

BLUE RAVEN SOLAR, LLC. Firm License No. D-0449 1403 North Research Way , Bldg. J Orem, UT 84097

September 22, 2025

To: Blue Raven Solar

1403 North Research Way, Building J

Orem, UT. 84097

Subject: Certification Letter

Billingham Residence 1527 Atkins Rd

Fuquay-Varina, NC. 27526

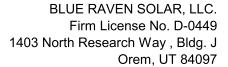
To Whom It May Concern,

A jobsite observation of the condition of the existing framing system was performed by an audit team of Blue Raven Solar. All review is based on these observations and the design criteria listed below and only deemed valid if provided information is true and accurate.

On the above referenced project, the roof structural framing has been reviewed for additional loading due to the installation of the solar PV addition to the roof. The structural review only applies to the section of the roof that is directly supporting the solar PV system and its supporting elements. The observed roof framing is described below. If field conditions differ, contractor to notify engineer prior to starting construction.

The roof structure of (MP1) consists of built up roof on roof plywood that is supported by 2x6 rafters @ 16"o.c. with ceiling joists acting as rafter ties. The rafters have a max projected horizontal span of 13'-5", with a slope of 6 degrees. The rafters are connected at the ridge to a load bearing wall and are supported at the eave by a load bearing wall.

The roof structure of (MP2) consists of composition shingle on roof plywood that is supported by nominal 2x8 rafters @ 16"o.c. with ceiling joists acting as rafter ties. The rafters have a max projected horizontal span of 13'-0", with a slope of 30 degrees. The rafters are connected at the ridge to a ridge board and are supported at the eave by a load bearing wall.


The existing roof framing system of (MP1) is judged to be adequate to withstand the loading imposed by the installation of the solar panels. No reinforcement is necessary.

The existing roof framing system of (MP2) is judged to be adequate to withstand the loading imposed by the installation of the solar panels. No reinforcement is necessary.

The spacing of the solar standoffs should be kept at 64" o.c. for landscape and 48" o.c. for portrait orientation, with a staggered pattern to ensure proper distribution of loads.

The scope of this report is strictly limited to an evaluation of the fastener attachment, underlying framing and supporting structure only. The attachment's to the existing structure are required to be in a staggered pattern to ensure proper distribution of loading. All panels, racking and hardware shall be installed per manufacturer specifications and within specified design limitations. All waterproofing shall be provided by the manufacturer.

Note: Seismic check is not required since Ss<.4g and Seismic Design Category (SDC) < B

Design Criteria:

- Applicable Codes = 2018 North Carolina State Building Code (NCSBC), ASCE 7-10
- Roof Dead Load = 8 psf (MP1) -- 9 psf (MP2)
- Roof Live Load = 20 psf
- Wind Speed = 115 mph (Vult), Exposure C, Risk Category II
- Ground Snow Load = 15 psf Roof Snow Load = 10.5 psf
- Attachment: 2 #14 Wood Screws with 2.5 inch min. embedment depth, at spacing shown above.

Please contact me with any further questions or concerns regarding this project.

Sincerely,

John Calvert, P.E. Project Engineer

Gravity Loading

Roof Snow Load Calculations		
p _g = Ground Snow Load =	15 psf	_
$p_f = 0.7 C_e C_t I p_g$		(ASCE7 - Eq 7-1
C _e = Exposure Factor =	1	(ASCE7 - Table
C _t = Thermal Factor =	1	(ASCE7 - Table
I = Importance Factor =	1	
p _f = Flat Roof Snow Load =	10.5 psf	
$p_s = C_s p_f$		(ASCE7 - Eq 7-2
Cs = Slope Factor =	1	
p _s = Sloped Roof Snow Load =	10.5 psf	

PV Dead Load = 3 psf (Per Blue Raven Solar)				
DL Adjusted to 6 Degree Slope	3.02 psf			
PV System Weight				
Weight of PV System (Per Blue Raven Solar)	3.0 psf			
X Standoff Spacing =	4.00 ft			
Y Standoff Spacing =	6.08 ft			
Standoff Tributary Area =	24.33 sft			
Point Loads of Standoffs	73 lb			

Note: PV standoffs are staggered to ensure proper distribution of loading

Roof Live Load = 20 psf

Note: Roof live load is removed in area's covered by PV array.

Roof Dead Load (MP1)		
Built Up Roof	4.00	_
Roof Plywood	2.00	
2x6 Rafters @ 16"o.c.	1.72	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.28	
Total Roof DL (MP1)	8.0 psf	
DL Adjusted to 6 Degree Slope	8.0 psf	
		_
Roof Dead Load (MP2)		
Composition Shingle	4.00	_
Roof Plywood	2.00	
2x8 Rafters @ 16"o.c.	2.27	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.73	

.....

Wind Calculations

Per ASCE 7-10 Components and Cladding

Input Variables					
Wind Speed	115 mph				
Exposure Category	С				
Roof Shape	Hip/Gable				
Roof Slope	6 degrees				
Mean Roof Height	20 ft				
Effective Wind Area	21.3 ft				

Design Wind Pressure Calculations	
Wind Pressure P = qh*G*Cn	
qh = 0.00256 * Kz * Kzt * Kd * V^2	(Eq. 30.3-1)
Kz (Exposure Coefficient) = 0.9	(Table 30.3-1)
Kzt (topographic factor) = 1	(Fig. 26.8-1)
Kd (Wind Directionality Factor) = 0.85	(Table 26.6-1)
V (Design Wind Speed) = 115 mph	(Fig. 26.5-1A)
Risk Category = II	(Table 1.5-1)
qh = 25.90	
0.6 * qh = 15.54	

Standoff Uplift Calculations-Portrait					
	Zone 1	Zone 2	Zone 3	Positive	
GCp =	-0.95	-1.57	-2.22	0.27	(Fig.
Uplift Pressure =	-14.74 psf	-24.38 psf	-34.49 psf	10.0 psf	(Minir
X Standoff Spacing =	4.00	4.00	2.67		
Y Standoff Spacing =	6.08	3.041666667	3.04166667		
Tributary Area =	24.33	12.17	8.11		
Dead Load on Attachment=	73.00	36.50	24.33		
Footing Uplift (0.6D+0.6W)=	-315 lb	-275 lb	-265 lb		

Standoff Uplift Calculations-Landscape					
	Zone 1	Zone 2	Zone 3	Positive	_
GCp =	-0.95	-1.57	-2.22	0.27	(Fig. 30.4-1)
Uplift Pressure =	-14.74 psf	-24.38 psf	-34.49 psf	10.0 psf	(Minimum)
X Standoff Spacing =	5.33	5.33	3.56		
Y Standoff Spacing =	3.50	1.75	1.75		
Tributary Area =	18.67	9.33	6.22		
Dead Load on Attachment=	56.00	28.00	18.67		
Footing Uplift (0.6D+0.6W) =	-241 lb	-211 lb	-203 lb		

Standoff Uplift Check

Maximum Design Uplift = -315 lb Standoff Uplift Capacity = 400 lb 400 lb capacity > 315 lb demand **Therefore**, **OK**

Fastener Capacity Check

Fastener = 2 - #14 Wood Screws

Number of Fasteners = 2 Embedment Depth = 2.5

Pullout Capacity Per Inch = 150 lb

Fastener Capacity = 750 lb

w/ F.S. of 1.5 & DOL of 1.6= 800 lb

800 lb capacity > 315 lb demand Therefore, OK

No. 10.1.11

Wind Calculations

Per ASCE 7-10 Components and Cladding

Input Variables					
Wind Speed	115 mph				
Exposure Category	С				
Roof Shape	Hip/Gable				
Roof Slope	30 degrees				
Mean Roof Height	20 ft				
Effective Wind Area	21.3 ft				

Design Wind Pressure Calculations					
Wind Pressure P = qh*G*Cn					
qh = 0.00256 * Kz * Kzt * Kd * V^2	(Eq. 30.3-1)				
Kz (Exposure Coefficient) = 0.9	(Table 30.3-1)				
Kzt (topographic factor) = 1	(Fig. 26.8-1)				
Kd (Wind Directionality Factor) = 0.85	(Table 26.6-1)				
V (Design Wind Speed) = 115 mp	oh (Fig. 26.5-1A)				
Risk Category = II	(Table 1.5-1)				
qh = 25.90					
0.6 * qh = 15.54					

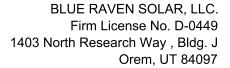
Standoff Uplift Calculations-Portrait					
	Zone 1	Zone 2	Zone 3	Positive	
GCp =	-0.94	-1.15	-1.15	0.86	(
Uplift Pressure =	-14.55 psf	-17.80 psf	-17.80 psf	22.4 psf	
X Standoff Spacing =	4.00	4.00	2.67		
Y Standoff Spacing =	6.08	3.041666667	3.04166667		
Tributary Area =	24.33	12.17	8.11		
Dead Load on Attachment=	73.00	36.50	24.33		
Footing Uplift (0.6D+0.6W)=	-310 lb	-195 lb	-130 lb		

Standoff Uplift Calculations-Landscape					
	Zone 1	Zone 2	Zone 3	Positive	_
GCp =	-0.94	-1.15	-1.15	0.86	(Fig. 30.4-1)
Uplift Pressure =	-14.55 psf	-17.80 psf	-17.80 psf	10.5 psf	
X Standoff Spacing =	5.33	5.33	3.56		
Y Standoff Spacing =	3.50	1.75	1.75		
Tributary Area =	18.67	9.33	6.22		
Dead Load on Attachment=	56.00	28.00	18.67		
Footing Uplift (0.6D+0.6W) =	-238 lb	-149 lb	-100 lb		

Standoff Uplift Check

Maximum Design Uplift = -310 lb Standoff Uplift Capacity = 400 lb 400 lb capacity > 310 lb demand **Therefore**, **OK**

Fastener Capacity Check

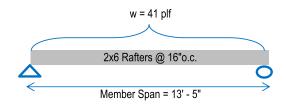

Fastener = 2 - #14 Wood Screws

Number of Fasteners = 2 Embedment Depth = 2.5 Pullout Capacity Per Inch = 150 lb

unout Capacity Fer Inch = 150 k

Fastener Capacity = 750 lb

w/ F.S. of 1.5 & DOL of 1.6= 800 lb 800 lb capacity > 310 lb demand **Therefore**, **OK**



Framing Check

(MP1) PASS

Dead Load 8.0 psf PV Load 3.0 psf Live Load 20.0 psf

Governing Load Combo = DL + LL **Total Load** 31.1 psf

Member Properties					
Member Size	S (in^3)	l (in^4)	Lumber Sp/Gr	Member Spacing	
2x6	7.56	20.80	DF#2	@ 16"o.c.	

Check Bending Stress								
Fb (psi) =	f'b	Х	Cd	Х	Cf	Х	Cr	(NDS Table 4.3.1)
	900	Χ	1.25	Χ	1.3	Χ	1.15	

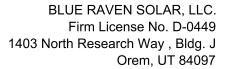
Allowed Bending Stress = 1681.8 psi

Maximum Moment = $(wL^2)/8$

= 931.8537 ft# = 11182.24 in#

Actual Bending Stress = (Maximum Moment) / S

= 1478.7 psi

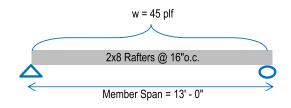

Allowed > Actual -- 88% Stressed -- Therefore, OK

Check Deflection									
Allowed Deflection (Total Load)	=	L/180			(E = 1600000 psi Per NDS)				
	=	= 0.894 in							
Deflection Criteria Based on	=	Continuo	ous S	Span					
Actual Deflection (Total Load)	=	$(w*L^4)$	/ (18	5*E*I)					
	=	= 0.377 in							
	=	= L/428	>	L/180	Therefore OK				
Allowed Deflection (Live Load)	=	L/240							
,		0.67 in							
Actual Deflection (Live Load)	=	(w*L^4)	/ (18	5*E*I)					
		0.243 in							
		L/663	>	L/240	Therefore OK				

Check Shear

Member Area = 8.3 in² Fv (psi) = 180 psi (NDS Table 4A)
Allowed Shear = Fv * A = 1485 lb Max Shear (V) = w * L / 2 = 278 lb

Allowed > Actual -- 18.8% Stressed -- Therefore, OK



Framing Check (MP2) **PASS**

Dead Load 10.4 psf 3.0 psf

PV Load 20.0 psf Live Load

Governing Load Combo = DL + LL **Total Load** 33.4 psf

Member Properties								
Member Size	S (in^3)	I (in^4)	Lumber Sp/Gr	Member Spacing				
2x8	13.14	47.63	DF#2	@ 16"o.c.				

Check Bending Stress								
Fb (psi) =	fb	Х	Cd	Х	Cf	Χ	Cr	(NDS Table 4.3.1)
	900	Х	1.25	Х	1.2	Х	1.15	

Allowed Bending Stress = 1552.5 psi

 $= (wL^2) / 8$ Maximum Moment = 941.0154 ft#

= 11292.18 in#

Actual Bending Stress = (Maximum Moment) / S

= 859.4 psi

Allowed > Actual - 55.4% Stressed -- Therefore, OK

Check Deflection									
Allowed Deflection (Total Load)	=	L/180			(E = 1600000 psi Per NDS)				
	=	0.866 in							
Deflection Criteria Based on =	=	Simple S	pan						
Actual Deflection (Total Load) =	=	(5*w*L^4	.) / (3	384*E*I)					
	=	0.376 in							
	=	L/415	>	L/180	Therefore OK				
Allowed Deflection (Live Load) =	=	L/240							
		0.65 in							
Actual Deflection (Live Load) =	=	(5*w*L^4) / (3	384*E*I)					
		0.226 in							
		L/691	>	L/240	Therefore OK				

Check Shear								
Member Area = 10.9 in^2	Fv (psi) =	180 psi	(NDS Table 4A)					
Allowed Shear = Fv * A = 1958 lb	Ma	x Shear (V) = w	* L / 2 = 290 lb					

Allowed > Actual -- 14.8% Stressed -- Therefore, OK