth_{0, gput} = 0.75 \times (0.43 \times (max(20 ft, I_{0, gput}) \times 1ft2)^{1/3} \times (p_g / 1lb/ft2 + 10)^{1/4} - 1.5(ft) = 2.08 ftDrift height of right parapeth_{0, gput} = 0.80.01Drift height of right parapeth_{0, gpu$	ROOF LIVE LOAD (BUILDING CODE SECTION	<u>1603.1.2):</u>	
NOW LOADING (LENGTH) Snow Loading details Tedds calculation version 1.0.10 Tedds calculation version 1.0.10 Building details Roof type Flat With of roof Details Ground snow load Ground snow load (Figure 7-1) p ₉ = 15.00 lb/ft ² Density of snow Y = min(0.13 × p _g /1 ft + 14lb/ft ³ , 30lb/ft ³) = 15.95 lb/ft ³ Ground snow load (Figure 7-1) P = a f5.00 lb/ft ² Density of snow Y = min(0.13 × p _g /1 ft + 14lb/ft ³ , 30lb/ft ³) = 15.95 lb/ft ³ C = 1.00 Thermal condition (Table 7-2) C = 1.00 Thermal cactor (Table 7-3) C = 1.00 Importance factor (Table 1.5-1) II Importance factor (Table 1.5-2) Is = 1.00 Min snow load (Sect 7.3.4) p = 0.7 × cox < k ls k p _p = 11.55 lb/ft ² Flat cols forw load (Sect 7.3.9) p = 0.7 × cox < k ls k p _p = 11.55 lb/ft ² Left parapet heg_p to 1/p = 0.72 kt <td colspan<="" th=""><th>Non-Occupied Areas</th><th>20 psf (reduced where applicable per building code section 1607.11.2)</th></td>	<th>Non-Occupied Areas</th> <th>20 psf (reduced where applicable per building code section 1607.11.2)</th>	Non-Occupied Areas	20 psf (reduced where applicable per building code section 1607.11.2)
NOW LOADING (LENGTH) Show Loading details Tedes calculation version 1.0.10 Building details Roof type Flat Width of roof b = 88.00 ft Ground snow load Terrain typeSect. 26.7 C Density of snow Terrain typeSect. 26.7 C Exposure factor (Table 7-2) Partially exposed Exposure factor (Table 7-3) C, = 1.00 Thermal condition (Table 7-3) C, = 1.00 Thermal factor (Table 7-3) C, = 1.00 Importance factor (Table 1-5-2) I I Importance factor (Table 1-5-2) I I I Importance factor (Table 1-5-2) I I I I <td></td> <td></td>			
NOW LOADINGIn accordance with ASCE7-10Tedds calculation version 1.0.10Building detailsRoof typeFlatNorth for of $b = 88.00$ ftGround snow loadGround snow load (Figure 7-1) $p_0 = 15.00$ lb/ft ² Density of snow $\gamma = min(0.13 \times p_0 / 1ft + 14lb/ft2, 30lb/ft2) = 15.95 lb/ft2Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-3)Chers with cold rootsThermal condition (Table 7-3)Chers with cold rootsThermal condition (Table 1.5-1)IIImportance category (Table 1.5-1)IIImportance category (Table 1.5-2)IIMin snow load for low slope roots (Sect 7.3.4)Pumm = l_x x p_y = 15.00 lb/ft2Piet roof snow load (sect 7.3)pi = 0.72 ftHeight of now load to top of left parapethop L_y = 0.72 ftHeight of risk parapetHop L_y = 0.73 \times (0.34 \times (max(20 ft, l_{u_xpet}) \times (fte)^{1/3} \times (p_0 / 11b/ft2 + 10)^{1/4} - 1.51) = 2.08 ftDrift height - left parapetHog L_y = min(A + L_{u_xpet}, B + (h_{put} + h_b) = 2.08 ftDrift widthWa L_y = min(A + L_{u_xpet}, B + (h_{put} + h_b), b) = 8.33 ftDrift height of right parapetHog L_y = 0.75 \times (0.43 \times (max(20 ft, l_{u_xpet}) \times 1ft2)^{1/3} \times (p_0 / 11b/ft2 + 10)^{1/4} - 1.51) = 2.08 ftDrift height of right parapetHog L_y = 0.58 \times (0.43 \times (max(20 ft, l_{u_xpet}) \times 1ft2)^{1/3} \times (p_0 / 11b/ft2 + 10)^{1/4} - 1.51) = 2.08 ft$			
SNOW LOADINGIn accordance with ASCE7-10Total collation version 1.012Colspan="2">Total collation version 1.012Colspan="2">Colspan="2"Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colsp	<u>NOW LOADING (LENGTH)</u>		
SNOW LOADINGIn accordance with ASCE7-10Texts calculation version 1.010Building detailsRoof typeFlatWidth of roofb = 88.00 ftGround snow load (Figure 7-1)Pag = 15.00 lo/ft ² Density of snow $\gamma = min(0.13 \times p_0 / 1ft + 14lb/ft3, 30lb/ft9) = 15.95 lb/ft3Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-3)Others with cold roofsThermal factor (Table 7-3)C = 1.00Thermal factor (Table 7-3)C = 1.00Min snow load (Sect 7.3.4)Piterma = Is \times p_0 = 15.00 lb/ft2Importance category (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4)Piterma = Is \times p_0 = 15.00 lb/ft2Integration for low slope roofs (Sect 7.3.4)Piterma = Is \times p_0 = 15.00 lb/ft2Left parapetHeight for balance load to top of left parapeth0=pit \sim 5.2 < C_4 < L > L_9 = 11.55 lb/ft2Left parapeth0=pit \sim 5.2 < C_4 < L > D_9 = 11.55 lb/ft2Left parapeth0=pit \sim 5.2 < C_4 < L > D_9 = 11.55 lb/ft2$			
In accordance with ASCE7-10Texts calculation version 1.0.10Building detailsRoof typeFlatWidth of roofb = 88.00 ftGround snow load (Figure 7-1) $p_0 = 15.00$ lb/ft ² Density of snow $\gamma = min(0.13 \times p_0 / 1ft + 14lb/ft3, 30lb/ft3) = 15.95 lb/ft3Colspan="2">Colspan= 15.00 lb/ft2Density of snow\gamma = min(0.13 \times p_0 / 1ft + 14lb/ft3, 30lb/ft3) = 15.95 lb/ft3Colspan= 15.00 lb/ft2Density of snow\gamma = 15.00 lb/ft2Colspan= 15.00 lb/ft2Colspan= 16 to Colspan="2">Colspan= 16 to ColsThremal factor (Table 7.5)IIInportance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is a -00Min snow load for low slope roofs (Sect 7.3.4)p_1 - 0.7 to c_{\infty} < C_A < l_a > p_0 = 11.55 lb/ft2Edit parapetheypet - 0.72 ftHeight for log parapetheypet = b -88.00 ftDift height vindward drift - left parapetheypet = b -2.05 ftDift height - left parapetheypet = he_1.pet + Not = 1.95 lb/ft2Dift height for inpla parapetheypet = he_1.pet +$	SNOW LOADING		
Determine the set of the s	In accordance with ASCE7-10		
Building detailsFlatRoof typeFlatWidt of roofb 88.00 ftGround snow load (Figure 7-1) $p_g = 15.00 \text{ lb/ft}^2$ Density of snow $\gamma = \min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 \text{ lb/ft}^3$ Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2)Co = 1.00Thermal condition (Table 7-3)Others with cold roofsThermal tactor (Table 7-3)Co = 1.10Importance factor (Table 1.5-1)IIImportance factor (Table 1.5-2)Ia = 1.00Min snow load (Sect 7.3)pt_min = la × pg = 15.00 lb/ft²Flat roof snow load (Sect 7.3)pt_min = la × pg = 11.55 lb/ft²Et prapetHeight of the parapetHeight of the parapeth_ppt_ = 3.92 ftHeight of roof - left parapeth_ppt_ = 0.72 (0.43 (max(20 ft, lu, ppt_)) × 1ft²)^{1/3} (pg / 1lb/ft² + 10)^{1/4} - 1.5ft) = 2.08 ftDrift widthWa_ppt_ = min(h_{d, 1, ppt_1}, h_ppt_ 1.5h_p) = 8.33 ftDrift sucharge load - left parapeth_ppt_ = 1.02 kftHeight of roif parapeth_ppt_ = 3.92 ftHeight of roif parapeth_ppt_ = 1.5tt (2.5kt) (1.0, ppt_1) × 1ft²)^{1/3} (pg / 1lb/ft² + 10)^{1/4} - 1.5tt) = 2.08 ftDrift widthWa_ppt_ = min(h_{d, 1, ppt_1}, h_ppt_ 1.5h_p) = 2.08 ftDrift sucharge load - left parapeth_ppt= 0.75 (0.43 (max(20 ft, lu, ppt)) × 1ft²)^{1/3} (pg / 1lb/ft² + 10)^{1/4} - 1.5tt) = 2.08 ftDrift widthWa_ppt_ = b = 88.00 ftDrift widthWa_ppt= b = 88.00 ftDrift supharepth_ppt= n = 0.75 (0.43 (max(Tedds calculation version 1.0.10	
Roof typeFlatWidth of roofb = 88.00 ftGround snow load (Figure 7-1) $p_g = 15.00 lb/ft^2$ Density of snow $\gamma = min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 lb/ft^3$ Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2)C = 1.00Thermal factor (Table 7-3)Others with cold roofsThermal factor (Table 7-3)C = 1.10Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $l_g = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{L,min} = l_s \times p_g = 15.00 lb/ft^2$ Flat roof snow load (Sect 7.3) $p_L = 0.7 \times C_e \times C_t \times l_s \times p_g = 11.55 lb/ft^2$ Left parapeth_pept - 3.92 ftHeight of left parapet $h_{c.pptII} = h_{ppII} - h_b = 3.19 ftLength of roof - left parapetl_{L.pofII} = b = 88.00 ftDrift height '- left parapeth_{c.ppIII} = min(h_{c.l.ppIII}, h_{ppII} - h_b) = 2.08 ftDrift widthWd_{d.ppIII} = min(h_{c.l.ppIII}, h_{ppII} - h_b) = 3.39 ftHeight from balance load to top of left parapeth_{c.ppIII} = min(h_{c.l.ppIII}, h_{ppII} - h_b) = 2.08 ftDrift widthWd_{d.ppIII} = min(h_{c.l.ppIII}, h_{ppII} - h_b) = 3.39 ftHeight from balance load to top of right parapeth_{c.ppIII} = h_{c.ppIII} + h_{c.l.ppIII}, h_{ppII} - h_b) = 3.39 ftDrift widthWd_{d.ppIII} = min(h_{c.l.ppIII}, h_{ppII} - h_b) = 3.39 ftDrift widthWd_{d.ppIII} = h_{d.ppIII}, h_{poII} - h_b) = 3.19 ftLength of right parapeth_{c.ppIII} = h_{d.ppIII}, h_{poIII} - h_b) = 3$	Building details		
Width of roofb = 88.00 ftGround snow load $p_g = 15.00 \text{ lb/ft}^2$ Density of snow $\gamma = \min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 \text{ lb/ft}^3$ Density of snow $\gamma = \min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 \text{ lb/ft}^3$ Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-3)Chers with cold roofsThermal condition (Table 7-3)Ct = 1.10Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4) $p_{L,min} = I_h \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_L - \pi x \in \infty < C_t \times I_h \times p_g = 11.55 \text{ lb/ft}^2$ Left parapetBalanced snow load heightHeight of left parapet $h_{p,ptL} = n_pqt, -h_p = 3.19 \text{ ft}$ Length of roof - left parapet $h_{d_L,pptL} = 0.75 \times (0.43 \times (max(20 ft, I_{u,pptL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_L,pptL} = min(A_{d_L,pptL}, h_g) = 3.23 \text{ lb/ft}^2$ Drift width $W_{d_L,pptL} = min(A_{d_L,pptL}, h_g) = 3.23 \text{ lb/ft}^2$ Height from balance load to top of right parapet $h_{d_L,pptL} = n_{d_L,pptL} \times n_d 3.21 \text{ lb/ft}^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift width $W_{d_L,pptL} = min(A_{d_L,pptL}, h_h) = 2.08 \text{ ft}$ Drift height right parapet $h_{p,pRI} = h_{p,pRI} - h_p = 3.19 \text{ ft}$ Height from balance load to top of right parapet $h_{p,pRI} = n_{p,RR} - h_p = 3.19 \text{ ft}$ Drift height parapet $h_{p,pRI} = min(A_{d_L,ppRI}, h_{R}$	Roof type	Flat	
Ground snow loadFig = 15.00 lb/ft²Ground snow load (Figure 7-1) $p_g = 15.00$ lb/ft²Density of snow $\gamma = min(0.13 \times p_g / 1ft + 14lb/ft³, 30lb/ft³) = 15.95 lb/ft³Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2)Ce = 1.00Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3)C = 1.10Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4)p_{L,min} = I_s \times p_g = 15.00 lb/ft²Flat roof snow load (Sect 7.3)p_r = 0.7 \times C_e \times C_r \times I_a \times p_g = 11.55 lb/ft²Left parapetHeight of left parapetHeight of roof - left parapeth_{b,ptl} = h_{pplL} - h_b = 3.19 ftLength of roof - left parapeth_{d_{L,pplL} = 0.75 \times (0.43 \times (max(20 ft, I_{u,pplL}) \times 1ft²)^{1/3} \times (p_g / 1lb/ft² + 10)^{1/4} - 1.5(t) = 2.08 ftDrift widthW_{d_{L,pplL} = min(A \pm A_{d_{L,pplL}}, h_b = 3.19 ftDrift widthW_{d_{L,pplL} = min(A \pm A_{d_{L,pplL}}, h_b) = 2.08 ftDrift widthW_{d_{L,pplL} = min(A \pm A_{d_{L,pplL}}, h_b) = 0.83 3 ftDrift widthW_{d_{L,pplL} = h_{d_{L,pplL}, h_b} = 3.19 ftLeight of right parapeth_{pplR} = 3.92 ftHeight from balance load to top of right parapeth_{d_{L,pplR} = min(A \pm A_{d_{L,pplR}}, h_{b,b}) = 1.53 3 ftDrift widthW_{d_{L,pplR} = 0.75 \times (0.43 \times (max(20 ft, I_{u,ppR}), h_b), b) = 8.33 ftDrift widthW_{d_{L,pplR} = 0.75 \times (0.43 \times (max(20 ft, I_{u,ppR}), h_{b,$	Width of roof	b = 88.00 ft	
Ground snow load (Figure 7-1) $p_g = 15.00 \text{ lb/ft}^2$ Density of snow $\gamma = \min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 \text{ lb/ft}^3$ Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2)C_e = 1.00Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3)C_f = 1.10Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4) $p_{f_{c},min} = I_s \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_i = 0.7 \times C_g \times C_f \times I_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapet $h_{b} = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{c_{applt}} = h_{pplt}$. $h_b = 3.19 \text{ ft}$ Length of roof - left parapet $h_{c_{applt}} = h_{pplt}$. $h_b = 3.19 \text{ ft}$ Drift height - left parapet $h_{c_{applt}} = min(h_{d_{a},pptl_{appl_{a}}, h_{bpl_{a}}) = 1.208 \text{ ft}$ Drift width $W_{d_{appl_{a}}} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_{appl_{a}}} = min(h_{d_{a},pptl_{a}, h_{bpl_{a}}) = 1.208 \text{ ft}$ Drift width $W_{d_{appl_{a}}} = 3.92 \text{ ft}$ Height of right parapet $h_{c_{appl_{a}}} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_{appl_{a}}} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_{appl_{a}}} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_{appl_{a}}} = 3.92 \text{ ft}$ Height from balance load to top of right parapet h_{c	Ground snow load		
Density of snow $\gamma = \min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 lb/ft^3$ Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2)Ce = 1.00Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3)Ct = 1.10Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4) $p_{1-min} = I_s \times p_g = 15.00 lb/ft^2$ Flat roof snow load (Sect 7.3) $p_1 = 0.7 \times C_e \times C_t \times I_s \times p_g = 11.55 lb/ft^2$ Left parapetBalanced snow load height $h_b = p_t / \gamma = 0.72 ft$ Height of left parapet $h_{ppfl} = 3.92 ft$ Height of roof - left parapet $h_{c,ppfl} = h_{ppll} - h_b = 3.19 ft$ Length of roof - left parapet $h_{d_{1,pplL}} = 0.75 \times (0.43 \times (max(20 ft, I_{u,pptL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 ft$ Drift height - left parapet $h_{d_{1,pplL}} = h_{d_{1,pplL}} = h_{d_{2,pplL}} = h_{2,pplL} \times \gamma = 33.22 lb/ft^2$ Right parapet $h_{pplR} = 3.92 ft$ Height of right parapet $h_{pplR} = 1.92 ft$ Drift widthWd $_{d_{1,pplR}} = min((4 \times h_{d_{1,pplR}}, h_{p_{pl}}), b) = 8.33 ft$ Drift height vindward drift - left parapet $h_{d_{p,plR}} = h_{pplR} - h_{b} = 3.19 ft$ Height of right parapet $h_{u_{p,plR}} = h_{ppR} - h_b = 3.19 ft$ Length of roof - right parapet $h_{u_{p,plR}} = 0.75 \times (0.43 \times (max(20 ft, I_{u,pp(R}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 ft$ Drift height vindward drift - rig	Ground snow load (Figure 7-1)	$p_g = 15.00 \text{ lb/ft}^2$	
Terrain typeSect. 26.7CExposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2) $C_0 = 1.00$ Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3) $C_1 = 1.10$ Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $I_a = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{1:min} = I_a \times p_a = 15.00$ lb/ft²Flat roof snow load (Sect 7.3) $p_1 = 0.7 \times C_a \times C_a \times I_a \times p_a = 11.55$ lb/ft²Left parapetBalanced snow load heightBalanced snow load hough to fleft parapet $h_b = p_1 / \gamma = 0.72$ ftHeight of left parapet $h_{p,ptL} = 3.92$ ftHeight of roof - left parapet $h_{p,ptL} = 0.75 \times (0.43 \times (max(20 ft, I_u_pptL) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft² + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height vindward drift - left parapet $h_{a_1,pptL} = n_{10}$, $h_{b_1} = 10, h_{b_1} - h_{b_2} = 2.08$ ftDrift height of right parapet $p_{a_1,pptL} = min(4 \times h_{a_1,pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33$ ftDrift width $W_{a_1,pptL} = 10, 75 \times (0.43 \times (max(20 ft, I_{u_1,pptL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft² + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift width $W_{a_1,pptL} = h_{a_1,pptL} \cdot 8 \times (h_{pptL} - h_b), b) = 8.33$ ftDrift height of right parapet $h_{p,ptR} = 3.92$ ftHeight of right parapet $h_{p,ptR} = 3.92$ ftHeight from balance load to top of right parapet $h_{a_1,pptR} = 5.92$ ftHeight of right parapet $h_{a_1,pptR} = h_{p,ptR} - h_b = 3.19$ ftLength of roof - right parapet $h_{a_1,pptR} = 0.75 \times (0.43 \times (max(20 ft,$	Density of snow	$\gamma = min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 15.95 lb/ft^3$	
Exposure condition (Table 7-2)Partially exposedExposure factor (Table 7-2) $C_e = 1.00$ Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3) $C_t = 1.10$ Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $I_s = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{L-min} = I_s \times p_g = 15.00$ lb/ft²Flat roof snow load (Sect 7.3) $p_t = 0.7 \times C_e \times C_t \times I_s \times p_g = 11.55$ lb/ft²Left parapet $h_b = p_t / \gamma = 0.72$ ftHeight for blatnee load to top of left parapet $h_{c.pptL} = 3.92$ ftHeight for loft parapet $I_{a.pptL} = b = 88.00$ ftDrift height - left parapet $I_{a.pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } I_{u.pptL}) \times 1ft^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height of left parapet $h_{d_{a.pptL}} = min(h_{d_{a.l.pptL}} - h_b) = 2.08$ ftDrift height of right parapet $h_{p_{pIR}} = 3.92$ ftHeight for of left parapet $h_{d.pptL} = min(A \times A_{d.l.pptL}, B \times (P_{a.pptL}, B \times (P_{a.pptL}) \times 1ft^2)^{1/3} \times (P_0 / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height - left parapet $h_{d.pptL} = min(A \times A_{d.l.pptL}, B \times (P_{a.pptL}, B \times (P_{a.pptL}, B \times (P_{a.pptL}, B \times (P_{a.pptL}))) = 8.33$ ftDrift height for of of right parapet $h_{c.pptR} = h_{ppR} + h_b = 3.19$ ftHeight for fight parapet $h_{p.pR} = 1.920$ ftDrift height vindward drift - right parapet $h_{c.pptR} = 1.920$ ftHeight for fight parapet $h_{c.pptR} = 1.920$ ftHeight for of of - right parapet $h_{c.pptR} = h_{ppR} - h_b = 3.19$ ft	Terrain typeSect. 26.7	C	
Exposure factor (Table 7-2) $C_e = 1.00$ Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3) $C_1 = 1.10$ Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2)Is = 1.00Min snow load for low slope roofs (Sect 7.3.4) $p_{L,min} = I_s \times p_g = 15.00$ lb/ft²Flat roof snow load (Sect 7.3) $p_1 = 0.7 \times C_e \times C_t \times I_s \times p_g = 11.55$ lb/ft²Left parapetBalanced snow load heightHeight form balance load to top of left parapet $h_b = p_f / \gamma = 0.72$ ftHeight for of - left parapet $h_{c,pplL} = h_{pplL} - h_b = 3.19$ ftLorift height - left parapet $h_{c,pplL} = 0.75 \times (0.43 \times (max(20 ft, I_{u,pplL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height - left parapet $h_{c,pplR} = min(h_{d_{\perp},pplL}, h_{pplL} - h_b) = 2.08$ ftPrift widthWd_{d,pplL} = min(4 $\times h_{d_{\perp},pplL}, N = 3.22$ lb/ft²Right parapet $h_{c,pplR} = 1.92$ ftHeight from balance load to top of right parapet $h_{c,pplR} = h_{pplR} - h_b = 3.19$ ftDrift widthWd_{d,pplL} = min(h_{d_{\perp},pplL}, N hpplL - h_b) = 2.08 ftDrift height - left parapet $h_{d,pplR} = 3.92$ ftHeight form balance load to top of right parapet $h_{c,pplR} = h_{pplR} - h_b = 3.19$ ftHeight form balance load to top of right parapet $h_{c,pplR} = h_{pplR} - h_b = 3.19$ ftDrift widthWd_{d,pplL} = min(h_{d_{\perp},pplL}, N ft^2) (h_{L}, h_{D}, h	Exposure condition (Table 7-2)	Partially exposed	
Thermal condition (Table 7-3)Others with cold roofsThermal factor (Table 7-3) $C_t = 1.10$ Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $I_s = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{t_min} = I_s \times p_g = 15.00$ lb/ft²Flat roof snow load (Sect 7.3) $p_r = 0.7 \times C_e \times C_t \times I_s \times p_g = 11.55$ lb/ft²Left parapetBalanced snow load heightHeight for left parapet $h_p = p_t / \gamma = 0.72$ ftHeight for balance load to top of left parapet $h_{pptL} = 3.92$ ftLeft parapet $h_{p,pptL} = h_{pptL} \cdot h_p = 3.19$ ftLeft parapet $h_{d_\perp,pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } I_{u_pptL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height - left parapet $h_{d_pptL} = min(A \times A_{d_pptL}, A_b \times (h_{pptL} - h_b), b) = 8.33$ ftDrift width $W_{d_pptL} = min(4 \times A_{d_l_pptL}, A_b \times (h_{pptL} - h_b), b)) = 8.33$ ftPrift surcharge load - left parapet $h_{pptR} = 3.92$ ftHeight from balance load to top of right parapet $h_{d_pptL} = h_{pptL} - A_b = 3.19$ ftDrift width $W_{d_pptL} = min(A \times A_{d_l_pptL}, A_b \times (h_{pptL} - h_b), b)) = 8.33$ ftPrift surcharge load - left parapet $h_{d_pptR} = 3.92$ ftHeight from balance load to top of right parapet $h_{d_pptR} = 1.92$ ftHeight from balance load to top of right parapet $h_{d_pptR} = 1.92$ ftHeight from balance load tot op of right parapet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, I_{u_pptR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height windward drift - right parapet<	Exposure factor (Table 7-2)	C _e = 1.00	
Thermal factor (Table 7-3) $C_t = 1.10$ Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $I_s = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{I_min} = I_s \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_{I_min} = I_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapet $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{ppIL} = 3.92 \text{ ft}$ Height form balance load to top of left parapet $h_{c,ppIL} = h_{ppIL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $I_{u_ppIL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } I_{u_ppIL}) \times 1ft^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - left parapet $p_{d_ppIL} = min(h_{d_ppIL}, h_{ppIL}, h_b) = 8.33 \text{ ft}$ Drift width $W_{d_ppIL} = 1.02 \text{ pb}(R + h_b = 3.19 \text{ ft}$ Height form balance load to top of right parapet $h_{d_ppIL} = min(h_{d_ppIL}, h_{ppL}, h_b) = 2.08 \text{ ft}$ Drift height - left parapet $p_{d_ppIL} = min(h_{d_ppIL}, h_{ppL}, h_b) = 8.33 \text{ ft}$ Drift width $W_{d_ppIR} = 1.92 \text{ ft}$ Height form balance load to top of right parapet $h_{ppIR} = 1.92 \text{ ft}$ Height of right parapet $h_{ppIR} = 1.92 \text{ ft}$ Height of right parapet $h_{ppIR} = 1.92 \text{ ft}$ Height form balance load to top of right parapet $h_{pL,pPIR} = 1.92 \text{ ft}$ Height form balance load to top of right parapet $h_{p,pIR} = 1.92 \text{ ft}$ Height form balance load to top of right parapet $h_{p,pIR} = 1.92 \text{ ft}$ Height form balance load to top of right parapet $h_{p,DIR} = 0.75 \times (0.43 \times (max(20 \text{ ft} _{u_pPIR}) \times 1ft^2$	Thermal condition (Table 7-3)	Others with cold roofs	
Importance category (Table 1.5-1)IIImportance factor (Table 1.5-2) $I_s = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{L_min} = I_s \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_{L_min} = I_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapet $h_b = p_f / \gamma = 0.72 \text{ ft}$ Balanced snow load height $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{pptL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} \cdot h_b = 3.19 \text{ ft}$ Length of roof - left parapet $I_{L_pptL} = b = 88.00 \text{ ft}$ Drift height - left parapet $h_{d_{\perp,pptL}} = min(h_{d_{\perp,pptL}}, h_{pb}) = 2.08 \text{ ft}$ Drift height of left parapet $M_{d_{pptL}} = min(h_{d_{\perp,pptL}}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift width $W_{d_{,pptL}} = h_{pptR} \cdot h_b = 3.19 \text{ ft}$ Height from balance load - left parapet $M_{d_{,pptL}} = min(h_{d_{\perp,pptL}}, h_{pbL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_{,pptL}} = min(h_{d_{\perp,pptL}}, h_b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $h_{ptR} = 3.92 \text{ ft}$ Height of right parapet $h_{ptR} = 1.9p_{R} \cdot h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{ptR} = 1.9p_{R} \cdot h_b = 3.19 \text{ ft}$ Height from balance load to top of right parapet $h_{ptR} = 1.9p_{R} \cdot h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{q_{,pptR}} = h_{ppR} \cdot h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{q_{,pptR}} = h_{ppR} \cdot h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{q_{,pptR}} = h_{ppR} \cdot h_b = 3.19 \text{ ft}$ Length o	Thermal factor (Table 7-3)	C _t = 1.10	
Importance factor (Table 1.5-2) $l_s = 1.00$ Min snow load for low slope roofs (Sect 7.3.4) $p_{t_min} = l_s \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_t = 0.7 \times C_e \times C_t \times l_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapet $h_b = p_f / \gamma = 0.72 \text{ ft}$ Balanced snow load height $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{ppIL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_ppIL} = h_{ppIL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_ppIL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_ppIL} = min(A \times h_{d_{d_ppIL}}, h_{ppIL} - h_b) = 2.08 \text{ ft}$ Drift surcharge load - left parapet $h_{d_ppIR} = 3.92 \text{ ft}$ Height form balance load to top of right parapet $h_{d_ppIR} = 3.92 \text{ ft}$ Height of right parapet $h_{d_ppIR} = 1.92 \text{ ft}$ Height of right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height form balance load to top of right parapet $h_{c_ppIR} = h_{ppIR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{c_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height windward drift - right parapet $h_{c_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height right parapet $h_{d_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$	Importance category (Table 1.5-1)	II	
Min snow load for low slope roofs (Sect 7.3.4) $p_{I_mrin} = l_s \times p_g = 15.00 \text{ lb/ft}^2$ Flat roof snow load (Sect 7.3) $p_I = 0.7 \times C_e \times C_t \times l_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapetBalanced snow load height $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{ppIL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_ppIL} = h_{ppIL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_ppIL} = b = 88.00 \text{ ft}$ Drift height - left parapet $h_{d_ppIL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppL}) \times 16t^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift width $W_{d_ppIL} = min(h_{d_ppIL} - h_b) = 2.08 \text{ ft}$ Drift surcharge load - left parapet $h_{ppIR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height of right parapet $h_{d_ppIL} = min(h_{d_ppIL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_ppIL} = h_{d_ppIL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_ppIR} = h_{ppIR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 16t^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height windward drift - right parapet $h_{d_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 16t^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_ppIR} = min(h_{d_ppIR}, h_{ppIR} - h_b) = 2.08 \text{ ft}$	Importance factor (Table 1.5-2)	l _s = 1.00	
Flat roof snow load (Sect 7.3) $p_r = 0.7 \times C_e \times C_t \times I_s \times p_g = 11.55 \text{ lb/ft}^2$ Left parapet $h_b = p_r / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{ppIL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_ppIL} = h_{ppL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_ppIL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_ppL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_ppIL} = min(4 \times h_{d_ppIL} - h_b) = 2.08 \text{ ft}$ Drift surcharge load - left parapet $h_{ppIR} = 3.92 \text{ ft}$ Height form balance load to top of right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height form balance load to top of right parapet $h_{ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_ppIL}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift width $W_{d_ppIL} = h_{ppIL} \wedge h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height windward drift - right parapet $h_{d_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_ppIR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_ppIR}) \times 1ft^2)^{1/3} \times (p_g / 1lb/ft^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$	Min snow load for low slope roofs (Sect 7.3.4)	$p_{f_{min}} = I_s \times p_g = 15.00 \text{ lb/ft}^2$	
Left parapetBalanced snow load height $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{pptL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_pptL} = b = 88.00 \text{ ft}$ Drift height windward drift - left parpet $h_{d_pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptL}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_pptL} = \min(h_{d_pptL}, h_{pptL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_pptL} = \min(A \times h_{d_pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Height from balance load to top of right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{ppR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{c_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height vindward drift - right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{ppR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5ft) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR} - h_b) = 2.08 \text{ ft}$	Flat roof snow load (Sect 7.3)	$p_{f} = 0.7 \times C_{e} \times C_{t} \times I_{s} \times p_{g} = \textbf{11.55} \text{ lb/ft}^{2}$	
Balanced snow load height $h_b = p_f / \gamma = 0.72 \text{ ft}$ Height of left parapet $h_{pptL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_pptL} = b = 88.00 \text{ ft}$ Drift height windward drift - left parapet $h_{d_{\perp,pptL}} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptL}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_{\perp,pptL}} = \min(h_{d_{\perp,pptL}}, h_{pptL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_{pptL}} = \min(h_{d_{\perp,pptL}}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_{pptL}} = h_{d_{pptL}} \times \gamma = 33.22 \text{ lb/ft}^2$ Height of right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height vindward drift - right parapet $h_{pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_{\perp,pptR}} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_{\perp,pptR}} = min(h_{d_{\perp,pptR}}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Left parapet		
Height of left parapet $h_{ppIL} = 3.92 \text{ ft}$ Height from balance load to top of left parapet $h_{c_ppIL} = h_{ppIL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_ppIL} = b = 88.00 \text{ ft}$ Drift height windward drift - left parpet $h_{d_{\perp}ppIL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIL}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_{\perp}ppIL} = \min(h_{d_{\perp}ppIL}, h_{ppIL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_ppIL} = \min(h_{d_{\perp}ppIL}, 8 \times (h_{ppIL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_ppIL} = h_{d_ppIL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height of right parapet $h_{ppIR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_ppIR} = h_{ppIR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $h_{ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height windward drift - right parapet $h_{ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_{\perp}ppIR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_ppIR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$	Balanced snow load height	$h_b = p_f / \gamma = 0.72 ft$	
Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} - h_b = 3.19 \text{ ft}$ Length of roof - left parapet $l_{u_pptL} = b = 88.00 \text{ ft}$ Drift height windward drift - left parapet $h_{d_\perp pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptL}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_pptL} = min(h_{d_pptL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_pptL} = min(4 \times h_{d_pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{pptR} = 3.92 \text{ ft}$ Height of right parapet $h_{c_pptR} = h_{pprR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{pptR} = 3.92 \text{ ft}$ Height of roof - right parapet $l_{u_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR} - h_b) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR} - h_b) = 2.08 \text{ ft}$	Height of left parapet	h _{pptL} = 3.92 ft	
Length of roof - left parapet $l_{u_pptL} = b = 88.00$ ftDrift height windward drift - left parapet $h_{d_\perp pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptL}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 11b/\text{ft}^2 + 10)^{1/4} - 1.5\text{ft}) = 2.08$ ftDrift height - left parapet $h_{d_pptL} = min(h_{d_\perp pptL}, h_{pptL} - h_b) = 2.08$ ftDrift width $W_{d_pptL} = min(4 \times h_{d_\perp pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33$ ftDrift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22$ lb/ft²Right parapet $h_{pptR} = 3.92$ ftHeight of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19$ ftLength of roof - right parapet $l_{u_pptR} = b = 88.00$ ftDrift height windward drift - right parapet $h_{d_\perp pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1ft^2)^{1/3} \times (p_g / 11b/ft^2 + 10)^{1/4} - 1.5ft) = 2.08$ ftDrift height - right parapet $h_{d_\perp pptR} = min(h_{d_\perp pptR}, h_{pptR} - h_b) = 2.08$ ft	Height from balance load to top of left parapet	$h_{c_pptL} = h_{pptL} - h_b = 3.19 \text{ ft}$	
Drift height windward drift - left parpet $h_{d__pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_u_pptL) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - left parapet $h_{d_pptL} = \min(h_{d_pptL}, h_{pptL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_pptL} = \min(h_{d_pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{pptR} = 3.92 \text{ ft}$ Height form balance load to top of right parapet $h_{pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parapet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_u_pptR) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$	Length of roof - left parapet	$I_{u_{pptL}} = b = 88.00 \text{ ft}$	
Drift height - left parapet $h_{d_pptL} = min(h_{d_pptL}, h_{pptL} - h_b) = 2.08 \text{ ft}$ Drift width $W_{d_pptL} = min(4 \times h_{d_pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parapet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Drift height windward drift - left parpet	$\begin{split} h_{d__pptL} &= 0.75 \times (0.43 \times (max(20 \text{ ft}, \text{I}_{u_pptL}) \times 1\text{ft}^2)^{1/3} \times (p_g \ / \ 1\text{lb}/\text{ft}^2 + 10)^{1/4} - \\ 1.5\text{ft}) &= \textbf{2.08} \text{ ft} \end{split}$	
Drift width $W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$ Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parapet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Drift height - left parapet	$h_{d_pptL} = min(h_{d_l_pptL}, h_{pptL} - h_b) = 2.08 \text{ ft}$	
Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$ Right parapet $h_{ptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parapet $h_{d_{\perp}pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_\perp pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Drift width	$W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = 8.33 \text{ ft}$	
Right parapetHeight of right parapet $h_{pptR} = 3.92$ ftHeight from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19$ ftLength of roof - right parapet $l_{u_pptR} = b = 88.00$ ftDrift height windward drift - right parapet $h_{d_{\perp}pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_pptR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 11b/\text{ft}^2 + 10)^{1/4} - 1.5\text{ft}) = 2.08$ ftDrift height - right parapet $h_{d_pptR} = min(h_{d_\perp pptR}, h_{pptR} - h_b) = 2.08$ ft	Drift surcharge load - left parapet	$p_{d_pptL} = h_{d_pptL} \times \gamma = 33.22 \text{ lb/ft}^2$	
Height of right parapet $h_{pptR} = 3.92 \text{ ft}$ Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parpet $h_{d_pptR} = 0.75 \times (0.43 \times (\max(20 \text{ ft}, l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = \min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Right parapet		
Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$ Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parapet $h_{d_{\perp}pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4} - 1.5 \text{ ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_{\perp}pptR} = min(h_{d_{\perp}pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Height of right parapet	h _{pptR} = 3.92 ft	
Length of roof - right parapet $l_{u_pptR} = b = 88.00 \text{ ft}$ Drift height windward drift - right parpet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft}, l_{u_pptR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 11b/\text{ft}^2 + 10)^{1/4} - 1.5\text{ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Height from balance load to top of right parapet	$h_{c_pptR} = h_{pptR} - h_b = 3.19 \text{ ft}$	
Drift height windward drift - right parpet $h_{d_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } I_{u_pptR}) \times 1\text{ ft}^2)^{1/3} \times (p_g / 1\text{ lb/ft}^2 + 10)^{1/4} - 1.5\text{ft}) = 2.08 \text{ ft}$ Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	Length of roof - right parapet	l _{u_pptR} = b = 88.00 ft	
Drift height - right parapet $h_{d_pptR} = min(h_{d_pptR}, h_{pptR}, h_b) = 2.08$ ft	Drift height windward drift - right parpet	$ \begin{split} h_{d_l_pptR} &= 0.75 \times (0.43 \times (max(20 \text{ ft}, \text{I}_{u_pptR}) \times 1\text{ft}^2)^{1/3} \times (p_{\text{g}} \ / \ 1\text{lb}/\text{ft}^2 + 10)^{1/4} - \\ 1.5\text{ft}) &= \textbf{2.08} \text{ ft} \end{split} $	
	Drift height - right parapet	$h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 2.08 \text{ ft}$	

Balanced snow load height

 $h_b = p_f / \gamma = \textbf{0.72} \text{ ft}$

Client: <u>PorterSIPS</u>
Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>5</u>
8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Height of left parapet	h _{pptL} = 3.92 ft
Height from balance load to top of left parapet	$h_{c_pptL} = h_{pptL} - h_b = 3.19 \text{ ft}$
Length of roof - left parapet	$I_{u_{pptL}} = b = 35.50 \text{ ft}$
Drift height windward drift - left parpet	$\begin{split} h_{d__pptL} &= 0.75 \times (0.43 \times (max(20 \text{ ft}, \text{I}_{u_pptL}) \times 1 \text{ft}^2)^{1/3} \times (p_g \ / \ 1 \text{lb/ft}^2 + 10)^{1/4} - \\ 1.5 \text{ft}) &= \textbf{1.25} \text{ ft} \end{split}$
Drift height - left parapet	$h_{d_pptL} = min(h_{d_l_pptL}, h_{pptL} - h_b) = 1.25 \text{ ft}$
Drift width	$W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = \textbf{4.98} \text{ ft}$
Drift surcharge load - left parapet	$p_{d_pptL} = h_{d_pptL} \times \gamma =$ 19.86 lb/ft ²
Right parapet	
Height of right parapet	h _{pptR} = 4.50 ft
Height from balance load to top of right parapet	$h_{c_pptR} = h_{pptR} - h_b = 3.78 \text{ ft}$
Length of roof - right parapet	I _{u_pptR} = b = 35.50 ft
Drift height windward drift - right parpet	$ \begin{aligned} h_{d__pptR} &= 0.75 \times (0.43 \times (max(20 \text{ ft}, \text{l}_{u_pptR}) \times 1\text{ft}^2)^{1/3} \times (p_g \ / \ 11\text{b}/\text{ft}^2 + 10)^{1/4} - \\ 1.5\text{ft}) &= \textbf{1.25} \text{ ft} \end{aligned} $
Drift height - right parapet	$h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 1.25 \text{ ft}$
Drift width	$W_{d_pptR} = min(4 \times h_{d_pptR}, 8 \times (h_{pptR} - h_b), b) = 4.98 \text{ ft}$
Drift surcharge load - right parapet	$p_{d_pptR} = h_{d_pptR} \times \gamma = 19.86 \text{ lb/ft}^2$
	31.4 psf
Daranat	11.6 psf
Falapel	
	→
31.4 psf	
Descent 11.6	psf
Parapet	
→ 4	' 11.8"
Balanced load	15.0 psf
	
3' 11"	4'6"
_ _	<u> </u>
	35' 6"
	55 0
	Roof elevation
WIND LOADING (MWFRS)	
WIND LOADING	
In accordance with ASCE7-10	
lising the directional design method	
Using the directional design method	Tedds calculation version 2.1.12

PE Pinnacle Engineering, Inc.

Client: PorterSIPS

Project No.: 23018 By: MJS Date: 1/31/2023 Page: 6 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 7

 Pinnacle Engineering, Inc.
 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663
 Page:
 7
 Date: 1/31/2023 Page: 7

 $F_{w,wpw_90} = p_{pw} \times h_p \times d = 5.5$ kips

Pressures and forces

Net pressure

Net force

$$p = q \times G_f \times C_{pe} - q_i \times GC_p$$
$$F_w = p \times A_{ref}$$

Roof load case 1 - Wind 0, GCpi 0.18, -cpe

	Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)	
	A (-ve)	16.75	-0.90	25.40	-24.00	737.00	-17.69	
	B (-ve)	16.75	-0.90	25.40	-24.00	737.00	-17.69	
	C (-ve)	16.75	-0.50	25.40	-15.37	1474.00	-22.65	
	D (-ve)	16.75	-0.30	25.40	-11.05	176.00	-1.94	
То	Total vertical net force			F _{w.v} = -59.98 kips				

Total horizontal net force

F_{w,h} = **0.00** kips

Walls load case 1 - Wind 0, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	24.89	12.35	1320.00	16.30
A ₂	16.75	0.80	25.40	12.70	154.00	1.96
В	16.75	-0.50	25.40	-15.37	1474.00	-22.65
С	16.75	-0.70	25.40	-19.69	594.63	-11.71
D	16.75	-0.70	25.40	-19.69	594.63	-11.71

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading

 $A_{vert_w_0} = b \times (H+h_p) =$ **1818.70** ft² $A_{vert r 0} = 0.00 ft^2$ $F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{29.10 kips}$ $F_{I} = F_{w,wB} + F_{w,wpl_0} = -31.8$ kips $F_w = F_{w,wA 1} + F_{w,wA 2} + F_{w,wpw 0} = 32.0$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 63.8 \text{ kips}$

Roof load case 2 - Wind 0, GCpi -0.18, -1cpe

	Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
	A (+ve)	16.75	-0.18	25.40	0.69	737.00	0.51
	B (+ve)	16.75	-0.18	25.40	0.69	737.00	0.51
	C (+ve)	16.75	-0.18	25.40	0.69	1474.00	1.01
	D (+ve)	16.75	-0.18	25.40	0.69	176.00	0.12
То	tal vertical net f	orce		F _{w.v} = 2.14 kips	3		

Total horizontal net force

F_{w.h} = **0.00** kips

Walls load case 2 - Wind 0, GCpi -0.18, -1cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A ₁	15.00	0.80	24.89	21.50	1320.00	28.37

Client: PorterSIPS

Project No.: 23018 By: MJS Date: 1/31/2023 Page: 8 Pinnacle Engineering, Inc. 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663 Page: 8

	Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
	A ₂	16.75	0.80	25.40	21.84	154.00	3.36
	В	16.75	-0.50	25.40	-6.22	1474.00	-9.17
ĺ	С	16.75	-0.70	25.40	-10.54	594.63	-6.27
ĺ	D	16.75	-0.70	25.40	-10.54	594.63	-6.27

Overall loading

Projected vertical plan area of wall	$A_{vert_w_0} = b \times (H+h_p) = 1818.70 \text{ ft}^2$
Projected vertical area of roof	$A_{vert_r_0} = 0.00 \text{ ft}^2$
Minimum overall horizontal loading	$F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{29.10} \ kips$
Leeward net force	$F_{I} = F_{w,wB} + F_{w,wpl_0} = -18.3 \text{ kips}$
Windward net force	$F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wpw_0} = 45.4 \text{ kips}$
Overall horizontal loading	$F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 63.8 \text{ kips}$

Roof load case 3 - Wind 90, GCpi 0.18, -Cpe

	Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
	A (-ve)	16.75	-0.90	25.40	-24.00	297.31	-7.14
	B (-ve)	16.75	-0.90	25.40	-24.00	297.31	-7.14
	C (-ve)	16.75	-0.50	25.40	-15.37	594.63	-9.14
	D (-ve)	16.75	-0.30	25.40	-11.05	1934.75	-21.38
otal vertical net force		F _{w,v} = -44.79 k	ips		•		

Total vertical net force

Total horizontal net force

```
F<sub>w,h</sub> = 0.00 kips
```

Walls load case 3 - Wind 90, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	24.89	12.35	532.50	6.58
A ₂	16.75	0.80	25.40	12.70	62.13	0.79
В	16.75	-0.28	25.40	-10.53	594.63	-6.26
С	16.75	-0.70	25.40	-19.69	1474.00	-29.02
D	16.75	-0.70	25.40	-19.69	1474.00	-29.02

Overall loading

Pro	iected	vertical	plan	area	of	wall
10	joolou	vortioui	piùii	aiou	0.	wan

- Projected vertical area of roof
- Minimum overall horizontal loading
- Leeward net force

Windward net force

Overall horizontal loading

 $A_{vert_w_{90}} = d \times (H + h_p) = 733.68 \text{ ft}^2$ Avert r 90 = 0.00 ft² $F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = 11.74 \text{ kips}$ $F_{I} = F_{w,wB} + F_{w,wpl 90} = -9.9$ kips $F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wpw_{90}} = 12.9$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 22.8 \text{ kips}$

Roof load case 4 - Wind 90, GCpi -0.18, +Cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (+ve)	16.75	-0.18	25.40	0.69	297.31	0.20

Client: PorterSIPS

Project No.: 23018 By: MJS Date: 1/31/2023 Page: 9 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

	Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
	B (+ve)	16.75	-0.18	25.40	0.69	297.31	0.20
	C (+ve)	16.75	-0.18	25.40	0.69	594.63	0.41
Ī	D (+ve)	16.75	-0.18	25.40	0.69	1934.75	1.33
Fotal vertical net force		F _{w,v} = 2.14 kips	S				

Total horizontal net force

 $\Gamma_{W,V} = 2.14$ KIPS F_{w.h} = **0.00** kips

Walls load case 4 - Wind 90, GCpi -0.18, +cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft ²)	Net force F _w (kips)
A ₁	15.00	0.80	24.89	21.50	532.50	11.45
A ₂	16.75	0.80	25.40	21.84	62.13	1.36
В	16.75	-0.28	25.40	-1.39	594.63	-0.83
С	16.75	-0.70	25.40	-10.54	1474.00	-15.54
D	16.75	-0.70	25.40	-10.54	1474.00	-15.54

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading

Leeward net force

Windward net force

Overall horizontal loading

 $A_{vert_w_{90}} = d \times (H + h_p) = 733.68 \text{ ft}^2$

Avert r 90 = 0.00 ft²

 $F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{11.74 kips}$

 $F_{I} = F_{w,wB} + F_{w,wpl_{90}} = -4.5$ kips

 $F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wpw_{90}} = 18.3$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total min}) = 22.8 kips$

Project: <u>Circle K - Angier, NC (Main Building)</u> Client: PorterSIPS

 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 11

 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663
 FAX (5

WIND LOAD (C&C - STORE)

WIND LOADING

In accordance with ASCE7-10

Using the components and cladding design method

Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>12</u> 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Client: PorterSIPS

Date: 1/31/2023 Page: 12

Client: <u>PorterSIPS</u> Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>13</u> 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Component	Zone	Length (ft)	Width (ft)	Eff. area (ft ²)	+GC _p	-GC _p	Pres (+ve) (psf)	Pres (-ve) (psf)
25 sf	3	-	-	25.0	0.84	-1.52	25.8	-43.2
50 sf	3	-	-	50.0	0.79	-1.31	24.6	-37.9
>100 sf	3	-	-	100.1	0.74	-1.10	23.4	-32.5

The final net design wind pressure, including all permitted reductions, used in the design shall not be less than 16psf acting in either direction

SEISMIC FORCES

SEISMIC FORCES

In accordance with ASC	E 7-10
------------------------	--------

Site	parameters
------	------------

Site class	D
Mapped acceleration parameters (Section 11.4.1)	
at short period	S _S = 0.172
at 1 sec period	S ₁ = 0.083
Site coefficientat short period (Table 11.4-1)	F _a = 1.600
at 1 sec period (Table 11.4-2)	F _v = 2.400
Spectral response acceleration parameters	
at short period (Eq. 11.4-1)	$S_{\text{MS}} = F_a \times S_{\text{S}} = \textbf{0.275}$
at 1 sec period (Eq. 11.4-2)	$S_{M1}=F_v\times S_1=\textbf{0.199}$
Design spectral acceleration parameters (Sect 1	1.4.4)
at short period (Eq. 11.4-3)	$S_{DS} = 2 / 3 \times S_{MS} = 0.183$
at 1 sec period (Eq. 11.4-4)	$S_{\text{D1}} = 2 \: / \: 3 \times S_{\text{M1}} = \textbf{0.133}$
Seismic design category	
Risk category (Table 1.5-1)	II

Seismic design category based on short period response acceleration (Table 11.6-1)

Tedds calculation version 3.1.03

Client: PorterSIPS
Project No.: 23018 By: MJS Date: 1/31/2023 Page: 14
8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Seismic design category based on 1 sec period response acceleration (Table 11.6-2)		
	В	
Seismic design category	В	
Approximate fundamental period		
Height above base to highest level of building	h _n = 22 ft	
From Table 12.9.2:		
Structure type	All other systems	
Building pariod parameter C	$C_{\rm c} = 0.02$	
Building period parameter V	$G_t = 0.02$	
	x = 0.75	
Approximate fundamental period (Eq 12.8-7)	$T_a = C_t \times (h_n)^x \times 1 \text{sec} / (1 \text{ft})^x = 0.203 \text{ sec}$	
Building fundamental period (Sect 12.8.2)	T = T _a = 0.203 sec	
Long-period transition period	$T_{L} = 8 \text{ sec}$	
Seismic response coefficient		
Seismic force-resisting system (Table 12.2-1)	A. Bearing_Wall_Systems	
Seismic force-resisting system (Table 12.2-1)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 I _e = 1.000	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 I _e = 1.000	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5) Seismic response coefficient	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 I _e = 1.000 $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$ $C_s = 0.0282$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5) Seismic response coefficient Seismic base shear (Sect 12.8.1)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$ $C_s = 0.0282$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5) Seismic response coefficient Seismic base shear (Sect 12.8.1) Effective seismic weight of the structure	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$ $C_s = 0.0282$ W = 125.0 kips	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5) Seismic response coefficient Seismic base shear (Sect 12.8.1) Effective seismic weight of the structure Seismic response coefficient	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 I _e = 1.000 $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$ $C_{s} = 0.0282$ $W = 125.0 \text{ kips}$ $C_{s} = 0.0282$	
Seismic force-resisting system (Table 12.2-1) Response modification factor (Table 12.2-1) Seismic importance factor (Table 1.5-2) Seismic response coefficient (Sect 12.8.1.1) Calculated (Eq 12.8-2) Maximum (Eq 12.8-3) Minimum (Eq 12.8-5) Seismic response coefficient Seismic base shear (Sect 12.8.1) Effective seismic weight of the structure Seismic response coefficient Seismic base shear (Eq 12.8-1)	A. Bearing_Wall_Systems 15. Light-frame (wood) walls sheathed with wood structural panels R = 6.5 $I_e = 1.000$ $C_{s_calc} = S_{DS} / (R / I_e) = 0.0282$ $C_{s_max} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.1006$ $C_{s_min} = max(0.044 \times S_{DS} \times I_e, 0.01) = 0.0100$ $C_s = 0.0282$ W = 125.0 kips $C_s = 0.0282$ $V = C_s \times W = 3.5 \text{ kips}$	

Project: Circle K - Angier, NC (Main Building) Client: PorterSIPS

<u>SIPS</u>	
Wall Panels:	
Width	w _{wall} = 8 ft
Span	L _{wall} = 16 ft
Thickness	t _{wall} = 6.5 in
Allowable Transverse Load (Porter Code Report, adj @ L/180 23.8 psf @ L/240 22.0 psf @ L/360 14.0 psf	usted for capacity of SIP skin nailing)
Demand	D _{wall} = 0.6 * 0.7 * 37.9 psf = 15.918 psf
Capacity	C _{wall} = 22.0 psf
Check	check _{wall} = if(C _{wall} > D _{wall} , "OK", "NO GOOD") = "OK"
"Note- The SIPA Master Report wall panel values (ta	ble 7) are based on zero bearing and provide a Cp = 0.4. This does not account
for the capacity of the nailing through the SIP skin. S that factor in the additional capacity gained through r	ee full table of adjusted values on page 35 for accurate wall panel capacities nailing through the SIP skins."
Roof Panels:	
Width	$w_{roof} = 8 ft$
Span	$L_{roof} = 32$ in
Thickness	$t_{roof} = 8.25$ in
Allowable Transverse Load (Porter, Table 5) @ L/180 90 psf @ L/240 90 psf @ L/360 90 psf	
Demand	$D_{roof} = 20 \text{ psf} + 20 \text{ psf} = 40.000 \text{ psf}$
	$C_{roof} = 90 \text{ psf}$
Check	$check_{roof} = if(C_{roof} > D_{roof}, "OK", "NO GOOD") = "OK"$
Roof Fasteners:	
Tributary Width	$TW = I_{root} / 2 = 1.333 \text{ ft}$
Fastener Spacing (c/c)	s = 9 in
Soloty Solot	
Withdrawal	SF = S
	$W = (917 \text{ ID}/\text{III}/\text{SF}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	P = 630 ID / SP = 210.000 ID
Design Loads (ASCE 7-16 & Plans):	
Velocity Winds Pressure (S 30.3.2)	q _z = 25.4 psf
Internal Pressure Coefficient (S 26.11)	$GC_{pi} = max(0.18, -0.18)$
Roof Uplift Pressure (S 30.4.2)	p = -50.3 psf
Net Roof Pressure	P _{net} = 0.6*(p + 20 psf) = -18.180 psf
Uplift Per Fastener	P _{fastener} = P _{net} * TW * s = -18.180 lb
Check	$check_{fastener} = if(P > abs(P_{fastener}) \ , \ "OK" \ , \ "NO \ GOOD") = \textbf{''OK''}$

Client: PorterSIPS

Project No.: 23018 By: MJS Date: 1/31/2023 Page: 16 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

ASD SEGMENTED SHEAR WALL (WALL 1) WOOD SHEAR WALL DESIGN (NDS) In accordance with NDS2015 allowable stress design and the segmented shear wall method Tedds calculation version 1.2.09 Panel details Structural wood panel sheathing on one side h = 12.167 ft Panel height Panel length b = 88 ft Panel opening details $w_{o1} = 60.25 \text{ ft}$ Width of opening h_{o1} = **10.5** ft Height of opening Height to underside of lintel over opening l_{o1} = **10.5** ft Position of opening P_{o1} = **11.583** ft $A = h \times b - w_{o1} \times h_{o1} = 438.045 \text{ ft}^2$ Total area of wall Panel construction Nominal stud size 2" x 6" 1.5" x 5.5" Dressed stud size Cross-sectional area of studs As = 8.25 in² Stud spacing s = 16 in 2 x 2" x 6" Nominal end post size 2 x 1.5" x 5.5" Dressed end post size Cross-sectional area of end posts Ae = 16.5 in² Dia = 1 in Hole diameter Net cross-sectional area of end posts A_{en} = **13.5** in² Nominal collector size 2 x 2" x 6" 2 x 1.5" x 5.5" Dressed collector size Service condition Dry Temperature 100 degF or less Vertical anchor stiffness ka = 50000 lb/in From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick) Species, grade and size classification Spruce-Pine-Fir, no.2 grade, 2" & wider Specific gravity G = 0.42 F_t = **450** lb/in² Tension parallel to grain Compression parallel to grain F_c = **1150** lb/in² E = 1400000 lb/in² Modulus of elasticity Minimum modulus of elasticity E_{min} = 510000 lb/in² Sheathing details Sheathing material 15/32" wood panel oriented strandboard sheathing

Project: Circle K - Angier, NC (Main Building) Client: PorterSIPS

Fastener type	8d common nails at 3"centers
From SDPWS Table 4.3A Nominal Unit Shear Ca	pacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design	$v_s = 980 \text{ plf} \times min[1 - (0.5 - G), 1] = 901.6 \text{ lb/ft}$
Nominal unit shear capacity for wind design	$v_w = 1370 \text{ plf} \times \text{min}[1 - (0.5 - G), 1] = 1260.4 \text{ lb/ft}$
Apparent shear wall shear stiffness	G _a = 25 kips/in
Loading details	
Dead load acting on top of panel	D = 355 lb/ft
Roof live load acting on top of panel	$L_r = 355 \text{ lb/ft}$
Snow load acting on top of panel	S = 266 lb/ft
Self weight of panel	$S_{wt} = 10 \text{ lb/ft}^2$
In plane wind load acting at head of panel	W = 8010 lbs
Wind load serviceability factor	f _{Wserv} = 0.60
In plane seismic load acting at head of panel	$E_q = 1750 \text{ lbs}$
Design spectral response accel. par., short periods	S _{DS} = 0.184
From IBC 2015 cl.1605.3.1 Basic load combination	ons
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	$D + 0.45W + 0.75L_{f} + 0.75(L_{r} \text{ or } S \text{ or } R)$
Load combination no.4	$D + 0.525E + 0.75L_{\rm f} + 0.755$
Load combination no 6	0.6D + 0.7E
	0.00 + 0.72
Adjustment factors	0 100
Load duration factor – Table 2.3.2	$C_{\rm D} = 1.00$
Size factor for compression – Table 4A	C _{Ft} = 1.30
Wet service factor for tension – Table 4A	$C_{14} = 1.00$
Wet service factor for compression – Table 4A	$C_{Mc} = 1.00$
Wet service factor for modulus of elasticity – Table	4A
	C _{ME} = 1.00
Temperature factor for tension – Table 2.3.3	C _{tt} = 1.00
Temperature factor for compression – Table 2.3.3	
	C _{tc} = 1.00
Temperature factor for modulus of elasticity – Table	2.3.3
	$C_{tE} = 1.00$
Incising factor – cl.4.3.8	$C_i = 1.00$
Buckling stiffness factor – cl.4.4.2	$G_{\rm T} = 1.00$
Adjusted modulus of elasticity	$E_{\min} = E_{\min} \times O_{ME} \times O_{tE} \times O_{i} \times O_{T} = 510000 \text{ psi}$
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}^{-7} (n/d)^2 = 595 \text{ psi}$
Reference compression design value	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = 2024 \text{ psi}$
For sawn lumber	C = U.8
Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c})) / (2 \times C) - \forall ([(1 + (F_{cE} / F_{c})) / (2 \times C)]^{c} - (F_{cE} / F_{c}) / C) = 0.97$
	oner Baties
From SUPWS Lable 4.3.4 Maximum Snear Wall /	
Segment 1 wall length	b. – 11 583 ft
Shear wall aspect ratio	$h / h_1 = 1.05$
Segment 2 wall length	b ₂ = 16.167 ft

Client: PorterSIPS

Shear wall aspect ratio	h / b ₂ = 0.753
Segmented shear wall capacity - Equal defle	ction method
Wind loading:	
Segment 2 stiffness	$k_{2} = 1 / (2 \times h^{3} / (3 \times E \times A_{e} \times b_{2}^{2}) + h / (G_{a} \times b_{2}) + h^{2} / (k_{a} \times b_{2}^{2})) = \textbf{22.823}$
	kips/in
Unit shear capacity, widest segment	v _{sww2} = v _w / 2 = 630.2 plf
Deflection under capacity load	$\begin{split} &\delta_{Cap} = 2 \times v_{sww2} \times h^3 \ / \ (3 \times E \times A_e \times b_2) + v_{sww2} \times h \ / \ (G_a) \ + \ h^2 \times v_{sww2} \ / \ (k_a \times b_2) = \textbf{0.446} \ in \end{split}$
Segment 1 stiffness	$ k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h^2 / (k_a \times b_1^2)) = \textbf{14.549} $ kips/in
Segment 1 unit shear at δ_{Cap}	$v_{dsww1} = \delta_{Cap} \times k_1 / b_1 =$ 560.75 plf
Segment 1 shear capacity	v _{sww1} = v _w / 2 = 630.2 plf
	$v_{dsww1} / v_{sww1} = 0.890$
	PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}
Maximum shear force under wind loading	$V_{w_{max}} = 0.6 \times W = 4.806 \text{ kips}$
Shear capacity for wind loading	$\label{eq:Vw} \begin{split} V_w &= min(v_{sww1}, v_{dsww1}) \times b_1 + v_{sww2} \times b_2 = \textbf{16.684} \text{ kips} \\ V_{w_max} \ / \ V_w &= \textbf{0.288} \end{split}$
	PASS - Shear capacity for wind load exceeds maximum shear force
Seismic loading:	
Segment 2 stiffness	$\begin{aligned} k_2 &= 1 \ / \ (2 \times h^3 \ / \ (3 \times E \times A_e \times b_2{}^2) + h \ / \ (G_a \times b_2) + h^2 \ / \ (k_a \times b_2{}^2)) = \textbf{22.823} \\ kips/in \end{aligned}$
Unit shear capacity, widest segment	v _{sws2} = v _s / 2 = 450.8 plf
Deflection under capacity load	$\begin{split} &\delta_{Cap} = 2 \times v_{sws2} \times h^3 \ / \ (3 \times E \times A_e \times b_2) \ + \ v_{sws2} \times h \ / \ (G_a) \ + \ h^2 \times v_{sws2} \ / \ (k_a \times b_2) \ = \ \textbf{0.319} \ \text{in} \end{split}$
Segment 1 stiffness	$\begin{aligned} k_1 &= 1 \ / \ (2 \times h^3 \ / \ (3 \times E \times A_e \times b_1^2) + h \ / \ (G_a \times b_1) + h^2 \ / \ (k_a \times b_1^2)) = \textbf{14.549} \\ \text{kips/in} \end{aligned}$
Segment 1 unit shear at δ_{Cap}	$v_{dsws1} = \delta_{Cap} \times k_1 / b_1 = \textbf{401.12} plf$
Segment 1 shear capacity	v _{sws1} = v _s / 2 = 450.8 plf
	$v_{dsws1} / v_{sws1} = 0.890$
	PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}
Maximum shear force under seismic loading	$V_{s_{max}} = 0.7 \times E_{q} = 1.225 \text{ kips}$
Shear capacity for seismic loading	$V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + v_{sws2} \times b_2 = \textbf{11.934} \text{ kips}$
	$V_{s_max} / V_s = 0.103$
	PASS - Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b ₁ = 1.05
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 4.806 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = 0.191$ kips
Maximum tensile force in chord	$T = V \times (k_1 / sum(k_1, k_2)) \times h / b_1 - P = 1.775$ kips
Maximum applied tensile stress	$f_t = T / A_{en} = 131 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 936 \text{ lb/in}^2$ f _t / F _t ' = 0.140
Load combination 1	vesign tensile stress exceeds maximum applied tensile stress exceeds maximum applied tensile stress
Shoar forgo for maximum compression	$V = 0.6 \times W = 4.806$ king
	$v = 0.0 \times vv = 4.000 \text{ kps}$ $P = ((D + S + vh)) \times c / 2 = 0.218 \text{ kinc}$
Ana Torde for maximum compression	$1 - ((D + OW(\times 11)) \times 5) = 0.310$ kips

Project No.: 23018 By: MJS Date: 1/31/2023 Page: 19 Project No.: 23018 By: MJS Date: 1/31/2023 Page: 19 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Client: PorterSIPS

By: MJS Date: 1/31/2023 Page: 19

Maximum compressive force in chord	$C = V \times (k_1 / sum(k_1,k_2)) \times h / b_1 + P = 2.283$ kips
Maximum applied compressive stress	$f_c = C / A_e = 138 \text{ lb/in}^2$
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{553} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.250
PASS	3 - Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 3 and 4	
Shear wall aspect ratio	h / b ₂ = 0.753
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 4.806 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = \textbf{0.191} \text{ kips}$
Maximum tensile force in chord	$T = V \times (k_2 / sum(k_1, k_2)) \times h / b_2 - P = 2.018$ kips
Maximum applied tensile stress	f _t = T / A _{en} = 149 lb/in ²
Design tensile stress	$\textbf{F}_{t}^{\prime} = \textbf{F}_{t} \times \textbf{C}_{D} \times \textbf{C}_{Mt} \times \textbf{C}_{tt} \times \textbf{C}_{Ft} \times \textbf{C}_{i} = \textbf{936} \text{ Ib/in}^{2}$
	f _t / F _t ' = 0.160
	PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 1	
Shear force for maximum compression	V = 0.6 × W = 4.806 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 = 0.318$ kips
Maximum compressive force in chord	$C = V \times (k_2 / sum(k_1,k_2)) \times h / b_2 + P = \textbf{2.527} \text{ kips}$
Maximum applied compressive stress	$f_c = C / A_e = 153 \text{ lb/in}^2$
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{553} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.277
PASS	3 - Design compressive stress exceeds maximum applied compressive stress
Collector capacity	

Collector seismic design force factor Maximum shear force on wall Maximum force in collector Maximum applied tensile stress Design tensile stress

Maximum applied compressive stress Column stability factor Design compressive stress

 $F_{Coll} = 1$ $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 4.806 \text{ kips}$ P_{coll} = **2.052** kips $f_t = P_{coll} / (2 \times A_s) = \textbf{124} \ lb/in^2$ $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{936} \ lb/in^2$ $f_t / F_t' = 0.133$ PASS - Design tensile stress exceeds maximum applied tensile stress $f_c = P_{coll} / (2 \times A_s) = 124 \text{ lb/in}^2$ C_P = **1.00** $\textbf{F}_{c}{'} = \textbf{F}_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{2024} ~ lb/in^{2}$ $f_c / F_c' = 0.061$ PASS - Design compressive stress exceeds maximum applied compressive stress

$I_1 = 1.775$ Klps
T ₂ = 1.775 kips
$T_3 = 2.018 \text{ kips}$
T ₄ = 2.018 kips
$V_{\delta w} = f_{Wserv} \times W = 4.806 \text{ kips}$
$\Delta_{w_allow} = h / 400 = 0.365$ in
$v_{\delta_W} = V_{\delta_W} \times (k_1 \ / \ sum(k_1,k_2)) \ / \ b_1 = \textbf{161.53} \ lb/ft$
$T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times s / 2) = \textbf{1.775} \text{ kips}$
$\begin{split} \delta_{sww1} &= 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times T_\delta / (k_a \times b_1) = \\ \textbf{0.125} \text{ in} \end{split}$
$\delta_{sww1} / \Delta_{w_allow} = 0.341$
PASS - Shear wall deflection is less than deflection limit
$v_{\delta_W} = V_{\delta_W} \times (k_2 / sum(k_1,k_2)) / b_2 = \textbf{181.54} \text{ lb/ft}$
$T_{\delta} = max(0 \text{ kips}, v_{\delta_W} \times h - 0.6 \times (D + S_{wt} \times h) \times s / 2) = \textbf{2.018} \text{ kips}$
$\begin{split} \delta_{sww2} &= 2\times v_{\delta_W}\times h^3 \ / \ (3\times E\times A_e\times b_2) + v_{\delta_W}\times h \ / \ (G_a) + h\times T_\delta \ / \ (k_a\times b_2) = \\ \textbf{0.126} \ in \end{split}$
$\delta_{sww2} / \Delta_{w_allow} = 0.344$
PASS - Shear wall deflection is less than deflection limit
$V_{\delta s} = E_q = 1.75 \text{ kips}$
$\Delta_{s \text{ allow}} = 0.020 \times h = 2.92$ in
$C_{d\delta} = 4$
l _e = 1.25
$v_{\delta_S} = V_{\delta_S} \times \left(k_1 \ / \ sum(k_1,k_2)\right) \ / \ b_1 = \textbf{58.82} \ lb/ft$
$T_{\delta} = max(0 \text{ kips}, v_{\delta_S} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times s / 2) = \textbf{0.537}$ kips
$\begin{split} \delta_{swse1} &= 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_1) + v_{\delta s} \times h \ / \ (G_a) + h \times T_\delta \ / \ (k_a \times b_1) = \\ \textbf{0.043} \ in \end{split}$
δ_{sws1} = $C_{d\delta} \times \delta_{swse1}$ / I_e = 0.138 in
$\delta_{sws1} / \Delta_{s_allow} = 0.047$
PASS - Shear wall deflection is less than deflection limit
$v_{\delta s} = V_{\delta s} \times \left(k_2 \ / \ sum(k_1,k_2)\right) \ / \ b_2 = \textbf{66.1} \ \textbf{lb/ft}$
$T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times s / 2) = \textbf{0.625}$ kips
$\begin{split} \delta_{swse2} &= 2 \times v_{\delta_S} \times h^3 \ / \ (3 \times E \times A_e \times b_2) + v_{\delta_S} \times h \ / \ (G_a) + h \times T_\delta \ / \ (k_a \times b_2) = \\ \textbf{0.044} \ in \end{split}$
δ_{sws2} = $C_{d\delta} \times \delta_{swse2}$ / I_e = 0.141 in
$\begin{split} &\delta_{sws2} = C_{d\delta} \times \delta_{swse2} \ / \ I_e = \textbf{0.141} \ \text{in} \\ &\delta_{sws2} \ / \ \Delta_{s_allow} = \textbf{0.048} \end{split}$

Client: PorterSIPS

Date: 1/31/2023 Page: 21

Client: PorterSIPS
Project No.: 23018 By: MJS Date: 1/31/2023 Page: 22
8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)

Specific gravity	G = 0.42
Tension parallel to grain	$F_{t} = 450 \text{ lb/in}^{2}$
Compression parallel to grain	F _c = 1150 lb/in ²
Modulus of elasticity	E = 1400000 lb/in ²
Minimum modulus of elasticity	E _{min} = 510000 lb/in ²
Sheathing details	
Sheathing material	15/32" wood panel oriented strandboard sheathing
Fastener type	8d common nails at 3"centers
From SDPWS Table 4.3A Nominal Unit Shear Ca	pacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design	v _s = 980 plf × min[1 - (0.5 - G), 1] = 901.6 lb/ft
Nominal unit shear capacity for wind design	v _w = 1370 plf × min[1 - (0.5 - G), 1] = 1260.4 lb/ft
Apparent shear wall shear stiffness	G _a = 25 kips/in
Loading details	
Dead load acting on top of panel	D = 27 lb/ft
Roof live load acting on top of panel	$L_r = 27 \text{ lb/ft}$
Snow load acting on top of panel	S = 60 lb/ft
Self weight of panel	$S_{wt} = 10 \text{ lb/ft}^2$
In plane wind load acting at head of panel	W = 21630 lbs
Wind load serviceability factor	f _{Wserv} = 0.60
In plane seismic load acting at head of panel	E _q = 1750 lbs
Design spectral response accel. par., short periods	S _{DS} = 0.184
From IBC 2015 cl.1605.3.1 Basic load combination	ons
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	$D + 0.45W + 0.75L_f + 0.75(L_r \text{ or } S \text{ or } R)$
Load combination no.4	$D + 0.525E + 0.75L_{f} + 0.75S$
Load combination no.5	0.6D + 0.6W
Load combination no.6	0.6D + 0.7E
Adjustment factors	
Load duration factor – Table 2.3.2	C _D = 1.60
Size factor for tension – Table 4A	$C_{Ft} = 1.30$
Size factor for compression – Table 4A	C _{Fc} = 1.10
Wet service factor for tension – Table 4A	$C_{Mt} = 1.00$
Wet service factor for compression – Table 4A	$C_{Mc} = 1.00$
Wet service factor for modulus of elasticity – Table 4	4A
Tomporature factor for tancian Table 0.0.0	$C_{\rm ME} = 1.00$
Temperature factor for compression _ Table 2.2.2	$O_{tt} = 1.00$
remperature factor for compression – rable 2.3.3	C ₁₁ = 1 00
Temperature factor for modulus of elasticity – Table	2.3.3
	C _{IF} = 1.00
Incising factor – cl.4.3.8	C _i = 1.00
Buckling stiffness factor – cl.4.4.2	C _T = 1.00
Adjusted modulus of elasticity	E_{min} ' = $E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T$ = 510000 psi
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 325 \text{ psi}$
Reference compression design value	$F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2024 \text{ psi}$
For sawn lumber	c = 0.8

Client: PorterSIPS Project No.: 23018 By: MJS Date: 1/31/2023 Page: 23 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c)]^{2} - (F_{cE} / F_{c}^{*}) / c)} = 0.15$
From SDPWS Table 4.3.4 Maximum Shear Wall	Aspect Ratios
Maximum shear wall aspect ratio	3.5
Shear wall length	b = 35.5 ft
Shear wall aspect ratio	h / b = 0.464
Segmented shear wall capacity	
Maximum shear force under wind loading	V _{w_max} = 0.6 × W = 12.978 kips
Shear capacity for wind loading	V _w = v _w × b / 2 = 22.372 kips
	$V_{w_{max}} / V_{w} = 0.58$
	PASS - Shear capacity for wind load exceeds maximum shear force
Maximum shear force under seismic loading	$V_{s_max} = 0.7 \times E_q = 1.225$ kips
Shear capacity for seismic loading	$V_s = v_s \times b / 2 = $ 16.003 kips
	$V_{s_max} / V_s = 0.077$
	PASS - Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b = 0.464
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 12.978 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = 0.077$ kips
Maximum tensile force in chord	T = V × h / (b) - P = 5.940 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 240 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{936} \ lb/in^2$
	$f_t / F_t' = 0.256$
	PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 1	
Shear force for maximum compression	V = 0.6 × W = 12.978 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 = 0.128$ kips
Maximum compressive force in chord	$C = V \times h / (b) + P = 6.145$ kips
Maximum applied compressive stress	$f_{c} = C / A_{e} = 203 \text{ lb/in}^{2}$
Design compressive stress	$F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = 314 \ lb/in^{2}$
	f _c / F _c ' = 0.648
PASS - De	sign compressive stress exceeds maximum applied compressive stress
Hold down force	
Chord 1	T ₁ = 5.94 kips
Chord 2	T ₂ = 5.94 kips
Wind load deflection	
Design shear force	$V_{\delta w} = f_{Wserv} \times W =$ 12.978 kips
Deflection limit	$\Delta_{w_allow} = h / 400 = 0.494$ in
Induced unit shear	$v_{\delta_W} = V_{\delta_W} / b = 365.58 \text{ lb/ft}$
Anchor tension force	$T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times s / 2) = $ 5.940 kips
Shear wall deflection – Eqn. 4.3-1	$\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times T_{\delta} / (k_a \times b) =$
	0.304 in
	$\delta_{sww} / \Delta_{w_allow} = 0.617$
	PASS - Shear wall deflection is less than deflection limit

Client: <u>PorterSIPS</u>
Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>24</u>
8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building)
 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 24

Seismic deflection	
Design shear force	$V_{\delta s} = E_q = 1.75 \text{ kips}$
Deflection limit	Δ_{s_allow} = 0.020 × h = 3.95 in
Induced unit shear	$v_{\delta s} = V_{\delta s} \ / \ b = \textbf{49.3} \ \textbf{lb/ft}$
Anchor tension force	$T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times s / 2) = \textbf{0.739}$ kips
Shear wall elastic deflection – Eqn. 4.3-1	$\begin{split} \delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times T_\delta / (k_a \times b) = \textbf{0.04} \\ \text{in} \end{split}$
Deflection ampification factor	$C_{d\delta} = 4$
Seismic importance factor	l _e = 1.25
Amp. seis. deflection – ASCE7 Eqn. 12.8-15	δ_{sws} = $C_{d\delta} \times \delta_{swse}$ / I_e = $\textbf{0.13}$ in
	$\delta_{sws} / \Delta_{s_allow} = 0.033$
	PASS - Shear wall deflection is less than deflection limit

ASD SEGMENTED SHEAR WALL (WALL 3)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.09

Panel details

Structural wood panel sheathing on one side

Panel height Panel length h = **12.167** ft b = **88** ft

Panel opening details

Width of opening	w _{o1} = 79.333 ft
Height of opening	h _{o1} = 11.25 ft
Height to underside of lintel over opening	l _{o1} = 11.25 ft
Position of opening	P _{o1} = 4.333 ft
Total area of wall	$A = h \times b - w_{o1} \times h_{o1} = \textbf{178.173} \text{ ft}^2$
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	3 x 2" x 6"

Dressed end post size	3 x 1.5" x 5.5"
Cross-sectional area of end posts	A _e = 24.75 in ²
Hole diameter	Dia = 1 in
Net cross-sectional area of end posts	A _{en} = 20.25 in ²
Nominal collector size	2 x 2" x 6"
Dressed collector size	2 x 1.5" x 5.5"
Service condition	Dry
Temperature	100 degF or less
Vertical anchor stiffness	k _a = 50000 lb/in
From NDS Supplement Table 4A - Reference des	sign values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification	Spruce-Pine-Fir, stud grade, 2" & wider
Specific gravity	G = 0.42
Tension parallel to grain	F _t = 350 lb/in ²
Compression parallel to grain	F _c = 725 lb/in ²
Modulus of elasticity	E = 1200000 lb/in ²
Minimum modulus of elasticity	E _{min} = 440000 lb/in ²
Sheathing details	
Sheathing material	15/32" wood panel oriented strandboard sheathing
Fastener type	8d common nails at 2"centers
From SDPWS Table 4.3A Nominal Unit Shear Ca	pacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design	v _s = 1280 plf × min[1 - (0.5 - G), 1] = 1177.6 lb/ft
Nominal unit shear capacity for wind design	$v_w = 1790 \text{ plf} \times \text{min}[1 - (0.5 - G), 1] = 1646.8 \text{ lb/ft}$
Apparent shear wall shear stiffness	$G_a = 39$ kips/in
Loading details	
Dead load acting on top of panel	D – 355 lb/ft
Boof live load acting on top of panel	L = 355 lb/ft
Snow load acting on top of panel	S = 266 lb/ft
Self weight of panel	$S_{\text{ref}} = 10 \text{ lb/ft}^2$
In plane wind load acting at head of panel	W = 8010 lbs
Wind load serviceability factor	fwsery = 0.60
In plane seismic load acting at head of panel	$E_{\rm a} = 1750$ lbs
Design spectral response accel. par., short periods	S _{DS} = 0.184
From IBC 2015 cl 1605 3 1 Basic load combination	ons
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	$D + 0.45W + 0.75L_{f} + 0.75(L_{f} \text{ or } S \text{ or } B)$
Load combination no.4	$D + 0.525E + 0.75L_{f} + 0.75S$
Load combination no.5	0.6D + 0.6W
Load combination no.6	0.6D + 0.7E
Adjustment factors	
Load duration factor – Table 2.3.2	Cp = 1.60
Size factor for tension – Table 4A	$C_{\rm E^{+}} = 1.00$
Size factor for compression – Table 4A	$C_{E_0} = 1.00$
Wet service factor for tension – Table 4A	$C_{Mt} = 1.00$
Wet service factor for compression – Table 4A	$C_{Mc} = 1.00$
Wet service factor for modulus of elasticity – Table	4A
,	C _{ME} = 1.00

Client: PorterSIPS

Temperature factor for tension – Table 2.3.3	C _{tt} = 1.00
Temperature factor for compression – Table 2.3.3	
	C _{tc} = 1.00
Temperature factor for modulus of elasticity – Table	e 2.3.3
	C _{tE} = 1.00
Incising factor – cl.4.3.8	C _i = 1.00
Buckling stiffness factor – cl.4.4.2	C _T = 1.00
Adjusted modulus of elasticity	E_{min} ' = $E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T$ = 440000 psi
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 513 \text{ psi}$
Reference compression design value	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = \textbf{1160 psi}$
For sawn lumber	c = 0.8
Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = 0$
	0.39
From SDPWS Table 4.3.4 Maximum Shear Wall	Aspect Ratios
Maximum shear wall aspect ratio	3.5
Segment 1 wall length	b ₁ = 4.333 ft
Shear wall aspect ratio	h / b ₁ = 2.808
Segment 2 wall length	b ₂ = 4.334 ft
Shear wall aspect ratio	h / b ₂ = 2.807
Segmented shear wall capacity - Strength distri	bution method
Maximum shear force under wind loading	$V_{w_max} = 0.6 \times W = 4.806$ kips
Shear capacity for wind loading	$V_w = v_w \times (2 \times b_1^2 / h + 2 \times b_2^2 / h) / 2 = 5.084$ kips
	V _{w_max} / V _w = 0.945
	PASS - Shear capacity for wind load exceeds maximum shear force
Maximum shear force under seismic loading	$V_{s_{max}} = 0.7 \times E_{q} = 1.225 \text{ kips}$
Shear capacity for seismic loading	$V_s = v_s \times (2 \times b_1^2 / h + 2 \times b_2^2 / h) / 2 = 3.635$ kips
	$V_{s_max} / V_s = 0.337$
	PASS - Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b ₁ = 2.808
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 4.806 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = 0.191$ kips
Maximum tensile force in chord	T = V × $(2 × b_1^2 / h / (2 × b_1^2 / h + 2 × b_2^2 / h)) × (h / b_1) - P = 6.555$ kips
Maximum applied tensile stress	$f_t = T / A_{en} = 324 \text{ lb/in}^2$
Design tensile stress	$F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = \textbf{560} \text{ lb/in}^{2}$
	f _t / F _t ' = 0.578
	PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 1	
Shear force for maximum compression	V = 0.6 × W = 4.806 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 = 0.318 \text{ kips}$
Maximum compressive force in chord	$C = V \times (2 \times b_1^2 / h / (2 \times b_1^2 / h + 2 \times b_2^2 / h)) \times (h / b_1) + P = 7.064 \text{ kips}$
Maximum applied compressive stress	$f_{c} = C / A_{e} = 285 \text{ lb/in}^{2}$
Design compressive stress	$\textbf{F}_{c}{}^{\prime} = \textbf{F}_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{455} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.628
PASS - Des	sign compressive stress exceeds maximum applied compressive stress

 Pipe
 PorterSIPS

 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 27

 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663
 • FAX (513) 984-1663
 • FAX (513) 984-1663

Project: Circle K - Angier, NC (Main Building) Client: PorterSIPS

Chord capacity for chords 3 and 4	
Shear wall aspect ratio	h / b ₂ = 2.807
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 4.806 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = 0.191$ kips
Maximum tensile force in chord	T = V × $(2 × b_2^2 / h / (2 × b_1^2 / h + 2 × b_2^2 / h)) × (h / b_2)$ - P = 6.557 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 324 \text{ lb/in}^2$
Design tensile stress	$\textbf{F}_{t}' = \textbf{F}_{t} \times \textbf{C}_{D} \times \textbf{C}_{Mt} \times \textbf{C}_{tt} \times \textbf{C}_{Ft} \times \textbf{C}_{i} = \textbf{560} \text{ lb/in}^{2}$
	f _t / F _t ' = 0.578
	PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 1	
Shear force for maximum compression $V = 0.6 \times W = 4.806$ kips	
Axial force for maximum compression $P = ((D + S_{wt} \times h)) \times s / 2 = 0.318$ kips	
Maximum compressive force in chord	C = V × $(2 × b_2^2 / h / (2 × b_1^2 / h + 2 × b_2^2 / h)) × (h / b_2) + P$ = 7.065 kips
Maximum applied compressive stress $f_c = C / A_e = 285 \text{ lb/in}^2$	
Design compressive stress	$F_{c}{}^{\prime}=F_{c}\times C_{D}\times C_{Mc}\times C_{tc}\times C_{Fc}\times C_{i}\times C_{P}=\textbf{455}{}lb/in^{2}$
	f _c / F _c ' = 0.628
PASS - De	sign compressive stress exceeds maximum applied compressive stress
Collector capacity	
C	iollector axial force diagram (kips)
	2.2
2.2	
	0
-2.2	

Collector seismic design force factor	F _{Coll} = 1
Maximum shear force on wall	$V_{max} = max(F_{Coll} \times V_{s_{max}}, V_{w_{max}}) = 4.806 \text{ kips}$
Maximum force in collector	P _{coll} = 2.167 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 131 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{560} \text{ lb/in}^2$
	f _t / F _t ' = 0.235
	PASS - Design tensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 131 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}{'} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{1160} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.113
PASS - De	esign compressive stress exceeds maximum applied compressive stress
Hold down force	
Chord 1	T ₁ = 6.555 kips
Chord 2	T ₂ = 6.555 kips
Chord 3	T ₃ = 6.557 kips
Chord 4	T ₄ = 6.557 kips

Client: PorterSIPS

DESIGN WARNING - Design using the strength distribution method to distribute shear loads to individual shear wall

 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 28

 Pinnacle Engineering, Inc.
 8180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663
 Page:
 28

segments does not include a deflection check as results to that method are not reliable. Under seismic loads, a drift check is required as part of the design. Suggest using the equal deflections load distribution method to include the seismic drift check in this design. ASD PERFORATED SHEAR WALL (WALL 4) WOOD SHEAR WALL DESIGN (NDS) In accordance with NDS2015 allowable stress design and the perforated shear wall method Tedds calculation version 1.2.09 Panel details Structural wood panel sheathing on one side Panel height h = 16.459 ft Panel length b = 35.5 ft $D + L_r + S$ W + E, s1 7'2.508 5.508" **b**1 ō m ັດ Ch2 Ch . 🗡 7.75 kips 7.75 kips 15' 3.24"-▶|◀-5' 4.476" ▶|◀── Panel opening details Width of opening wo1 = 5.373 ft Height of opening h_{o1} = **9.25** ft Height to underside of lintel over opening $I_{o1} = 9.25 \text{ ft}$ P_{o1} = **15.27** ft Position of opening Total area of wall $A = h \times b - w_{o1} \times h_{o1} =$ **534.594** ft² **Panel construction** Nominal stud size 2" x 6" Dressed stud size 1.5" x 5.5" Cross-sectional area of studs A_s = 8.25 in² s = 16 in Stud spacing Nominal end post size 6" x 6" Dressed end post size 5.5" x 5.5" Cross-sectional area of end posts A_e = **30.25** in²

Client: PorterSIPS
Project No.: 23018
Project No.:

Hole diameter	Dia = 1 in
Net cross-sectional area of end posts	A _{en} = 24.75 in ²
Nominal collector size	2 x 2" x 6"
Dressed collector size	2 x 1.5" x 5.5"
Service condition	Dry
Temperature	100 degF or less
Vertical anchor stiffness	k _a = 50000 lb/in
From NDS Supplement Table 4A - Reference des	sign values for visually graded dimension lumber (2" - 4" thick)
Species, grade and size classification	Spruce-Pine-Fir, no.2 grade, 2" & wider
Specific gravity	G = 0.42
Tension parallel to grain	F _t = 450 lb/in ²
Compression parallel to grain	F _c = 1150 lb/in ²
Modulus of elasticity	E = 1400000 lb/in ²
Minimum modulus of elasticity	E _{min} = 510000 lb/in ²
Sheathing details	
Sheathing material	15/32" wood panel oriented strandboard sheathing
Fastener type	8d common nails at 3"centers
From SDPWS Table 4.3A Nominal Unit Shear Ca	pacities for Wood-Frame Shear Walls - Wood-based Panels
Nominal unit shear capacity for seismic design	v _s = min(980 plf × min[1 - (0.5 - G), 1], 1740 plf) = 901.6 lb/ft
Nominal unit shear capacity for wind design	v _w = min(1370 plf × min[1 - (0.5 - G), 1], 2435 plf) = 1260.4 lb/ft
Apparent shear wall shear stiffness	$G_a = 25$ kips/in
Loading details	~ ·
Dead load acting on top of panel	D = 27 lb/ft
Boof live load acting on top of panel	= 27 lb/ft
Snow load acting on top of panel	S = 60 lb/ft
Self weight of panel	$S_{\rm ref} = 10 \rm lb/ft^2$
In plane wind load acting at head of panel	W = 21630 lbs
Wind load serviceability factor	f _{Ween} , = 0.60
In plane seismic load acting at head of panel	$E_{a} = 1750 \text{ lbs}$
Design spectral response accel. par., short periods	S _{DS} = 0.184
From IBC 2015 cl.1605.3.1 Basic load combination	ons
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	$D + 0.45W + 0.75L_{f} + 0.75(L_{r} \text{ or } S \text{ or } R)$
Load combination no.4	D + 0.525E + 0.75Lt + 0.75S
Load combination no.5	0.6D + 0.6W
Load combination no.6	0.6D + 0.7E
Adjustment factors	
Load duration factor – Table 2.3.2	C _D = 1.60
Size factor for tension – Table 4A	C _{Ft} = 1.30
Size factor for compression – Table 4A	C _{Fc} = 1.10
Wet service factor for tension – Table 4A	C _{Mt} = 1.00
Wet service factor for compression – Table 4A	C _{Mc} = 1.00
Wet service factor for modulus of elasticity - Table	4A
	C _{ME} = 1.00
Temperature factor for tension – Table 2.3.3	C _{tt} = 1.00
Temperature factor for compression – Table 2.3.3	

Design compressive stress

Client: PorterSIPS

Project No.:	23018	By:	MJS	Date:	1/31/2023	Page:	30
8180 Corporate	Park Drive • Suite 2	35 • Cir	ncinnati, Ohio	45242 • (5	513) 984-1663 • FAX	- (513) 984-	1663

	$C_{tc} = 1.00$
Temperature factor for modulus of elasticity – Tal	ble 2.3.3
	$C_{tE} = 1.00$
Incising factor – cl.4.3.8	C _i = 1.00
Buckling stiffness factor – cl.4.4.2	C _T = 1.00
Adjusted modulus of elasticity	$E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T = \textbf{510000 psi}$
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 325 \text{ psi}$
Reference compression design value	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = \textbf{2024 psi}$
For sawn lumber	c = 0.8
Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c)]^{2} - (F_{cE} / F_{c}^{*}) / c)} = 0$
	0.15
From SDPWS Table 4.3.4 Maximum Shear Wal	II Aspect Ratios
Maximum shear wall aspect ratio	3.5
Perforated wall length	b ₁ = 15.27 ft
Shear wall aspect ratio	h / b ₁ = 1.078
Perforated wall length	b ₂ = 14.857 ft
Shear wall aspect ratio	h / b ₂ = 1.108
Shear capacity adjustment factor – cl.4.3.3.5	
Sum of perforated shear wall lengths	$\Sigma L_i = b_1 + b_2 = 30.127 \text{ ft}$
Total length of perforated shear wall	$L_{tot} = b_1 + w_{o1} + b_2 = 35.5 \text{ ft}$
Total area of openings	$A_{o} = w_{o1} \times h_{o1} = 49.7 \text{ ft}^2$
Sheathing area ratio (eqn. 4.3-6)	$r = 1 / (1 + A_o / (h \times \Sigma L_i)) = 0.909$
Shear capacity adjustment factor (eqn. 4.3-5)	$C_{o} = 0.906$
Perforated shear wall capacity	
Maximum shear force under wind loading	$V_{w max} = 0.6 \times W = 12.978 \text{ kips}$
Shear capacity for wind loading	$V_w = v_w \times C_0 \times \Sigma L_i / 2 = 17.2$ kips
	$V_{w max} / V_{w} = 0.755$
	PASS - Shear capacity for wind load exceeds maximum shear force
Maximum shear force under seismic loading	$V_{s max} = 0.7 \times E_{g} = 1.225$ kips
Shear capacity for seismic loading	$V_s = v_s \times C_o \times \Sigma L_i / 2 = 12.304$ kips
	V _{s_max} / V _s = 0.1
	PASS - Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Load combination 5	
Shear force for maximum tension	V = 0.6 × W = 12.978 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h)) \times s / 2 = 0.077$ kips
Maximum tensile force in chord	$T = V \times h / ((C_o \times \Sigma L_i)) - P = 7.750$ kips
Maximum applied tensile stress	$f_t = T / A_{en} = 313 \text{ lb/in}^2$
Design tensile stress	F_t ' = $F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i$ = 936 lb/in ²
	f _t / F _t ' = 0.335
	PASS - Design tensile stress exceeds maximum applied tensile stress
Load combination 1	
Shear force for maximum compression	V = 0.6 × W = 12.978 kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h)) \times s / 2 = 0.128$ kips
Maximum compressive force in chord	$C = V \times h / ((C_o \times \Sigma L_i)) + P = 7.954 kips$
Maximum applied compressive stress	$f_c = C / A_e = 263 \text{ lb/in}^2$

 $F_{c}{'}=F_{c}\times C_{D}\times C_{Mc}\times C_{tc}\times C_{Fc}\times C_{i}\times C_{P}=\textbf{314}\ lb/in^{2}$

Client: PorterSIPS

 Project No.:
 23018
 By:
 MJS
 Date:
 1/31/2023
 Page:
 31

 Pinnacle Engineering, Inc.
 180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663
 • FAX (513) 984-1663

Client: PorterSIPS

Date: 1/31/2023 Page: 32

Shear wall elastic deflection – Eqn. 4.3-1
--

Deflection ampification factor Seismic importance factor Amp. seis. deflection – ASCE7 Eqn. 12.8-15 $\delta_{swse} = 2 \times v_{\delta s_max} \times h^3 / (3 \times E \times A_e \times \Sigma L_i) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (G_a) + h \times T_\delta / (k_a \times E_b) + v_{\delta s_max} \times h / (K_b) + v_{\delta s_max} \times h /$ ΣL_i) = **0.055** in $C_{d\delta} = 4$ $I_{e} = 1.25$ δ_{sws} = $C_{\text{d}\delta} \times \delta_{\text{swse}}$ / I_{e} = **0.175** in $\delta_{sws} / \Delta_{s allow} = 0.044$

PASS - Shear wall deflection is less than deflection limit

Project: Circle K - Angier, NC (Main Building) Client: PorterSIPS Project No.: <u>23018</u> By: <u>MJS</u> Date: <u>1/31/2023</u> Page: <u>33</u> B180 Corporate Park Drive • Suite 235 • Cincinnati, Ohio 45242 • (513) 984-1663 • FAX (513) 984-1663

ORE FOUNDATION LINE LOADS	
Foundation Line 1	DL _{1_roof} = (20 psf * 35.5 ft * 0.5) = 355.000 plf
	DL _{1_wall} = 10 psf * 22 ft = 220.000 plf
	LL _{1_roof} = (20 psf * 35.5 ft * 0.5) = 355.000 plf
	$SL_{1_{roof}} = (15 \text{ psf} * 35.5 \text{ ft} * 0.5) = 266.250 \text{ plf}$
Foundation Line 2	DL _{2_roof} = DL _{1_roof} = 355.000 plf
	DL _{2_wall} = 10 psf * 20.667 ft = 206.670 plf
	LL _{2_roof} = LL _{1_roof} = 355.000 plf
	$SL_{2_roof} = SL_{1_roof} = 266.250 \text{ plf}$
Foundation Line A	DL _{A_roof} = (20 psf * 32 in * 0.5) = 26.667 plf
	DL _{A_wall} = 10 psf * 20.667 ft = 206.670 plf
	LL _{A_roof} = (20 psf * 32 in * 0.5) = 26.667 plf
	$SL_{A_{roof}} = (44.8 \text{ psf} * 32 \text{ in } * 0.5) = 59.733 \text{ plf}$
Foundation Line F	DLF_roof = DLA_roof = 26.667 plf
	DL _{F wall} = DL _{A wall} = 206.670 plf
	$LL_{F roof} = LL_{A roof} = 26.667 \text{ plf}$
	SL _{F roof} = SL _{A roof} = 59.733 plf

Loads do not include self weight of concrete footings

Project: Circle K - Angier, NC (Main Building) Client: PorterSIPS

WALL 3 HSS COLUMN UPLIFT (C&C)

Roof Dead Load	DL = 20 psf
Tributary Area 1 Area 1 Uplift Pressure Uplift Force 1	$\begin{array}{l} A_1 = (17.75 \mbox{ ft} \mbox{ * } 18.0 \mbox{ ft}) = \textbf{319.500} \mbox{ ft}^2 \\ p_1 = -32.5 \mbox{ psf} \\ W_1 = 0.6 \mbox{ * } (A_1 \mbox{ * } DL) + 0.6 \mbox{ * } (A_1 \mbox{ * } p_1) = \textbf{-2396.250} \mbox{ lbf} \end{array}$
Tributary Area 2 Area 2 Uplift Pressure Uplift Force 2	$\begin{array}{l} A_2 = (17.75 \mbox{ ft} \mbox{ 1 15.7 \mbox{ ft}$}) = \textbf{278.675 \mbox{ ft}^2 \\ p_2 = -32.5 \mbox{ psf} \\ W_2 = 0.6 \mbox{ * (A_2 \mbox{ * DL$}) + 0.6 \mbox{ * (A_2 \mbox{ * p_2$}) = \textbf{-2090.062} \mbox{ lbf}} \end{array}$
Tributary Area 3 Area 3 Uplift Pressure Uplift Force 3	$\begin{array}{l} A_3 = (17.75 \mbox{ ft} \ ^* \ 13.7 \mbox{ ft}) = \textbf{243.175} \mbox{ ft}^2 \\ p_3 = -32.5 \mbox{ psf} \\ W_3 = 0.6 \ ^* \ (A_3 \ ^* \mbox{ DL}) + 0.6 \ ^* \ (A_3 \ ^* \ p_3) = \textbf{-1823.813} \mbox{ lbf} \end{array}$
Tributary Area 4 Area 4 Uplift Pressure Uplift Force 4	$\begin{array}{l} A_4 = (17.75 \mbox{ ft} \ * \ 15.0 \mbox{ ft}) = \textbf{266.250} \mbox{ ft}^2 \\ p_4 = -32.5 \mbox{ psf} \\ W_4 = 0.6 \ * \ (A_4 \ * \ DL) + 0.6 \ * \ (A_4 \ * \ p_4) = \textbf{-1996.875} \mbox{ lbf} \end{array}$
Tributary Area Left End Area Left End Uplift Pressure Additional Uplift Force Left End	$\begin{split} A_L &= (17.75 \text{ ft} * 8.977 \text{ ft}) = \textbf{159.342} \text{ ft}^2 \\ p_L &= -32.5 \text{ psf} \\ W_L &= 0.6 * (A_L * DL) + 0.6 * (A_L * p_L) = \textbf{-1195.063} \text{ lbf} \end{split}$
Tributary Area Right End Area Right End Uplift Pressure Additional Uplift Force Right End	$\begin{split} A_{\text{R}} &= (17.75 \text{ ft} * 7.937 \text{ ft}) = \textbf{140.882} \text{ ft}^2 \\ p_{\text{R}} &= -32.5 \text{ psf} \\ W_{\text{R}} &= 0.6 * (A_{\text{R}} * \text{DL}) + 0.6 * (A_{\text{R}} * p_{\text{R}}) = \textbf{-1056.613} \text{ lbf} \end{split}$

Structural Consulting

Adjusted Wall Capacity Table - SIPA Code Report

*Highlighted cells are controlled by zero bearing end reaction connection

1.6

8d	Common nail	0						6	"oc
	Panel Thickness								
		4.625			6.5		8.25		
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360
8	46.7	46.7	34.0	48.7	48.7	48.7	49.7	49.7	49.7
10	37.3	33.0	22.0	38.3	38.3	38.0	40.3	40.3	40.3
12	30.0	23.0	15.0	32.4	32.4	27.0	33.4	33.4	33.4
14	21.0	16.0		27.4	27.4	19.0	28.4	28.4	28.4
16				23.8	22.0	14.0	24.8	24.8	22.0
18				21.6	16.0		21.6	21.6	17.0
20							19.7	19.7	13.0

8d Common nail @ 4 "oc									
		4.625			6.5		8.25		
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360
8	57.5	51.0	34.0	59.5	59.5	56.0	60.5	60.5	60.5
10	45.0	33.0	22.0	47.0	47.0	38.0	49.0	49.0	49.0
12	30.0	23.0	15.0	39.7	39.7	27.0	40.7	40.7	39.0
14	21.0	16.0		33.6	29.0	19.0	34.6	34.6	29.0
16				29.0	22.0	14.0	30.2	30.2	22.0
18				22.0	16.0		26.4	25.0	17.0
20							24.0	20.0	13.0

8d	8d Common nail @									
		4.625			6.5			8.25		
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360	
8	68.0	51.0	34.0	70.3	70.3	56.0	71.3	71.3	71.3	
10	45.0	33.0	22.0	55.7	55.7	38.0	57.7	57.7	54.0	
12	30.0	23.0	15.0	46.9	40.0	27.0	47.9	47.9	39.0	
14	21.0	16.0		39.0	29.0	19.0	40.8	40.8	29.0	
16				29.0	22.0	14.0	35.7	33.0	22.0	
18				22.0	16.0		31.3	25.0	17.0	
20							26.0	20.0	13.0	

#8 Screw (1" min. pen.) @									6 "oc	
		4.625			6.5		8.25			
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360	
8	51.0	51.0	34.0	53.0	53.0	53.0	54.0	54.0	54.0	
10	40.8	33.0	22.0	41.8	41.8	38.0	43.8	43.8	43.8	
12	30.0	23.0	15.0	35.3	35.3	27.0	36.3	36.3	36.3	
14	21.0	16.0		29.9	29.0	19.0	30.9	30.9	29.0	
16				26.0	22.0	14.0	27.0	27.0	22.0	
18				22.0	16.0		23.6	23.6	17.0	
20							21.4	20.0	13.0	

#8	#8 Screw (1" min. pen.) @									
		Panel Thickness								
		4.625			6.5			8.25		
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360	
8	64.0	51.0	34.0	66.0	66.0	56.0	67.0	67.0	67.0	
10	45.0	33.0	22.0	52.2	52.2	38.0	54.2	54.2	54.0	
12	30.0	23.0	15.0	44.0	40.0	27.0	45.0	45.0	39.0	
14	21.0	16.0		37.3	29.0	19.0	38.3	38.3	29.0	
16				29.0	22.0	14.0	33.5	33.0	22.0	
18				22.0	16.0		29.3	25.0	17.0	
20							26.0	20.0	13.0	

#8	Screw (1" min.	. pen.) @						3	"oc	
		4.625			6.5			8.25		
Panel Length	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360	
8	68.0	51.0	34.0	79.0	79.0	56.0	80.0	80.0	78.0	
10	45.0	33.0	22.0	62.6	57.0	38.0	64.6	64.6	54.0	
12	30.0	23.0	15.0	51.0	40.0	27.0	53.7	53.7	39.0	
14	21.0	16.0		39.0	29.0	19.0	45.7	43.0	29.0	
16				29.0	22.0	14.0	40.0	33.0	22.0	
18				22.0	16.0		34.0	25.0	17.0	
20							26.0	20.0	13.0	

Load Duration Factor (C_D) =

23018 Circle K - Angier, NC

Level								
Member Name	Results	Current Solution	Comments					
Header: Wall 1 Max	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL						
Header: Wall 3 Max	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL						
Header: Wall 3 Critical	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL						
Header: Wall 4	Passed	3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL						

1/31/2023 6:30:08 PM UTC ForteWEB v3.5 File Name: 23018 Circle K - Angier, NC

Level, Header: Wall 1 Max 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7414 @ 1 1/2"	11419 (3.00")	Passed (65%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	6189 @ 1' 7"	19950	Passed (31%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	34606 @ 9' 7"	58339	Passed (59%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.307 @ 9' 7"	0.631	Passed (L/739)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.669 @ 9' 7"	0.946	Passed (L/339)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASS

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.95"	4012	3402	2549	7414	None
2 - Trimmer - SPF	3.00"	3.00"	1.95"	4012	3402	2549	7414	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 7" o/c	
Bottom Edge (Lu)	19' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 19' 2"	N/A	24.5			
1 - Uniform (PLF)	0 to 19' 2"	N/A	355.0	355.0	266.0	roof load
2 - Uniform (PSF)	0 to 19' 2"	3' 11"	10.0	-	-	wall load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Mike Streicher Pinnacle Engineering (513) 247-1090 mstreicher@pinneng.com	

Level, Header: Wall 3 Max 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6995 @ 1"	9516 (2.50")	Passed (74%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	5803 @ 1' 6 1/2"	19950	Passed (29%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	31044 @ 9' 1/2"	58339	Passed (53%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.249 @ 9' 1/2"	0.597	Passed (L/863)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.543 @ 9' 1/2"	0.896	Passed (L/396)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	2.50"	2.50"	1.84"	3785	3210	2405	6995	None
2 - Trimmer - SPF	2.50"	2.50"	1.84"	3785	3210	2405	6995	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 2" o/c	
Bottom Edge (Lu)	18' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 1"	N/A	24.5			
1 - Uniform (PLF)	0 to 18' 1"	N/A	355.0	355.0	266.0	roof load
2 - Uniform (PSF)	0 to 18' 1"	3' 11"	10.0	-	-	wall load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mike Streicher Pinnacle Engineering (513) 247-1090 mstreicher@pinneng.com	

Level, Header: Wall 3 Critical 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6947 @ 1"	9516 (2.50")	Passed (73%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	5754 @ 1' 6 1/2"	19950	Passed (29%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-Ibs)	30612 @ 8' 11 3/4"	58339	Passed (52%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.243 @ 8' 11 3/4"	0.593	Passed (L/880)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.529 @ 8' 11 3/4"	0.890	Passed (L/404)		1.0 D + 1.0 Lr (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSE

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	2.50"	2.50"	1.83"	3759	3188	2388	6947	None
2 - Trimmer - SPF	2.50"	2.50"	1.83"	3759	3188	2388	6947	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 4" o/c	
Bottom Edge (Lu)	18' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 11 1/2"	N/A	24.5			
1 - Uniform (PLF)	0 to 17' 11 1/2"	N/A	355.0	355.0	266.0	roof load
2 - Uniform (PSF)	0 to 17' 11 1/2"	3' 11"	10.0	-	-	wall load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mike Streicher Pinnacle Engineering (513) 247-1090 mstreicher@pinneng.com	

Level, Header: Wall 4 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	501 @ 1 1/2"	11419 (3.00")	Passed (4%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	237 @ 1' 5"	16060	Passed (1%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	612 @ 2' 8 1/4"	41846	Passed (1%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.001 @ 2' 8 1/4"	0.171	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.002 @ 2' 8 1/4"	0.256	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.00"	3.00"	1.50"	340	73	161	501	None
2 - Trimmer - SPF	3.00"	3.00"	1.50"	340	73	161	501	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 5" o/c	
Bottom Edge (Lu)	5' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 4 1/2"	N/A	21.5			
1 - Uniform (PLF)	0 to 5' 4 1/2"	N/A	27.0	27.0	60.0	roof load
2 - Uniform (PSF)	0 to 5' 4 1/2"	7' 9 5/8"	10.0	-	-	wall load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Mike Streicher Pinnacle Engineering (513) 247-1090 mstreicher@pinneng.com	

Current Date: 1/31/2023 13:47 Units system: English File name: P:\23\11-20\23018 - Circle K - Angier, NC\Engineering\HSS Col Design.retx

Steel Code Check

Report: Comprehensive

Members: Hot-rolled Design code: AISC 360-2016 LRFD

Member	:	1 (HSS Col)
Design status	:	OK

DESIGN WARNINGS

Section information

Section name: HSS_SQR 4X4X1_4 (US)

Dimensions

	D			
а	=	4.000	[in]	Height
b	=	4.000	[in]	Width
Т	=	0.233	[in]	Thickness

Properties

Section properties	Unit	Major axis	Minor axis
Gross area of the section. (Ag)	[in2]	3.370	
Moment of Inertia (local axes) (I)	[in4]	7.800	7.800
Moment of Inertia (principal axes) (I')	[in4]	7.800	7.800
Bending constant for moments (principal axis) (J')	[in]	0.000	0.000
Radius of gyration (local axes) (r)	[in]	1.521	1.521
Radius of gyration (principal axes) (r')	[in]	1.521	1.521
Saint-Venant torsion constant. (J)	[in4]	12.800	
Section warping constant. (Cw)	[in6]	0.000	
Distance from centroid to shear center (principal axis) (xo,yo)	[in]	0.000	0.000
Top elastic section modulus of the section (local axis) (Ssup)	[in3]	3.900	3.900
Bottom elastic section modulus of the section (local axis) (Sinf)	[in3]	3.900	3.900
Top elastic section modulus of the section (principal axis) (S'sup)	[in3]	3.900	3.900
Bottom elastic section modulus of the section (principal axis) (S'inf)	[in3]	3.900	3.900
Plastic section modulus (local axis) (Z)	[in3]	4.700	4.700
Plastic section modulus (principal axis) (Z')	[in3]	4.700	4.700
Polar radius of gyration. (ro)	[in]	2.150	
Area for shear (Aw)	[in2]	1.538	1.538
Torsional constant. (C)	[in3]	6.563	

Material : A500 GrB rectangular

Properties	Unit	Value
Yield stress (Fy):	[Kip/in2]	46.00
Tensile strength (Fu):	[Kip/in2]	58.00
Elasticity Modulus (E):	[Kip/in2]	29000.00
Shear modulus for steel (G):	[Kip/in2]	11153.85

DESIGN CRITERIA

Description			Unit	Value			
Length for tension slenderness ratio (L)			[ft]	10.00			
Distance betwe	Distance between member lateral bracing points						
Length ((Lb) [ft]						
Тор	Bottom						
10.00	10.00						

Laterally unbraced length

	Length [ft]		Effective length factor			
Major axis(L33)	Minor axis(L22)	Torsional axis(Lt)	Major axis(K33)	Minor axis(K22)	Torsional axis(Kt)	
10.00	10.00	10.00	1.0	1.0	1.0	

Additional assumptions

Continuous lateral torsional restraint	No
Tension field action	No
Continuous flexural torsional restraint	No
Effective length factor value type	None
Major axis frame type	Sway
Minor axis frame type	Sway

✓

~

DESIGN CHECKS

AXIAL TENSION DESIGN

Axial tension

Factored axial tension capacity(\phi Pn): Nominal axial tension capacity (Pn)			φPn): ty (Pn)	[Kip] [Kip]	139.52 155.02	CI.D2 Eq.D2-1	
Inte	rmediate results			Unit	Value	Reference	
Capacity : 139.52 [Kip] Demand : 1.70 [Kip]			139.52 [Kip] 1.70 [Kip]	Reference Ctrl Eq.	: CI.D2 : D10 at	0.00%	
	Ratio	:	0.01				

AXIAL COMPRESSION DESIGN

Compression in the major axis 33

Ratio	: 0.15		
Capacity	: 91.81 [Kip]	Reference	: CI.E3
Demand	: 13.94 [Kip]	Ctrl Eq.	: D2 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Non slender	
Unstiffened element slenderness (λ)		14.17	
Unstiffened element limiting slenderness (λ r)		35.15	Table.4.1a.Case6
Stiffened element classification		Non slender	
Stiffened element slenderness (λ)		14.17	
Stiffened element limiting slenderness (λ_r)		35.15	Table.4.1a.Case6
Factored flexural buckling strength(\$Pn33):	[Kip]	91.81	CI.E3
Unbraced length (L33)	[ft]	10.00	CI.E2
Effective slenderness ((KL/r)33)		78.88	CI.E2
Elastic critical buckling stress (Fe33)	[Kip/in2]	46.00	Eq.E3-4
Effective area of the cross section based on the effective width (A	[in2]	3.37	
Critical stress for flexural buckling (Fcr33)	[Kip/in2]	30.27	Eq.E3-2
Nominal flexural buckling strength (Pn33)	[Kip]	102.01	Eq.E3-1

Compression in the minor axis 22

Ratio : 0.15					
Capacity : 91.81 [Kip]	Reference	: CI.E3			
Demand : 13.94 [Kip]	Ctrl Eq.	: D2 at (: D2 at 0.00%		
Intermediate results	Unit	Value	Reference		
Section classification					
Unstiffened element classification		Non slender			
Unstiffened element slenderness (λ)		14.17			
Unstiffened element limiting slenderness (λ r)		35.15	Table.4.1a.Case6		
Stiffened element classification		Non slender			
Stiffened element slenderness (λ)		14.17			
Stiffened element limiting slenderness (λ_r)		35.15	Table.4.1a.Case6		
Factored flexural buckling strength(\$Pn22):	[Kip]	91.81	CI.E3		
Unbraced length (L22)	[ft]	10.00	CI.E2		
Effective slenderness ((KL/r)22)		78.88	CI.E2		
Elastic critical buckling stress (Fe22)	[Kip/in2]	46.00	Eq.E3-4		
Effective area of the cross section based on the effective width (A	[in2]	3.37			
Critical stress for flexural buckling (Fcr22)	[Kip/in2]	30.27	Eq.E3-2		
Nominal flexural buckling strength (Pn22)	[Kip]	102.01	Eq.E3-1		

FLEXURAL DESIGN

Image: A second s

Bending about major axis, M33

Datio		0.00			
Ralio	•	0.00			
Capacity	:	16.22 [Kip*ft]	Reference	:	CI.F7.1
Demand	:	0.00 [Kip*ft]	Ctrl Eq.	:	D1 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Compact	
Unstiffened element slenderness (λ)		14.17	
Limiting slenderness for noncompact unstiffened element (λ r)		35.15	
Limiting slenderness for compact unstiffened element (λ_p)		28.12	
Stiffened element classification		Compact	
Stiffened element slenderness (λ)		14.17	
Limiting slenderness for noncompact stiffened element (λ r)		143.12	
Limiting slenderness for compact stiffened element (λ_p)		60.76	
Factored yielding strength(\$Mn):	[Kip*ft]	16.22	CI.F7.1
Yielding (Mn)	[Kip*ft]	18.02	Eq.F7-1

Bending about minor axis, M22

Ratio	: 0.00		
Capacity	: 16.22 [Kip*ft]	Reference	: Cl.F7.1
Demand	: 0.00 [Kip*ft]	Ctrl Eq.	: D1 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Compact	
Unstiffened element slenderness (λ)		14.17	
Limiting slenderness for noncompact unstiffened element (λ_r)		35.15	
Limiting slenderness for compact unstiffened element ($\lambda_{ m p}$)		28.12	
Stiffened element classification		Compact	
Stiffened element slenderness (λ)		14.17	
Limiting slenderness for noncompact stiffened element (λ_r)		143.12	
Limiting slenderness for compact stiffened element (λ_p)		60.76	
Factored yielding strength about a geometric axis(\$Mn):	[Kip*ft]	16.22	Cl.F7.1
Yielding (Mn)	[Kip*ft]	18.02	Eq.F7-1

DESIGN FOR SHEAR

<

Shear in major axis 33

Ratio	: 0.00		
Capacity	: 38.21 [Kip]	Reference	: Cl.G1
Demand	: 0.00 [Kip]	Ctrl Eq.	: D1 at 0.00%

Intermediate results	Unit	Value	Reference	
Factored shear capacity(ϕV_n):	[Kip]	38.21	CI.G1	
Web buckling coefficient (ky)		5.00	CI.G4	
Web buckling coefficient (C _v)		1.00	Eq.G2-9	
Nominal shear strength (Vn)	[Kip]	42.46	Eq.G4-1	

Shear in minor axis 22

Ratio	:	0.00			
Capacity	:	38.21 [Kip]	Reference	:	CI.G1
Demand	:	0.00 [Kip]	Ctrl Eq.	:	D1 at 0.00%

Intermediate results			Unit	Value	Reference
Factored shear capacity(\$	Vn):		[Kip]	38.21	Cl.G1
Web buckling coefficier	nt (kv)			5.00	CI.G4
Web buckling coefficier	nt (Cv)			1.00	Eq.G2-9
Nominal shear strength	(Vn)		[Kip]	42.46	Eq.G4-1
TORSION DESIGN		×			
Torsion					
Ratio	:	0.00			
Capacity : 13.58 [Kip*ft]			Reference	: CI.H3.	1
Demand	:	0.00 [Kip*ft]	Ctrl Eq.	: D1 at (0.00%
Intermediate results			Unit	Value	Reference
Factored torsion capacity(\phiTn):		[Kip*ft]	13.58	Cl.H3.1	
Critical torsional bucklin	ng stress	s (Fcr)	[Kip/in2]	27.60	Eq.H3-3
Nominal torsion capacit	ty (Tn)		[Kip*ft]	15.09	Eq.H3-1
COMBINED ACTIONS D	ESIGN	×			
Combined flexure and a	xial				
Ratio	:	0.08			
Ctrl Eq.	:	D2 at 0.00%	Reference :	Eq.H1-1b	
Intermediate results			Unit	Value	Reference
Interaction of flexure and a	axial for	<u></u> :		0.08	Eq.H1-1b
Available flexural streng	gth abou	t strong axis (Mc33)	[Kip*ft]	16.22	Cl.H1.1
Available flexural streng	gth abou	t weak axis (Mc22)	[Kip*ft]	16.22	Cl.H1.1
Available axial strength	(Pc)		[Kip]	91.81	Cl.H1.1

ICC-ES Evaluation Report

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 06 00 00—WOOD, PLASTICS, AND COMPOSITES Section: 06 12 00—Structural Panels

REPORT HOLDER:

PORTERCORP

EVALUATION SUBJECT:

STRUCTURAL INSULATED PANELS

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2018 and 2015 International Building Code[®] (IBC)
- 2018 and 2015 International Residential Code® (IRC)

Property evaluated:

Structural

2.0 USES

2.1 General:

Structural Insulated Panels are used as structural insulated roof and wall panels capable of resisting transverse, axial and in-plane shear loads.

2.2 Construction Types:

Structural Insulated Panels shall be considered combustible building elements when determining the construction type in accordance with IBC Chapter 6.

2.3 Fire Resistive Assemblies:

Structural Insulated Panels shall not be used as part of a fire-rated assembly unless suitable evidence and details are submitted and approved by the authority having jurisdiction.

3.0 DESCRIPTION

3.1 General:

Structural Insulated Panels are factory-assembled, engineered-wood-faced, structural insulated panels (SIPs) with an expanded polystyrene (EPS) foam core. The product is intended for use as load-bearing or non-load-bearing wall and roof panels. Structural Insulated Panels are available in 4^{5} /₈-inch (117.5 mm) through 15-inch (381 mm) overall thicknesses and are custom-made to the specifications for each use. The maximum product size is 8 feet (2438 mm) wide and up to 24 feet (7315 mm) in length.

3.2 Materials:

3.2.1 Facing: The facing consists of two single-ply oriented strand board (OSB) facings a minimum of ⁷/₁₆-inch-

ESR-4692 *Reissued April 2022 This report is subject to renewal April 2023.*

A Subsidiary of the International Code Council®

thick (11.1 mm) conforming to the properties shown in Table 3. Additionally, facing materials shall conform to DOC PS 2, Exposure 1, Rated Sheathing with a span index of 24/16. Panels may be manufactured with the facing strength axis oriented in either direction with respect to the direction of product bending provided the appropriate design values are used.

3.2.2 Core: The core material is EPS foam plastic insulation conforming to ASTM C578, Type I. The foam core, up to 4-inch (101.6 mm) thickness, has a flame spread rating not exceeding 75 and a smoke-developed rating not exceeding 450 when tested in accordance with ASTM E84. Cores used in structural insulated panels up to 15 inches (381 mm) thick, comply with IBC Section 2603.3 Exception 4.

3.2.3 Adhesive: Facing materials are adhered to the core material using a thin-film adhesive. The adhesive is applied during the lamination process in accordance with the inplant quality system documentation.

3.2.4 Material Sources: The facing, core and adhesive used in the construction of Structural Insulated Panels must be materials from approved sources as identified in the inplant quality system documentation. A list of material suppliers is provided in Table 16.

3.2.5 Splines: Structural Insulated Panels are interconnected with surface splines, block splines, or I-joists (Figure 1). Connections using dimensional lumber splines or engineered structural splines not specifically addressed in this report must be designed in accordance with accepted engineering practice to meet applicable code requirements.

3.2.5.1 Surface Splines: Surface splines (Figure 1) consist of 3-inch-wide (76.2 mm) by $^{7}/_{16}$ -inch-thick (11.1 mm) or thicker OSB. At each panel joint, one surface spline is inserted into each of two tight-fitting slots in the core. The slots in the core are located just inside the facing.

3.2.5.2 Block Splines: Block splines (Figure 1) are manufactured in the same manner as the SIP except with an overall thickness that is 1 inch (25.4 mm) less than the overall thickness of the panels to be joined.

3.2.5.3 I-Joist Splines: Structural capacities for prefabricated wood I-joists splines (Figure 1) shall be established and monitored in accordance with ASTM D5055 with properties equal to or greater than those shown in Table 4. The overall depth of the joist is 1 inch (25.4 mm) less than the overall thickness of the panels to be joined.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 Overall Structural System: The scope of this report is limited to the evaluation of the SIP component. Panel

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

connections and other details related to incorporation of the product into the overall structural system of a building are beyond the scope of this report.

4.1.2 Design Approval: Where required by the authority having jurisdiction, structures using Structural Insulated Panels shall be designed by a registered design professional. Construction documents, including engineering calculations and drawings providing floor plans, window details, door details and connector details, shall be submitted to the code official when application is made for a permit. The individual preparing such documents shall possess the necessary qualifications as required by the applicable code and the professional registration laws of the state where the construction is undertaken. Approved construction documents shall be available at all times on the jobsite during installation.

4.1.3 Design Loads: Design loads to be resisted by the product shall be as required under the applicable code. Loads on the panels shall not exceed the loads noted in this report. Where loading conditions result in superimposed stresses, the sum of the ratio of actual loads over allowable loads shall not exceed one. Calculations demonstrating that the loads applied are less than the allowable loads described in this report shall be submitted to the code official for approval.

4.1.4 Allowable Loads: Allowable axial, transverse and in-plane shear loads may be calculated using the panel properties provided in Tables 1, 2 and 4 or selected from Tables 5 through 15. For loading conditions not specifically addressed herein, structural members designed in accordance with accepted engineering practice shall be provided to meet applicable code requirements.

4.1.5 Concentrated Loads: Axial loads shall be applied to the product through continuous members such as structural insulated roof or floor panels or repetitive members such as joists, trusses or rafters spaced at regular intervals of 24 inches (610 mm) on center or less. Such members shall be fastened to a rim board or similar member to distribute the load to the product. For other loading conditions, reinforcement shall be provided. This reinforcement shall be designed in accordance with accepted engineering practice.

4.1.6 Eccentric and Side Loads: Axial loads shall be applied concentrically to the top of the product. Loads shall not be applied eccentrically or through framing attached to one side of the panel (such as balloon framing) except where additional engineering documentation is provided.

4.1.7 Openings: Openings in panels are permitted when the header depth is at least 12 inches (305 mm), and the interior of the opening is reinforced with minimum 0.42 SG lumber graded #2 around the perimeter, secured in place with not less than 0.131-inch x $2^{1/2}$ -inch (2.9 mm x 63.5 mm) nails, spaced 6 inches (152 mm) on center. The panels are not used to resist in-plane shear loads. SIP splines are not permitted within 6 inches of the end of the header and are not permitted within the header. Allowable loads for maximum header spans of 36 inches may be selected from Tables 10 and 12. Allowable loads for maximum header spans of 72 inches (1829 mm) may be selected from Tables 11 and 13. Openings in panels beyond the scope of this report shall be reinforced with wood or steel designed in accordance with accepted engineering practice to resist all loads applied to the opening as required by the adopted code. Details for door and window openings shall be provided to clarify the manner of supporting axial, transverse and/or in-plane shear loads at openings. Such **4.1.8 In-Plane Shear Design:** Shear walls utilizing block or surface splines shall be sized to resist all code required wind and seismic loads without exceeding the allowable loads provided herein. Shear wall chords, hold-downs and connections to transfer shear forces between the wall and surrounding structure shall be designed in accordance with accepted engineering practice. Allowable strengths for SIP shear walls with structural splines along each panel edge shall be designed in accordance with accepted engineering practice and are subject to the limitations for wood sheathed shear walls.

4.1.9 Seismic Design Categories A, B, and C: Use of the shear wall configurations in Table 14 is limited to structures in Seismic Design Categories A, B and C. Where SIPs are used to resist seismic forces the following factors shall be used for design: Response Modification Coefficient, R = 2.0; System Overstrength Factor, $\Omega_0 = 2.5$; Deflection Amplification Factor, $C_d = 2.0$. The maximum panel height-to-width ratio shall be 2:1.

4.1.10 Horizontal Diaphragms: Horizontal diaphragms shall be sized to resist all code required wind and seismic loads without exceeding the allowable loads provided herein. Diaphragm chords and connections to transfer shear forces between the diaphragm and surrounding structure shall be designed in accordance with accepted engineering practice. The maximum diaphragm length-to-width ratio shall not exceed 3:1.

4.1.11 Combined Loads: Panels subjected to any combination of transverse, axial or in-plane shear loads shall be analyzed utilizing a straight-line interaction.

4.1.12 Panel Reinforcements: Allowable transverse loads for panels reinforced with I-joists meeting the minimum properties shown in Table 4 are presented in Table 8. Panels reinforced with I-joists have not been evaluated for use in wall applications. Panels reinforced with I-joist splines may be designed in accordance with accepted engineering practice.

4.2 Installation:

4.2.1 General: Structural Insulated Panels shall be fabricated, identified and erected in accordance with this report, the approved construction documents and the applicable codes. In the event of a conflict between the manufacturer's published installation instructions and this report, this report shall govern. Approved construction documents shall be available at all times on the jobsite during installation.

4.2.2 Splines: Structural Insulated Panels are interconnected at the panel edges through the use of a spline. The spline type may be of any configuration listed in Section 3.2.5 as required by the specific design. The spline shall be secured in place with not less than 0.131-inch x 2¹/₂-inch (2.9 mm x 63.5 mm) nails, spaced 6 inches on center on both sides of the panel, or an approved equivalent fastener. All joints shall be sealed in accordance with the SIP manufacturer's installation instructions. Alternate spline connections may be required for panels subjected to inplane shear forces. Such panels shall be interconnected exactly as required in Tables 14 and 15 or as directed by the designer.

4.2.3 Plates: The top and bottom plates of the panels shall be dimensional or engineered lumber sized to match the core thickness of the panel. The plates shall be secured

using not less than 0.131-inch x $2^{1/2}$ -inch (2.9 mm x 63.5 mm) nails, spaced 6 inches on center on both sides of the panel, or an approved equivalent fastener. A second top plate of $1^{1/8}$ -inch (29 mm) minimum thickness dimensional or engineered lumber with a specific gravity of 0.42 that is cut to the full thickness of the panel shall be secured to the first top plate using 0.131-inch x 3-inch (2.9 mm x 76 mm) nails or an approved equivalent fastener.

4.2.4 Cutting and Notching: No field cutting or routing of the panels shall be permitted except as shown on approved construction documents.

4.2.5 Protection from Decay: SIPs that rest on exterior foundation walls shall not be located within 8 inches of exposed earth. SIPs supported by concrete or masonry that is in direct contact with earth shall be protected from the concrete or masonry by a moisture barrier.

4.2.6 Protection from Termites: In areas subject to damage from termites, SIPs shall be protected from termites using an approved method. Panels shall not be installed below grade or in contact with earth.

4.2.7 Heat-Producing Fixtures: Heat-producing fixtures shall not be installed in the panels unless protected by a method approved by the code official or documented in test reports. This limitation shall not be interpreted to prohibit heat-producing elements with suitable protection.

4.2.8 Plumbing Installation Restrictions: Plumbing and waste lines may extend at right angles through the wall panels but are not permitted vertically within the core. Lines shall not interrupt splines or panel plates unless approved by a registered design professional.

4.2.9 Voids and Holes:

4.2.9.1 Voids in Core: In lieu of openings designed in accordance with Section 4.1.7, the following voids are permitted. Voids may be provided in the panel core during fabrication at predetermined locations only. Voids parallel to the panel span shall be limited to a single 1-inch-maximum-diameter (25.4 mm) hole. Such voids shall be spaced a minimum of 4 feet (1219 mm) on center measured perpendicular to the panel span. Two ¹/₂-inch-diameter (12.7 mm) holes may be substituted for the single 1-inch hole provided they are maintained parallel and within 2 inches of each other. Voids perpendicular to the panel span shall be limited to a single 1-inch-maximum-diameter (25.4 mm) hole placed not closer than 16 inches (406 mm) from the support. Additional voids in the same direction shall be spaced not less than 28 inches (711 mm) on center.

4.2.9.2 Holes in Panels: Holes may be placed in panels during fabrication at predetermined locations only. Holes shall be limited to 4 inches by 4 inches (102 mm by 102 mm) square. The minimum distance between holes shall not be less than 4 feet (1219 mm) on center measured perpendicular to the panel span and 24 inches (610 mm) on center measured parallel to the panel span. Not more than three holes shall be permitted in a single line parallel to the panel span. The holes may intersect voids permitted elsewhere in this report.

4.2.10 Panel Cladding:

4.2.10.1 Roof Covering: The roof covering, underlayment and flashing shall comply with the applicable codes. All roofing materials must be installed in accordance with the manufacturer's installation instructions. The use of roof coverings requiring the application of heat during installation shall be reviewed and approved by a registered design professional.

4.2.10.2 Exterior Wall Covering: Panels shall be covered on the exterior by a water-resistive barrier as required by the applicable code. The water-resistive barrier shall be attached with flashing in such a manner as to provide a continuous water-resistive barrier behind the exterior wall veneer. The exterior facing of the SIP wall shall be covered with weather protection as required by the adopted building code or other approved materials.

4.2.11 Interior Finish: The SIP foam plastic core shall be separated from the interior of the building by an approved thermal barrier of ¹/₂-inch (12.7 mm) gypsum wallboard or equivalent thermal barrier where required by IBC Section 2603.4.

5.0 CONDITIONS OF USE

The Structural Insulated Panels described in this report comply with, or are a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Installation complies with this report and the approved construction documents.
- **5.2** This report applies only to the panel thicknesses specifically listed herein.
- **5.3** In-use panel heights/spans shall not exceed the values listed herein. Extrapolation beyond the values listed herein is not permitted.
- **5.4** The panels are manufactured at the production facility listed in Section 7.2 of this evaluation report.

6.0 EVIDENCE SUBMITTED

- 6.1 Reports of axial load, transverse load, and in-plane racking shear tests of panels, conducted in accordance with the general guidelines of ASTM E72.
- **6.2** Reports of diaphragm tests of panels, conducted in accordance with ASTM E455.

7.0 IDENTIFICATION

- **7.1** Structural Insulation Panels are identified with the following information:
- 7.1.1 The ICC-ES Evaluation Report number (ESR-4692).
- 7.1.2 Project or batch number
- 7.2 The report holder's contact information is the following:

PORTERCORP 4240 NORTH 136th AVENUE HOLLAND, MI 49424

Property	Weak-Axis Bending	Strong-Axis Bending
Allowable Tensile Stress, F_t (psi)	245	495
Allowable Compressive Stress, <i>F_c</i> (psi)	340	580
Elastic Modulus (Bending), E_b (psi)	738900	658800
Shear Modulus, G (psi)	270	405
Allowable Core Shear Stress, F_v (psi)	4.5	5.0
Core Compressive Modulus, E _c (psi)	360	360
Reference Depth, h_o (in.)	4.625	4.625
Shear Depth Factor Exponent, m	0.84	0.86
Face Peeling Factor, Cp	0.4	0.4

For **SI:** 1 inch = 25.4 mm; 1 psi = 6894.8 Pa.

¹ All properties are based on a minimum panel width of 24-in.

Panel Thickness, <i>h</i> (in.)	Core Thickness, <i>c</i> (in.)	Dead Weight, <i>w_d</i> (psf)	Facing Area, A _f (in.²/ft)	Shear Area, <i>A</i> _v (in.²/ft)	Moment of Inertia, <i>I</i> (in. ⁴ /ft)	Section Modulus, <i>S</i> (in. ³ /ft)	Radius of Gyration, r (in.)	Centroid- to-Facing Dist., y _c (in.)		
4.625	3.75	3.2	10.5	50.3	46.0	19.9	2.09	2.31		
6.50	5.625	3.3	10.5	72.8	96.5	29.7	3.03	3.25		
8.25	7.375	3.5	10.5	93.8	160.2	38.8	3.91	4.13		
10.25	9.375	3.6	10.5	117.8	252.7	49.3				
12.25	11.375	3.8	10.5	141.8	366.3	59.8				
15	14.125	4.0	10.5	174.8	556.7	74.2				

TABLE 2—SECTION PROPERTIES

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.; 1 in.²/ft = 2116.66mm²/m 1 in.³ = 16387.064 mm³; 1 in.⁴/ft = 1365588.67mm⁴/m

TABLE 3—OSB FACING MINIMUM PROPERTIES

Thickness (in.)	Flatwise Stiffness (Ib _f -in. ² /ft)		Flatwise (lb _f -i	Strength n./ft)	Ten (Ib	Density (pcf)	
	Along	Across	Along	Across	Along	Across	
7/16	54,700	27,100	950	870	6,800	6,500	35

For **SI:** 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 lbf = 4.448 N; 1 pcf = 0.006366 N/m³; 1 lbf-in/ft = 370.833 N-mm/m; 1 lbf/ft = 14.59 N/m; 1 lb $_{H}$ in.²/ft = 9419.167 N-mm/m

TABLE 4-MINIMUM I-JOIS	T PROPERTIES FOR USE	AS REINFORCEMENTS

Depth	Bending Stiffness	Moment Capacity	Shear Capacity	Coefficient of Shear Deflection
_	EI	M	V	К
(in.)	(lb _f -in.²) x 10 ⁶	(lb _f -ft)	(lb _f)	(lb _f) x 10 ⁶
9.25	185	2715	1155	4.81
11.25	296	3410	1405	5.85
14	482	4270	1710	7.28

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 lbf = 4.448 N; 1 lbf-in.² = 2870.962 N-mm

¹ Properties are based on certification in accordance with ASTM D5055 or equivalent.

TABLE 5-ALLOWABLE ROOF UNIFORM TRANSVERSE LOADS, BLOCKED BEARING, SHORT DURATION (PSF)^{1,4}

	PANEL THICKNESS (inch)											
Panel		4 ⁵ /8			6 ¹ / ₂			8 ¹ / ₄				
Length (ft)	De	Deflection Limit ²			Deflection Limit ²			eflection Lim	it ²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8 WAB ³	50	40	27	73	64	43	80	80	58			
8	68	51	34	82	82	56	90	90	78			
10	45	33	22	63	57	38	68	68	54			
12	30	23	15	51	40	27	55	55	39			
14	21	16		39	29	19	46	43	29			
16				29	22	14	40	33	22			
18				22	16		34	25	17			
20							26	20	13			
22							21	15				
24							17	12				

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

See Table 6 for notes.

TABLE 6—ALLOWABLE ROOF UNIFORM TRANSVERSE LOADS, BLOCKED BEARING,
SHORT DURATION (PSF) ^{1,4}

	PANEL THICKNESS (inch)											
Panel Length		10 ¹ / ₄			12 ¹ / ₄			15				
(ft)	Deflection Limit ²			C	Deflection Limit ²			Deflection Limi	t²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8 WAB ³	88	88	75	93	96	96	108	108	108			
8	98	98	98	107	107	107	121	121	121			
10	73	73	73	79	79	79	87	87	87			
12	59	59	54	63	63	63	68	68	68			
14	49	49	41	52	52	52	56	56	56			
16	42	42	31	44	44	41	47	47	47			
18	37	36	24	39	39	32	41	41	41			
20	32	29	19	34	34	26	36	36	36			
22	29	23	15	31	31	21	33	33	29			
24	25	19	12	28	26	17	29	29	24			

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

¹ Table values assume a simply supported panel with 1¹/₂ in. of continuous bearing on facing at supports (C_p = 1.0) with solid wood plates at bearing locations. Values do not include the dead weight of the panel.

² Deflection limit shall be selected by building designer based on the serviceability requirements of the structure and the requirements of adopted building code. Values are based on loads of short duration only and do not consider the effects of creep.

³ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending. WAB indicates weak-axis bending of the facing material; the strong-axis of the facing material is oriented perpendicular to the direction of panel bending. ⁴ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

TABLE 7—ALLOWABLE WALL UNIFORM TRANSVERSE LOADS (PSF) ^{1, 4}
--	-------------------

	PANEL THICKNESS (inch)											
Panel		4 ⁵ /8			6 ¹ /2			8 ¹ / ₄				
Length (ft)	De	Deflection Limit ²			eflection Limit	t ²	D	eflection Lim	it ²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8 WAB ³	22	22	22	24	24	24	25	25	25			
8	25	25	25	27	27	27	28	28	28			
10	20	20	20	21	21	21	23	23	23			
12	16	16	15	18	18	18	19	19	19			
14	14	14		15	15	15	16	16	16			
16				13	13	13	14	14	14			
18				12	12	11	12	12	12			
20							11	11	11			

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

¹ Table values represent wall panel capacities (4⁵/₈-in., 6¹/₂-in. and 8¹/₄-in. thickness panels only) utilizing a zero bearing configuration (Figure 2). Allowable loads are determined based on Cp reported in Table 1.

² Deflection limit shall be selected by building designer based on the serviceability requirements of the structure and the requirements of adopted building code. Values are based on loads of short duration only and do not consider the effects of creep. ³ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending. WAB indicates weak-axis bending

of the facing material; the strong-axis of the facing material is oriented perpendicular to the direction of panel bending.

⁴ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

	PANEL THICKNESS (inch)											
Panel	10 ¹ / ₄ -	10 ¹ / ₄ -in. SIP thickness			12 ¹ / ₄ -in. SIP thickness			-in. SIP thickne	ess			
Length (ft)	Deflection Limit ²			D	eflection Lin	nit²	[Deflection Limi	t ²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8	115	115	115	124	124	124	123	123	123			
10	92	92	92	99	99	99	98	98	98			
12	76	76	76	82	82	82	82	82	82			
14	65	65	65	71	71	71	70	70	70			
16	57	57	57	62	62	62	61	61	61			
18	51	51	44	55	55	55	54	54	54			
20	46	46	33	49	49	48	48	48	48			
22	41	38	25	45	45	37	44	44	44			
24	36	30	20	41	41	29	41	41	41			

TABLE 8—ALLOWABLE UNIFORM TRANSVERSE LOADS WITH I-JOIST REINFORCEMENTS (PSF)^{1, 3, 4}

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

¹ Values assume a simply supported panel with 1¹/₂ in. of continuous bearing on facing at supports. Values do not include the dead weight of the panel. ² Deflection limit shall be selected by building designer based on the serviceability requirements of the structure and the requirements of adopted building code. Values are based on loads of short duration only and do not consider the effects of creep. ³ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending.

⁴ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

TABLE 9—ALLOWABLE AXIAL LOADS (PLF) 1,2,3,4

Lateral Brace Spacing	PANEL THICKNESS (inch)							
(ft)	4 ⁵ / ₈	6 ¹ / ₂	8 ¹ / ₄					
8 WAB ⁵	2320	2470	2530					
8	3630	4070	4240					
10	3260	3890	4130					
12	2810	3660	4000					
14		3390	3830					
16		3090	3640					
18		2790	3430					
20			3190					

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 PLF = 14.59 N/m.

¹ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

 $^{2}\,\text{All}$ values are for normal duration and may not be increased for other durations.

³ Axial loads shall be applied concentrically to the top of the panel through repetitive members spaced not more than 24-in. on center. Such members shall be fastened to a rim board or similar member to distribute along the top of the SIP.

⁴ The ends of both facings must bear on the supporting foundation or structure to achieve the tabulated axial loads.

⁵ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending. WAB indicates weak-axis bending of the facing material; the strong-axis of the facing material is oriented perpendicular to the direction of panel bending.

TABLE 10—ALLOWABLE UNIFORM TRANSVERSE LOADS FOR SIPS WITH OPENINGS, 36-IN. MAXIMUM SPAN (PSF) ^{1,4,5,6}

	PANEL THICKNESS (inch)											
Panel Length		4 ⁵ / ₈			6 ¹ / ₂			8 ¹ / ₄				
(ft)	D	eflection Lim	it²	D	Deflection Limit ²			eflection Lim	it ²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8 WAB ³	23	17	11	42	31	21	62	47	31			
8	31	23	15	57	43	28	75	65	43			
10	17	13	8	33	25	16	48	39	26			
12	10	8	5	21	16	10	33	25	16			
14	7	5		14	10	7	22	16	11			
16	-			9	7		15	11	7			
18				7	5		11	8	5			
20							8	6				

For **SI:** 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

See Table 11 for notes.

TABLE 11—ALLOWABLE UNIFORM TRANSVERSE LOADS FOR SIPS WITH OPENINGS, 72-INCH MAXIMUM SPAN (PSF) 1,4,5,6

	PANEL THICKNESS (inch)											
Panel Length		4 ⁵ / ₈			6 ¹ / ₂			8 ¹ / ₄				
(ft)	D	Deflection Limit ²			Deflection Limit ²			eflection Lim	it²			
	L/180	L/240	L/360	L/180	L/240	L/360	L/180	L/240	L/360			
8 WAB ³	16	12	8	29	23	15	39	36	24			
8	23	17	11	37	33	22	49	49	34			
10	12	9	6	24	19	12	31	29	19			
12	7	5		15	11	7	21	18	12			
14	5			10	7	5	16	12	8			
16				7	5		11	8	5			
18				5			8	6				
20							6					

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.

¹ Table values represent wall panel capacities utilizing a zero bearing configuration (Figure 2). Construction shall be as described in Section 4.1.7 of this report.

² Deflection limit shall be selected by building designer based on the serviceability requirements of the structure and the requirements of adopted building code. Values are based on loads of short duration only and do not consider the effects of creep.

³ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending. WAB indicates weak-axis bending of the facing material; the strong-axis of the facing material is oriented perpendicular to the direction of panel bending.

⁴ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

⁵ Tabulated values assume header depths ranging from 12-in. to 36-in.

⁶ SIP splines are not permitted within 6-in. of the end of the header and are not permitted within the header.

TABLE 12—ALLOWABLE AXIAL LOADS FOR SIPS WITH OPENINGS, 36-IN. MAXIMUM SPAN (PLF) 1,2,3,4,6,7

Lateral Brace Spacing	Panel Thickness (inch)			
(ft)	4 ⁵ / ₈	6 ¹ / ₂	8 ¹ / ₄	
8 WAB⁵	770	820	840	
8	1210	1355	1410	
10	1085	1295	1375	
12	935	1220	1330	
14		1130	1275	
16		1030	1210	
18		930	1140	
20			1060	

For **SI:** 1 inch = 25.4 mm; 1 foot = 304.8 mm; ; 1 plf = 14.59 N/m. See Table 13 for notes.

TABLE 13—ALLOWABLE AXIAL LOADS FOR SIPS WITH OPENINGS, 72-IN. MAXIMUM SPAN (PLF) 1,2,3,4,6,7

Lateral Brace Spacing	Panel Thickness (inch)			
(ft)	4 ^{5/} 8	6 ¹ / ₂	8 ¹ / ₄	
8 WAB ⁵	460	490	505	
8	725	810	845	
10	650	775	825	
12	560	730	800	
14		675	765	
16		615	725	
18		555	685	
20			635	

For **SI:** 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 plf = 14.59 N/m.

¹ Permanent loads, such as dead load, shall not exceed 0.50 times the tabulated load.

² All values are for normal duration and may not be increased for other durations.

³ Axial loads shall be applied concentrically to the top of the panel through repetitive members spaced not more than 24-in. on center. Such members shall be fastened to a rim board or similar member to distribute along the top of the SIP.

⁴ The ends of both facings must bear on the supporting foundation or structure to achieve the tabulated axial loads.

⁵ Tabulated values are based on the strong-axis of the facing material oriented parallel to the direction of panel bending. WAB indicates weak-axis bending of the facing material; the strong-axis of the facing material is oriented perpendicular to the direction of panel bending.

⁶ Tabulated values assume header depths ranging from 12-in. to 36-in.

⁷ SIP splines are not permitted within 6-in. of the end of the header and are not permitted within the header.

TABLE 14—ALLOWABLE IN-PLANE SHEAR STRENGTH (POUNDS PER FOOT) FOR SIP SHEAR WALLS (WIND AND SEISMIC LOADS IN SEISMIC DESIGN CATEGORIES A, B AND C)^{1,2}

Minimum		М			
Spline Type ³	SIP Thickness (in.)	Chord ²	Plate ²	Spline ³	Shear Strength(plf)
Block or	4 ⁵ / ₈	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	380
Surface Spline	8 ¹ / ₄	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	400

For SI: 1 inch = 25.4 mm; 1 foot = 304.8 mm; 1 psf = 47.88 Pa.; 1 plf = 14.59 N/m.

¹ Maximum shear wall dimensions ratio shall not exceed 2:1 (height: width) for resisting wind or seismic loads.

² Chords, hold downs and connections to other structural elements must be designed by a registered design professional in accordance with accepted engineering practice.

³ Spline type at interior panel-to-panel joints only. Solid chord members are required at each end of each shear wall segment.

⁴ Required connections must be made on each side of the panel. Dimensional or engineered lumber shall have an equivalent specific gravity of 0.42 or greater.

TABLE 15—ALLOWABLE IN-PLANE SHEAR STRENGTH FOR HORIZONTAL DIAPHRAGMS SUBJECTED TO WIND OR SEISMIC LOADING

Minimum		Shear			
Nominal SIP Thickness (in.)	Surface Spline ¹ (Figure 3b)	Boundary Support Element (Figure 3c)	Interior Support Spline ^{2,3} (Figure 3a)	Strength (plf)	Max. Aspect Ratio
8-1/4	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center ^{7/} 16-in. x 3-in. OSB Surface Spline	10-in. length, 0.190-in. shank diameter, 0.255-in. thread o.d., 2.750-in. thread length, 0.625-in. head diameter SIP screw, 6-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 6-in. on center	265	3:1
	0.131-in. x 2 ¹ / ₂ -in. nails, 4-in. on center ^{7/} 16-in. x 3-in. OSB Surface Spline	10-in. length, 0.190-in. shank diameter, 0.255-in. thread o.d., 2.750-in. thread length, 0.625-in. head diameter SIP screw, 4-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 4-in. on center	330	3:1
	0.131-in. x 2 ¹ / ₂ -in. nails, 2-in. on center, two rows staggered ³ / ₈ -in. ^{7/} ₁₆ -in. x 3-in. OSB Surface Spline	10-in. length, 0.190-in. shank diameter, 0.255-in. thread o.d., 2.750-in. thread length, 0.625-in. head diameter SIP screw, 3-in. on center	0.131-in. x 2 ¹ / ₂ -in. nails, 2-in. on center, two rows staggered ³ / ₈ -in.	575	3:1

For SI: 1 inch = 25.4 mm, 1 PLF = 14.59 N/m

¹Surface or block spline only at interior panel-to-panel joints. Specified fasteners are required on both sides of panel joint through the top surface only, as shown in Figure 3b.

²Interior support spline shall be solid lumber 1¹/₂-inch-wide minimum and have a specific gravity of 0.42 or greater. Specified fasteners are required through both facings as shown in Figure 3c. ³Attachment of panels to interior supports is the responsibility of the designer and are not included with the shear strength capacities in this table.

TABLE 16—COMPONENT MATERIAL SOURCES

Facing	Core	Adhesive
Louisiana-Pacific Corporation Sagola, MI Distributed by: Viking Forest Products, LLC 7615 Smetana Lane Eden Prairie, MN 55344	Atlas Molded Products, A Division of Atlas Roofing Corporation 8240 Byron Center Road SW Byron Center, MI 49315	Ashland, LLC 5475 Rings Road Dublin, OH 43017
Norbord, Inc. 1 Toronto Street, Suite 600 Toronto ON, Canada M5C 2W4	Benchmark Foam, Inc. 401 Pheasant Ridge Drive Watertown, SD 57201	DuPont Specialty Products 200 Larkin Center 1501 Larkin Center Drive Midland, MI 48674
Tolko Industries, Ltd. 3203 30 th Avenue Vernon BC, Canada V1T 6M1	Carpenter Foam 1021 E Springfield Road High Point, NC 27263	
	Creative Packaging Company 6301 Midland Industrial Drive Shelbyville, KY 40065	
	Insulfoam, a Carlisle Company 1507 Sunburst Lane Mead, NE 68041 (I-41)	
	lowa EPS Products, Inc. 5554 N.E. 16 th Street Des Moines, IA 50313	
	OPCO, Inc. P.O. Box 101 Latrobe, PA 15650	
	Plymouth Foam 1 Southern Gateway Drive Gnadenhutten, OH 44629	
	Polar Industries, Inc. 32 Gramar Avenue Prospect, CT 06712	
	Powerfoam Insulation Division of Metl-Span LTD. 550 Murray Street, Highway 287 Midlothian, TX 76065	
	Thermal Foams, Inc. 2101 Kenmore Avenue Buffalo, NY 14207	

Boundary Spline Attachment

FIGURE 1—SIP SPLINE TYPES

SIP Fasteners

For Structural Insulated Panel and Nail Base Construction

APPLICATION

TRUFAST SIP Fasteners are specifically engineered for attaching structural insulated panels (sips) and nail base panels to wood and metal framing. Featuring a large, pancake head style with a 6-lobe drive, TRUFAST SIP Fasteners drive quickly and smoothly, and draw panels securely without the need of a washer. And only TRUFAST offers three fastener styles for use in wood, corrugated steel, and steel members without pre-drilling! Contact your panel manufacturer or distributor and ask to test drive a TRUFAST SIP Fastener, and see why they're the #1 fastener in the SIP industry.

PRODUCT FEATURES

- Case hardened and tempered for easy installation and long term durability.
- Large diameter, low profile pancake head provides excellent pull-through resistance without the need for a washer while eliminating "telegraphing" on shingles, metal panels and other roof surface materials.
- 6-Lobe internal drive offers excellent bit engagement during installation, especially in high torque applications.
- Widest selection of fastener lengths in the industry for proper sizing to panel thickness.
- Choice of 3 thread/point styles for job-matched performance in either wood or steel substrates.

PRODUCT SPECIFICATIONS

Material: Head Style/Drive: Head Diameter:	Case hardened and tempered carbon steel Pancake Head with T-30 Internal Drive 0.625"
Nominal Shank Diameter:	SIPHP and SIPLD: 0.190" SIPHD: 0.212"
Thread Length:	SIPTP* and SIPLD: 2.750"
	* 3" and longer fasteners; 2" and 2-1/2" fasteners are full thread
Overall Lengths:	SIPTP: 2" thru 18" SIPLD: 3" thru 18"
	SIPHD: 6" thru 13-3/4"
Point:	SIPTP: Gimlet Thread
	SIPHD: #4 (0.225" dia.) Drill Point
Coating:	Epoxy e-coat (black)
	Passes more than 15 cycles (Kesternich) in accordance with DIN 50012

58

SIP Fasteners

PRODUCT SELECTION

Length		SIPTP	SIPLD	
in.	(mm)	Part #	Part #	Pkg. Qty.
2	(51)	SIPTP-2000	NA	500/Pail
2-1/2	(64)	SIPTP-2500	NA	500/Pail
3	(76)	SIPTP-3000	SIPLD-3000	500/Pail
3-1/2	(89)	SIPTP-3500	SIPLD-3500	500/Pail
4	(102)	SIPTP-4000	SIPLD-4000	500/Pail
4-1/2	(114)	SIPTP-4500	SIPLD-4500	500/Pail
5	(127)	SIPTP-5000	SIPLD-5000	500/Pail
5-1/2	(140)	SIPTP-5500	SIPLD-5500	500/Pail
6	(152)	SIPTP-6000	SIPLD-6000	500/Pail
6-1/2	(165)	SIPTP-6500	SIPLD-6500	500/Pail
7	(178)	SIPTP-7000	SIPLD-7000	500/Pail
7-1/2	(191)	SIPTP-7500	SIPLD-7500	500/Pail
8	(203)	SIPTP-8000	SIPLD-8000	500/Pail
8-1/2	(216)	NA	SIPLD-8500	250/Pail
9	(229)	SIPTP-9000	SIPLD-9000	250/Pail
10	(254)	SIPTP-10000	SIPLD-10000	250/Pail
11	(279)	SIPTP-11000	SIPLD-11000	250/Pail
12	(305)	SIPTP-12000	SIPLD-12000	250/Pail
13	(330)	SIPTP-13000	SIPLD-13000	250/Box
14	(356)	SIPTP-14000	SIPLD-14000	250/Box
15	(381)	SIPTP-15000	SIPLD-15000	250/Box
16	(406)	SIPTP-16000	SIPLD-16000	250/Box
18	(483)	SIPTP-18000	SIPLD-18000	250/Box

NOTE: Two T-30 Driver Bits included in each package

Leng	gth 🛛	SIPHD	
in.	(mm)	Part #	Pkg. Qty.
6	(152)	SIPHD-6000	500/Pail
8	(203)	SIPHD-8000	250/Pail
9-3/4	(248)	SIPHD-9750	250/Pail
11-3/4	(298)	SIPHD-11750	250/Pail
13-3/4	(349)	SIPHD-13750	250/Box

NOTE: Two T-30 Driver Bits included in each package

NOTE: All tests were conducted by an independent testing laboratory. Test results are offered only as a guide and are not guaranteed in any way by TRUFAST, LLC. "Head Pull-Thru", "Withdrawal", and "Lateral Load" data reflect average

ultimate values.

TRUFAST, LLC

02105 Williams County Road 12-C Bryan, OH 43506 Phone: 419-636-6715 or 800-443-9602 Fax: 419-636-1784 Email: sales@trufast.com www.trufast.com

FASTENER DIMENSIONS

PERFORMANCE DATA

	Tensile	Shear	Head Pull-Thru Values	
Fastener	Strength	Strength	7/16" OSB	SIP Panel
SIPTP	3380 lbf.	2900 lbf.	545 lbf.	630 lbf.
SIPLD	3380 lbf.	2900 lbf.	545 lbf.	630 lbf.
SIPHD	6000 lbf.	3400 lbf.	545 lbf.	630 lbf.

Withdrawal Values in Wood*

 Specific Gravity
 0.67
 0.55
 0.50
 0.46
 0.43
 0.36
 0.31

 SIPTP & SIPLD:
 1429
 1173
 1067
 981
 917
 768
 661

 *Values are in Ib/in. of thread penetration

 661

Withdrawal Values in Steel

Type B Corrugated	22 ga	20 ga	18 ga		
SIPLD:	510 lbf	645 lbf	920 lbf		
Structural Steel	16 ga	13 ga	12 ga	3/16"	1/4"
SIPHD:	770 lbf	1130 lbf	1690 lbf	3100 lbf	4500 lbf

Lateral Load Resistance

Fastener	Main Member	Side Member	Load (lbf.)
SIPTP	SPF 2x4	SIP Panel	943
SIPLD	22 ga. Corrugated Steel	Nail Base	411
SIPLD	7/16" OSB	Nail Base	112
SIPHD	1/8" Structural Steel	SIP Panel	929

59