

Emorgency Services Department

www.harnett.org

Reviewed For Code Compliance By:

Contractor's Phone:

D. Banks Wallace A	nlighting for Dlan Davis
Chief Deputy Fire Marshal	plication for Plan Review
09/24/2018 12:12:56 PM A	pplication #FMFW 1809:0002
Date Received:	Received By: QUISM
Name of Project: Foo	D LION DISTRIBUTION (BANANA ROOM)
Physical Address of Projec	2940 ARROWHEAD RD.
	DUNU NC_
Plans Submitted By:	MARK FORD
Project Phone:	(910) 892 1700
Contact Person/Address:	·,
Contact Phone: (910 - 892 1700
Contractor's Name/Info:	CAROLINA FIRE PROTECTION, INC.
	P.D. Box 250
	DUNY, N.C. 28335

• Plans that are submitted will be reviewed as quickly as possible with an average time of review between 7-10 working days.

1892 1700

- Status checks may be conducted on plan reviews by visiting the website
 <u>http://hteweb.harnett.org/Click2GovBP/Index.jsp</u> or by calling the Harnett
 County Central Permitting Office (910-893-7525, Option #2), or the Harnett
 County Fire Marshal's Office (910-893-7580).
- Approved plans must be picked up from the Central Permitting Office and all fees paid before any required inspections can be conducted.

Carolina Fire Protection

4055 Hodges Chapel Road Dunn, N.C. 28334 Phone #(910)-892-1700 Fax#(910)-892-7322

Transmittal Letter

This correspondence may contain confidential information intended for the use of the individual or entity to whom it is addressed. If the reader is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination or copying is strictly prohibited.

Date September 6, 2018

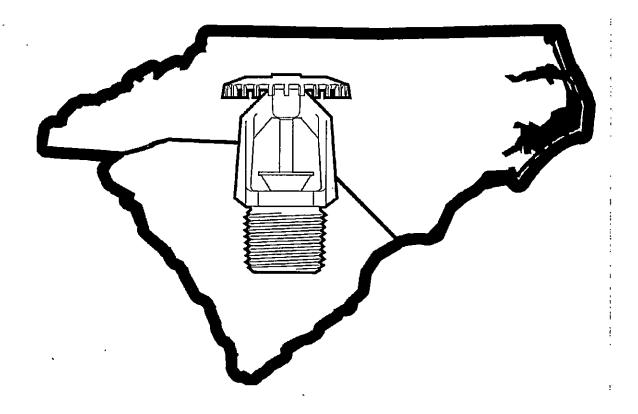
To Central Permitting

108 E. Front Street Lillington, NC 27546

Attention Plan Review

From Mark Ford / Wayne Dunn

Subject Food Lion Distribution Center (Banana Room)


Dunn, NC

# SETS	PAGES	DESCRIPTION	APPROVAL	FOR YOUR USE	INFORMATION	RECORDS	OTHER
3	FP-1	Sprinkler Drawings	X				
1		Hydraulic Calculation	X				
1		Permit Application	X				

MAILED	X FED EX	UPS	HAND DELIVERED

X PLEASE RETURN (1) COPY OF DRAWINGS MARKED WITH YOUR STAMP OF APPROVAL AND/OR YOUR COMMENTS

REMARKS:		
•	<u>-</u>	

Carolina Fire Protection, Inc. 4055 Hodges Chapel Road P.O. Box 250 (28335) Dunn, NC 28334 910-892-1700

Job Name : Food Lion (Banana Room)
Building : BANANA ROOM

Building Location

DUNN, NC

System

Contract : 181289

Data File : FOOD LION BANANA ROOM-tmp.wxf

Hydraulic Design Information Sheet Date - 9-5-18 Name - FOOD LION Location - DUNN, NC System No. -Building - BANANA ROOM Contract No. - 18I289 Contractor - CAROLINA FIRE PROTECTION, INC. Drawing No. -Calculated By - M.FORD Construction: () Combustible (X) Non-Combustible Ceiling Height - 27'-6" Occupancy - Banana Ripening Room Class 1 Commodity () Lt. Haz. Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. () NFPA 13 Curve () NFPA 231 () NFPA 231C () Figure Y S Other Factory Mutual Specific Ruling Data sheet 8-9 table 7 Made By Date Т Ε Area of Sprinkler Operation - 12 heads System Type Sprinkler/Nozzle М Make Reliable - 50 PSI (X) Wet Density Model Pendent - 100 () Dry Area Per Sprinkler D Elevation at Highest Outlet - 27.500 Size 3/4" () Deluge E () Preaction Hose Allowance - Inside K-Factor 11.2 S - 100 Rack Sprinkler Allowance - n/a() Other Temp.Rat.155 Ι G Hose Allowance - Outside - 400 Ν Note Calculation Flow Required - 1473.86 Press Required - 123.132 test Summary C-Factor Used: 120 Overhead 140 Undergroup Underground Tank or Reservoir: W Water Flow Test: Pump Data: Date of Test - 8-8-17 Cap. -Α Time of Test Rated Cap. - 2500 Elev.-Т - 154 @ Press - 125 Static Press Ε Residual Press - 118 Elev. Well R Proof Flow Flow - 3616 S Elevation U Ρ Location - Pump Test Ρ Source of Information - James M. Pleasants L Y Commodity Fruit Location С Class 1 Aisle W. Area 0 Storage Ht. 23' 육 . Palletized Rack Solid Piled М Storage Method: М () Encap. () Conven. Pallet () Single Row () Auto. Storage () Solid Shelf () Double Row () Non () Slave Pallet S R () Open Shelf Т Α (X) Mult. Row 0 С Flue Spacing Clearance:Storage to Ceiling R K Α Longitudinal Transverse G Horizontal Barriers Provided: Ε

City Water Supply: C1 - Static Pressure : 154 C2 - Residual Pressure: 118 Demand: D1 - Elevation : 11.477 D2 - System Flow : 973.87 D2 - System Pressure : 123.132 C2 - Residual Flow : 3616 Hose (Demand) : 500
D3 - System Demand : 1473.87
Safety Margin : 24.025 180 168 C1 156 P 144 R 132 D2 C2 E 120 D3 S 108 S 96 U 84 R ⁷² E 60 48 36 24 12 D1 3600 400 800 1200 1600 2000 2400 2800 3200 FLOW (N ^ 1.85)

riungs Useu oumnary

Carolina Fire Protection, Inc. Food Lion (Banana Room)

Page 3 Date 9-5-18

Fitting L	egond	-						_											-		
Abbrev.		1/2	3/4	1	11/4	11/2	2	21/2	_ 3	3½	4	_ 5	. 6	8	10	12	14	16	18	20	24
	•																				
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Rcr	Reliable G/CVE Riser Ck					•		7	7		10		16	29							
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Length Units Flow Units Pressure Units Inches Feet

US Gallons per Minute Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 4 Date 9-5-18

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required i	Pressure
TEST	154.0	118	3616.0	147.157	1473.87	123.132	1

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
1A	27.5	11.2	58.47	85.64	
2A .	27.5	11.2	50.0	79.2	
3A [*]	27.5	11.2	50.3	79.43	
4A	27.5	11.2	50.88	79.89	
5A	27.5	11.2	58.56	85.71	
6A	27.5	11.2	50.07	79.25	
7A	27.5	11.2	50.37	79.49	
8A	27.5	11.2	50.95	79.95 85.95	
9A	27.5	11.2	58.89	79.48	
10A	27.5	11.2	50.36	79.46 79.71	
11A	27.5	11.2	50.66	80.17	
12A	27.5	11.2	51.24 78.51	QU. 17	
F1	33.5 33.5		78.61		
F2	33.5 33.5		79.05		
F3 F4	33.5		80.05		
F5	33.5		80.87		
F6	33.5		81.51		
F7	33.5		82.0		
F8	33.5		82.37		
F9	33.5		82.63		
F10	33.5		82.8		
F11	33.5		82.91		
F12	33.5		82.96		
F13	33.5		82.97		
1	34.0		76.76		
2	34.0		65.44		•
2 3	34.0		65.84		•
4	34.0		66.62	•	
5	34.0		76.88		
6	34.0		65.54		
7	34.0		65.94		
8	34.0		66.72		
9	34.0		77.32		
10	34.0		65.92		
11	34.0		66.32		
12	34.0		67.1		
F1A	33.5		78.5		
F2A	33.5		78.62		
F3A	33.5		79.07 85.16		
N1	33.5		85.16		
N2	33.5		65.10		

Page 5 Date 9-5-18

NODE	ΑΝΑΙ.	YSIS	(cont.)

				•	
Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
N3	33.5		85.18		
N4	33.5		85.21		
N5	33.5		85.26		
N6	33.5		85.32		
N7	33.5		85.41		
N8	33.5		85.52		•
N9	33.5		85.66		
N10	33.5		85.82		
N11	33.5		86.0		
N12	33.5		86.22		
N13	33.5		86.47		
TASR	33.5		87.67		
BASR	1.0		102.51		
U1	-3.0		106.08	500.0	
TEST	1.0		123.13		

Page 6 Date 9-5-18

Food Lio	n (Banan	ıa Room)								Date 9-5-18
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len 	Total	Pf/Ft	Pf	<u></u>
4.6	27.500	11.00	85.64	4	T	5.0	6.000	120	58.474	
1A o	27.500	11.20	63.64	1	1	0.0	5.000	120	-2.815	
1	34		85.64	1.049		0.0	11.000	1.9185	21.104	Vel = 31.79
			0.0							
1			85.64						76.763	K Factor = 9.77
2A	27.500	11.20	79.20	1	T	5.0	6.000 5.000	120	50.000 -2.815	
o 2	34		79.2	1.049		0.0 0.0	11.000	1.6599	18.259	Vel = 29.40
			0.0							
2		•	79.20						65.444	K Factor = 9.79
зА	27.500	11.20	79.43	1	Т	5.0	6.000	120	50.297	
0	0.4		70.40	4.040		0.0	5.000	4 0000	-2.815	Vol 00 40
3	34		79.43	1.049		0.0	11.000	1.6689	18.358	Vel_= 29.49
3			0.0 79.43						65.840	K Factor = 9.79
4A	27.500	11.20	79.89	1	T	5.0	6.000	120	50.877	11140001
to	27.000	11.20	7 0.00	·	•	0.0	5.000	0	-2.815	
4	34		79.89	1.049		0.0	11.000	1.6868	18.555	Vel = 29.66
			0.0						20.047	1/5 1 0.70
4	07.500		79.89				0.000	400	66.617	K Factor = 9.79
5A to	27.500	11.20	85.71	1	Т	5.0 0.0	6.000 5.000	120	58.559 -2.815	
5	34		85.71	1.049		0.0	11.000	1.9211	21.132	Vel = 31.82
	<u> </u>		0.0							
5			85.71						76.876	K Factor = 9.78
6A	27.500	11.20	79.25	1	T	5.0	6.000	120	50.073	
o 6	34		79.25	1.049		0.0 0.0	5.000 11.000	1.6622	-2.815 18.284	Vel = 29.42
0		· · · · · · · · · · · · · · · · · · ·	0.0	1.045		0.0	11.000	1.0022	10.204	VOI - 20.72
6			79.25						65.542	K Factor = 9.79
7A	27.500	11.20	79.49	1	Т	5.0	6.000	120	50.370	
0						0.0	5.000		-2.815	
7	34	-	79.49	1.049		0.0	11.000	1.6713	18.384	Vel = 29.51
7			0.0 79.49						65.939	K Factor = 9.79
8A	27.500	11.20	79.45	1	T	5.0	6.000	120 -	50.952	11140101 - 0.10
0	27.500	11.20	79.90	1	1	0.0	5.000	120	-2.815	
8	34		79.95	1.049		0.0	11.000	1.6891	18.580	Vel = 29.68
•			0.0						00 747	V F 0.70
8	07.555	44.55	79.95		 ,		0.000	400	66.717	K Factor = 9.79
9A o	27.500	11.20	85.95	1	Т	5.0 0.0	6.000 5.000	120	58.889 -2.815	
9	34		85.95	1.049		0.0	11.000	1.9311	21.242	Vel = 31.91
			0.0		-					
9			85.95						77.31 <u>6</u>	K Factor = 9.77
10A	27.500	11.20	79.48	1	Т	5.0	6.000	120	50.358	
0 10	24		70.49	1.040		0.0	5.000	1 6700	-2.815	Vel = 29.51
10	34		79.48	1.049		0.0	11.000	1.6708	18.379	V €! = ∠3.31

FOOG LIO	n (Banan	a Room)								Date 5	0 10	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	- Pt Pe	******* No	tes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf 			
10			0.0 79.48				<u> </u>		65.922	K Factor = 9.	79	
11A to	27.500	11.20	79.71	1	T	5.0 0.0	6.000 5.000	120	50.656 -2.815			
11	34		79.71 0.0	1.049		0.0	11.000	1.6801	18.481	Vel = 29.59		
11			79.71			•		_	66.322	K Factor = 9.	79	
12A to	27.500	11.20	80.17	1	Т	5.0 0.0	6.000 5.000	120	51.241 -2.815			
12	_34		80.17	1.049		0.0	11.000 _	1.6979	18.677	Vel = 29.76		-
12			0.0 80.17						67.103·	K Factor = 9.	79	
F1 to	33.500		96.65	2.5	4T	65.897 0.0	180.000 65.897	120	78.510 0.0			
N1	33.500		96.65 0.0	2.635		0.0	245.897	0.0270	6.651	Vel = 5.69		
N1			96.65						85.161	K Factor = 10.	47	
F2 to	33.500		95.87	2.5	4T	65.897 0.0	180.000 65.897	120	78.614 0.0			
N2	33.500	_	95.87	2.635	,	0.0	245.897	0.0266	6.551	Vel = 5.64		
N2			0.0 95.87						85.16 <u>5</u>	K Factor = 10.	39	
F3 to	33.500		92.52	2.5	4T	65.897 0.0	180.000 65.897	120	79.046 0.0			
N3	33.500		92.52	2.635		0.0	245.897	0.0249	6.133	Vel = 5.44		<u> </u>
N3	<u></u>		0.0 92.52						85.179	K Factor = 10.	02	
F4 to	33.500		84.28	2.5	4T	65.897 0.0	180.000 65.897	120	80.046 0.0			
N4	33.500		84.28	2.635		0.0	245.897	0.0210	5.162	Vel = 4.96		·
N4			0.0 84.28						85.208	K Factor = 9.	13 _	
F5 to	33.500		77.15	2.5	4T	65.897 0.0	180.000 65.897	120	80.872 0.0			
N5	33.500		77.15	2.635		0.0	245.897	0.0178	4.383	Vel = <u>4.5</u> 4		
N5			0.0 77.15						85.255	K Factor = 8.3	36	
F6	33.500		71.51	2.5	4T	65.897	180.000	120	81.514			
to N6	33.500		71.51	2.635		0.0 0.0	65.897 245.897	0.0155	0.0 3.808	Vel = 4.21		
			0.0								7.1	
N6 F7	33.500		71.51 67.32	2.5	4T	65.897	180.000	120	85.322 82.004	K Factor = 7.7	· · ·	
to N7	33.500		67.32	2.635		0.0	65.897 245.897	0.0139	0.0 3.407	Vel = 3.96		
N7	30.000		0.0 67.32	_ =.000		<u> </u>	2 101001	0.0100	85.411	K Factor = 7.2	28	

ood Lior	Danan	u 11001117				,				Date		_
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
			24.52		·	05.007	400.000	400	00.000			
F8 o	33.500		64.56	2.5	4T	65.897 0.0	180.000 65.897	120	82.369 0.0			
N8	33.500		64.56	2.635		0.0	245.897	0.0128_	3.153_	Vel = 3.8	0	
N8			0.0 64.56						85.5 <u>22</u>	K Factor =	6.98	
F9	33.500		63.15	2.5	4T	65.897	180.000	120	82.630			
o N9	33.500		63.15	2.635		0.0 0.0	65.897 245.897	0.0123	0.0 3.026	Vel = 3 <u>.</u> 7	2	
			0.0								0.00	
N9	00.500		63.15	0.5	4T	CE 907	190 000	120	85.656 82.804	K Factor =	6.82	
F10 o	33.500		62.98	2.5	4T	65.897 0.0	180.000 65.897	120	0.0			
N10	33.500		62.98	2.635		0.0	245.897	0.0122	3.012	Vel = 3.7	1	
N10			0.0 62.98						85.816	K Factor =	6.80	
F11	33.500		63.91	2.5	4T	65.897	180.000	120	82.909		<u>. </u>	
o N11	33.500		63.91	2.635		0.0 0.0	65.897 245.897	0.0126	0.0 3.093	Vel = 3.7	6	
		·	0.0	2.000		0.0	2 10.001	0.0120	<u> </u>		•	
<u>N11</u>			63.91	-					86.002	K Factor =	6.89	
F12 o	33.500		65.73	2.5	4T	65.897 0.0	180.000 65.897	120	82.960 0.0			
N12	33.500		65.73	2.635		0.0	245.897	0.0133	3.259	V <u>el</u> = 3.8	7	
N12			0.0 65.73						86.219	K Factor =	7.08	
F13 ⁻	33.5		68.24	2.5	4T	65.897	180.000	120	82.974			
o N13	33.500		68.24	2.635		0.0 0.0	65.897 245.897	0.0142	0.0 3.493	Vel = 4.0	1	
	00.000		0.0	2.000		0.0	<u> </u>	<u> </u>				
N13			68.24			21212			86.467	K Factor =	7.34	
1 0	34		85.64	2	2T	24.613 0.0	2.000 24.613	120	76.763 0.217			
F1A	33.500		85.6 <u>4</u>	2.157		0.0	26.613	0.0573	1.525	Vel = 7.5	2	
F1A			0.0 85.64						78.505	K Factor =	9.67	
2	34		79.20	2		0.0	8.000	120	65.444			_
0	34		79.2	2.157		0.0 0.0	0.0 8.000	0.0495	0.0 0.396	Vel = 6.9	5	
3	34		79.43	2		0.0	4.333	120	65.840	701 0.0		
0						0.0	0.0		0.0 0.777	Vel = 13.9	13	
4	34 34		158.63 79.88	2.157 2	2T	0.0 24.613	4.333 6.000	0.1793 120	66.617	<u> vei – 19.5</u>		
0						0.0	24.613		0.217	Val. no r	14	
F1A	33.500		238.5 <u>1</u> 0.0	2.157		0.0	30.613	0.3812	11.671	Vel = 20.9	<u> </u>	
F1A			238.51						78.505	K Factor =	26.92	
5	34		85.71	2	2T	24.613	2.000 24.613	120	76.876 0.217			
0	33.500		85.71	2.157		0.0 0.0	26.613	0.0574	1.527	Vel = 7.5	^	

Page 9 Date 9-5-18

Node1 to	Elev1	K	. Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
			0.0							
F2A			85.71						78.620	K Factor = 9.67
6	34		79.25	2		0.0	8.000	120	65.542	-
0						0.0	0.0		0.0	
7	34		79.25	2.157		0.0	8.000	0.0496	0.397	Vel_= 6.96
7	34		79.49	2		0.0	4.333	120	65.939	
0	34		158.74	2.157		0.0 0.0	0.0 4.333	0.1796	0.0 0.778	Vel = 13.94
8				2.137	2T	24.613	6.000	120	66.717	
8 0	34		79.95	۷	۲۱	0.0	24.613	120	0.217	
F2A	33.500		238.69	2.157		0.0	30.613	0.3817	11.686	Vel = 20.96
		_	0.0							
F2A			238.69						78.620	K Factor = 26.92
9	34	_	85.95	2	2 T	24.613	2.000	120	77.316	
0						0.0	24.613		0.217	
F3A	33.500		85.95	2.157		0.0	26.613	0.0577_	1.535	Vel = 7.55
			0.0						70.000	I/ C 0.07
F3A			85.95						79.068	K Factor = 9.67
10	34		79.48	2		0.0	8.000	120	65.922	
0	0.4		70.40	0.157		0.0 0.0	0.0 8.000	0.0500	0.0 0.400	Vel = 6.98
11	34		79.48	2.157					66.322	VEI - 0.30
11	34		79.71	2		0.0 0.0	4.333 0.0	120	0.0	
o 12	34		159.19	2.157		0.0	4.333	0.1802	0.781	Vel = 13.98
12	34		80.18	2	2T	24.613	6.000	120	67.103	
:0	04		00.10	-		0.0	24.613		0.217	
F3A	33.500		239.37	2.157		0.0	30.613	0.3838	11.748	Vel = 21.02
			0.0							
F3A			239.37						79.068	K Factor = 26.92
F1	33.500		-96.65	4		0.0	2.083	120	78.510	
to	·					0.0	0.0	0.0004	0.0	Val - 0.10
F1A	33.500		-96.65	4.26		0.0	2.083	-0.002 <u>4</u>	-0.005	Vel = 2.18
F1A	33.500		324.15	4		0.0	8.583	120	78.505 0.0	
o F2	33.5		227.5	4.26		0.0 0.0	0.0 8.583	0.0127	0.0 0.109	Vel = 5.12
				4.20	_	0.0	1.417	120	78.614	
F2 to	33.500		-95.86	4		0.0	0.0	120	0.0	
F2A	33.500		131.64	4.26		0.0	1.417	0.0042	0.006	Vel = 2.96
F2A	33.500		324.39	4		0.0	9.250	120	78.620	
0			100	-		0.0	0.0		0.0	
F3	33.5		456.03	4.26		0.0	9.250	<u>0.0</u> 461	0.426	Vel = 10.27
F3	33.500		-92.51	4		0.0	0.750	120	79.046	
0						0.0	0.0	0.0000	0.0	\/al = 0.40
F3A	33.500		363.52	4.26		0.0	0.750	0.0293	. 0.022	Vel = <u>8.18</u>
F3A	33.500		325.31	4		0.0	9.917	120	79.068	
to Ea	22 F		688.83	4.26		0.0 0.0	0.0 9.917	0.0986	0.0 0.978	Vel = 15.51
F4	33.5		000.00	7.20		0.0	J.J1/	<u> </u>		

Page 10 Date 9-5-18

Food Lio	n (Banar	na Room)								Date	9-0-1	o
Node1	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
			-					.=				
F4	33.5		-84.28	4		0.0	10.667	120 ,	80.046			
to F5	33.5		604.55	4.26		0.0 0.0	0.0 10.667	0.0774	0.0 0.826	Ve <u>l</u> = 13.	61	
F5	33.5		-77.15	4		0.0	10.667	120	80.872			
to F6	33.5		527.4	4.26		0.0 0.0	0.0 10.667	0.0602	0.0 0.642	Vel = 11.	.87	
F6	33.5		-71.51	4		0.0	10.667	120	81.514	-		
to F7	33.5		455.89	4.26		0.0 0.0	0.0 10.667	0.0459	0.0 0.490	Vel = 10.	.26	
F7	33.5		-67.32	4		0.0	10.667	120	82.004			
to	00.5		200 57	4.00		0.0	0.0	0.0342	0.0	Vel = 8.	75	
	33.5		388.57	4.26 4		0.0	10.667 10.667	120	0.365 82.369	ver = o.	10	
F8 to	33.5		-64.56	4		0.0 0.0	0.0		0.0			
_F9	33.5		324.01	4.26		0.0	10.667	0.0245	0.261	Vel = 7.3	29	
F9	33.5		-63.15	4		0.0	10.667	120	82.630			
to F10	33.5		260.86	4.26		0.0 0.0	0.0 10.667	0.0163	0.0 0.174	Vel = 5.8	87	
F10	33.5		-62.99	4.20		0.0	10.667	120	82.804	VOI - 0.1		
to	00.0		02.00	-		0.0	0.0	120	0.0			
_F11	33.5		197.87	4.26		0.0	10.667	0.0098	0.105	Vel = 4.4	<u>45</u>	
F11	33.5		-63.90	4		0.0	10.667	120	82.909 0.0			
to F12	33.5		133.97	4.26		0.0 0.0	0.0 10.667	0.0048	0.0 0.051	Vel = 3.0	02	
F12	33.5		-65.73	4		0.0	10.667	120	82.960			•
to			00.04	4.00		0.0	0.0	0.0010	0.0	Val. 11	EA	
F13	33.5		68.24	4.26		0.0	10.667	0.0013	0.014	Vel = 1.	34	
F13			0.0 68.24						82.974	K Factor	= 7.49	
N1	33.500		96.65	6		0.0	10.667	120	85.161			
to			00.05	0.057		0.0	0.0	0.0004	0.0	Val. 0	00	
N2	33.500		96.65 95.87	6.357 6		0.0	10.667 10.667	0.0004 120	0.004 85.165	Vel = 0.	90	
N2 to	33.500		95.67	b		0.0	0.0	120	0.0			
N3	33.500		192.52	6.357		0.0	10.667	0.0013	<u>0.014</u>	Vei = 1.9	95	
N3	33.500		92.52	6		0.0	10.667	120	85.179			
to N4	33.500		285.04	6.357		0.0	0.0 10.667	0.0027	0.0 0.029	Vel = 2.	88	
N4	33.500		84.28	6		0.0	10.667	120	85.208			
to						0.0	0.0		0.0		70	
<u>N5</u>	33.500		369.32	6.357		0.0	10.667	0.0044	0.047	Vel = 3.	73	.
N5 to	33.500		77.15	6		0.0 0.0	10.667 0.0	120	85.255 0.0			
_N6	33.500		446.47	6.357		0.0	10.667	0.0063	0.067	Vel = 4.	51	_
N6	33.500		71.51	6		0.0	10.667	120	85.322			
to NZ	22 500		£17.00	6.357		0.0 0.0	0.0 10.667	0.0083	0.0 0.089	Vel = 5.	24	
N7 N7	33.500 33.500		517.98 67.32	6.357		0.0	10.667	120	85.411	<u> </u>	<u>-</u> -	
to	00.000		عد. ۱۰	J		0.0	0.0	120	0.0			
N8	33.500		585.3	6.357		0.0	10.667	0.0104	0.111	Vel = 5.	92	

Page 11 Date 9-5-18

Node1 to	Elev1	K	Qa	Nom	Fitting or	I	Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
N8	33.500		64.56	6		0.0	10.667	120	85.522			
to						0.0	0.0		0.0			
N9	33.500		649.86	6.357		0.0	10.667	0.0126	0.134_	Vei = 6.	.57	
N9	33.500		63.15	6		0.0	10.667	120	85.656			
to						0.0	0.0		0.0			
N10	33.500		713.01	6.357		0.0	10.667	0.0150	0.160	Vel = 7.	.21	
N10	33.500		62.99	6		0.0	10.667	120	85.816			
to						0.0	0.0		0.0			
N11	33.500		776.0	6.357		0.0	10.667	0.0174	0.186	Vel = 7.	.84	
N11	33.500		63.90	6		0.0	10.667	120	86.002			
to						0.0	0.0		0.0			
N12	33.500		839.9	6.357		0.0	10.667	0.0203	0.217	Vel <u>= 8.</u>	49	
N12	33.500		65.73	6		0.0	10.667	120	86.219			,
to						0.0	0.0		0.0			
N13	33.500		905.63	6.357		0.0	10.667	0.0232	0.248	<u>Vel</u> = 9.	.15	
N13	33.500		68.24	6	E	17.603	27.667	120	86.467			
to						0.0	17.603		0.0			
TASR	33.500		973.87	6.357		0.0	45.270	0.0266	1.206	Vel = 9.	.84	
TASR	33.500		0.0	8	Е	21.141	32.500	120	87.673			
to					В	14.094	69.296		14.076			
BASR	1		973.87	8.249	Rcr	34.061	101.796	0.0075	0.762	Vel = 5	.85	
BASR	1		0.0	8	Е	28.468	240.000	140	102.511			
to					T	55.354	90.148		1.732			
<u>U1</u>	-3		973.87	8.27	G	6.326	330.148	0.0056	1.837	<u>Vel = 5.</u>	.82	
U1	-3	H500	500.00	10	4E	132.591	4100.000	140	106.080			
to					S	82.87	426.402		-1.732			
TEST	1		1473.87	10.28	T 18G	75.336 135.605	4526.402	0.0041	18.784	Vel = 5.	.70	
			0.0			.00.000						
TEST			1473.87						123.132	K Factor	= 132.82	

JAMES M. PLEASANTS CO., INC. PO BOX 1027 HICKORY, NC 28603 (800) 866-7867

JOB NAME: FOODLION WHSE.

DATE: 8/18/17

LOCATION: 2940 ARROWHEAD ROAD DUNN, N.C.

TESTED BY: DANNY BENNETT

PUMP MANUFACTURER: ITT-AC

MODEL NUMBER: 10X8X17F

RATED GPM: 2500 RATED PSI: 125

SERIAL NUMBER: 14-071155

RATED RPM: 1785

ELECTRIC MOTOR MANUFACTURER: WEG

RATED HP: 250

RPM: 1780

FRAME SIZE: 445TS

PHASE: 3

HERTZ: 60

VOLTS: 460

SERIAL NO: 1024527

F.L. AMPS: 273

S.F. 1.15

DIESEL ENGINE MFG:

RATED HP:

RPM:

MODEL NUMBER:

VOLTAGE:

SERIAL NUMBER:

GROUND: NEG POS

MODEL NO.: FTA1800-

CONTROL MANUFACTURER: FIRETROL

AM250B

SERIAL NO.: 1138685-

01RE

JOCKEY PUMP MANUFACTURER: GOULDS

MODEL NO.: 3SV18GG4F

20

SERIAL NO.: 5 H.P.

JP CONTROLLER FIRETROL

MANUFACTURER:

MODEL NO.: FTA550F-

AG005B-B

SERIAL NO.: 1121444-

01RE

SPEED (RPM)	DISCH. PSI.	SUCT. PSI.	NET PSI.	NO. NOZZLES	SIZE NOZZLE	PITOT PSI.	GPM	PERC. RATED	VOLTS	AMPS
1793	154	12	142	CHURN	0	0	0	0	489	162 159 169
1788	136	10	126	4	2 1/2	20-11 17-14	2639	106%	489	243 252 262
1786	118	10	108	4	2 1/2	30-29 30-26	3616	145%	489	277 286 279

Plan Review, Inspection, and Permit Fees

Application Number	:	FMFW1809-0002	
\$200.00		Explosive Material (90 Days)	\$ -
\$100.00		Explosive Materials (72 Hours)	\$ -
\$100.00		Fireworks Public Display	\$ -
\$50.00		Final Inspection	\$ -
\$35.00 + \$2.00 per device		Fire Alarm Testing	\$ -
\$35.00 + \$2.00 per nozzle		Fixed Fire Suppression	\$ -
\$75.00		Insecticide Fog/Fumigation	\$ -
\$100.00		Pipe Test/UST/AGST	\$ -
\$50.00	✓	Plans up to 5000 sq ft	\$ 50.00
\$100.00		Plans 5001 sq ft to 10,000 sq ft	\$ -
\$150.00		Plans 10,001 sq ft to 25,000 sq ft	\$ -
\$250.00		Plans 25,001 sq ft and over	\$ -
\$35.00 + 2.00 per head	/	Sprinkler Certification Test	\$ 35.00
\$50.00		Standpipe Testing	\$ -
\$50.00		Special Assembly	
430.00		(ie. amusement buildings, carnivals, fairs)	\$ -
\$75.00		Tents/Canopies/Air Supported Structure	\$ -
\$100.00		Tank Installation (charge for each tank)	\$ -
\$100.00		Tank Removal (charge for each tank)	\$ -
	12	Total Devices/Heads	\$ 24.00
		Total Cost	\$ 109.00
Code Enforcement Official		D. Banks Wallace	9/24/2018

Fire Marshal Division

September 24, 2018

Mark Ford Carolina Fire Protection P.O. Box 250 Dunn, NC 28335

Re: Food Lion Distribution (Banana Room)

2940 Arrowhead Rd. Dunn, NC 28335

Application Number FMFW1809-0002

Mr. Ford,

Thank you for submitting the sprinkler system plans for the sprinkler alterations. The plans have been carefully reviewed by a qualified code enforcement official to examine for compliance with the North Carolina Fire Prevention Code and all other fire protection regulatory documents. There are some items that were found during the plan review process that need to be addressed before a final inspection of the new facility can be given. These items are outlined and described below.

Plan Review Comments to Contractor.

- Installation of the sprinkler system shall be per contract specifications and NFPA 20013 edition.
- o Provide an FDC detail on the plans, also, the type and size indicated.
- Provide hydraulic design data plate, spare sprinklers and wrench cabinet, and approved signage at final inspection per NFPA 13.

• 901.2.1 Statement of Compliance.

O Before requesting final approval of the installation, where required by the fire code official, the installing contactor shall furnish a written statement to the fire code official that the subject fire protection system has been installed in accordance with the manufacture's specifications and the appropriate installation standard. Any deviations from the design standards shall be noted and copies of the approvals for such deviations shall be attached to the written statement.

 All valves controlling the water supply for automatic sprinkler systems and water-flow switches on all sprinkler systems shall be electrically supervised according to the NC State Fire Code.

• 901.5 Installation acceptance testing.

- All piping and attached appurtenances subjected to system working pressure shall be hydrostatically tested at 200 psi or 50 psi in excess of the system working pressure, whichever is greater, and shall maintain that pressure without loss for 2 hours. This test is required to be witnessed by a representative from the Harnett County Fire Marshal's Office.
- A contractor's material and test certificate shall be furnished by the trained representative of VSC Fire & Security before approval.
- o A piping and hanger inspection is required before closure of ceiling system(s).
- o A sprinkler final inspection is required at completion of project.
- Schedule all inspections with the Fire Marshal's Office.
- o (910) 984-4003

• 912.4 Fire Department Connection Signage.

Automatic sprinkler, test connection and standpipe signs to be properly installed.

Thank you again for submitting the plans for the sprinkler up-fits. Please review the plans and adhere to any notes and alterations that were made in addition to the original drawings. These remarks are for the plans that were submitted and its original intent. These remarks do not apply if the original intent changes or what was submitted on the above date changes. If you have any questions, please do not hesitate to call this office.

Sincerely,

D. Banks Wallace

Chief Deputy Fire Marshal

D. Bonds Walleve