

5/2/2025

CAROLINA CONNECTIONS 422 HUFFMAN MILL ROAD, SUITE 105 BURLINGTON, NC 27215

Attn.: To Whom It May Concern

re job: STEVEN RICHARDSON

81 KNOLL WAY SANFORD, NC 27332

The following calculations are for the structural engineering design of the photovoltaic panels and are valid only for the structural info referenced in the stamped plan set. The verification of such info is the responsibility of others.

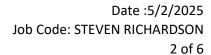
After review, I certify that the roof structure has sufficient structural capacity for the proposed 23 PV modules.

All mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Design Criteria:

Code: 2018 NC Building Code

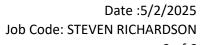
ASCE 7-10


Live Load: 20 psf Ult Wind Speed: 116 mph

Exposure Cat: B

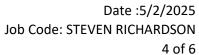
Ground Snow: 10 psf Min Roof Snow: NA

AHZ Consulting Engineers Inc. Professional Engineer projects@ahzengineers.com



Roof Properties:

Roof Type Roof Pitch (deg) 27		Roof 1							
Roof Pitch (deg) = 27 Mean Roof Height (ft) = 23 Attachment Trib Width (ft) = 2.75 Attachment Spacing (ft) = 4 Framing Type = Truss Framing OC Spacing (in.) = 24 Section Thickness, b (in.) = 24 Section Modulus, Sx (in.^3) = 3.1 Moment of Inertia, Ix (in.^4) = 5.4 Framing Span (ft) = 8 Deflection Limit D+L (in.) = 1.6 Deflection Limit S or W (in.) = 1.07 Attachments Pattern = Framing Upgrade = Framing Upgrade = NA Sister Size = NA Wood Species = DF #2 Wood F (psi) = 900 Wood F (psi) = 180 Wood F (psi) = 1600000 C _D (Wind) = 1.6 C _D (Snow) = 1.15 C _M = C _t = C _t = C _t = 1.0 C _F = 1.5 C _M = C _t = C _t = 1.0 1.0 C _F = 1.15 F'b_wind (psi) = 2857 F'v_snow (psi) = 2053 F'v_snow (p	Roof Type =	Shingle							
Attachment Trib Width (ft) = Attachment Spacing (ft) = Framing Type = Framing Size = Framing OC Spacing (in.) = Section Thickness, b (in.) = Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, lx (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fb (psi) = Wood Fv (psi) = Wood E (psi) = CD (Snow) =	Roof Pitch (deg) =	27							
Attachment Spacing (fft) = Framing Type = Framing Size = Framing OC Spacing (in.) = Section Thickness, b (in.) = Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^4) = Section Modulus, Sx (in.^4) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^3) = Section Modulus, Sx (in.^4) = Section Modulus, Modulus, Modulus, Modulus, Modu	Mean Roof Height (ft) =	23							
Framing Type = Framing Size = Framing OC Spacing (in.) = Section Thickness, b (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Fb (psi) = Wood Fv (psi) = Wood Fv (psi) = Wood E (psi) = C _D (Wind) = C _D (Snow) = C _{LS} = C _M = C _t	Attachment Trib Width (ft) =	2.75							
Framing Size = Framing OC Spacing (in.) = Section Thickness, b (in.) = Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Framing Upgrade = Sister Size = Wood Fb (psi) = Wood F (psi) = Wood E (psi) = C _D (Wind) = C _D (Snow) = C _{LS} = C _L =	Attachment Spacing (ft) =	4							
Framing OC Spacing (in.) = Section Thickness, b (in.) = Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Framing Upgrade = Sister Size = Wood Species = Wood Fv (psi) = Wood E (psi) = Wood E (psi) = CDD (Snow) =	Framing Type =	Truss							
Section Thickness, b (in.) = Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fb (psi) = Wood Fv (psi) = Wood F (psi) = Vood E (psi) = C _D (Wind) = C _D (Snow) = C _{LS} = 1.15 C _{LS} = 1.15 C _{LS} = 1.15 C _T = 1.5 C _T = 1.15 C _T = 1.15 C _T = 1.15 C _T = 1.20 C _T = 1.35 C _T = 1.45 C _T = 1.5 C _T	Framing Size =	2x4							
Section Depth, d (in.) = Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Beflection Limit D+L (in.) = 1.6 Deflection Limit S or W (in.) = 1.07 Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fb (psi) = 900 Wood Fv (psi) = 180 Wood E (psi) = 1600000 CDD (Wind) = 1.6 CDD (Snow) = 1.15 CLS = 1.25 CLS = 1.25 CLS = 1.35 CLS = 1.35 CLS = 1.35 CLS = 1.45 CLS = 1.45 CLS = 1.5 CLS =	Framing OC Spacing (in.) =	24							
Section Modulus, Sx (in.^3) = Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fb (psi) = Wood E (psi) = Wood E (psi) = CD (Wind) = CD (Snow) = CLS	Section Thickness, b (in.) =	1.5							
Moment of Inertia, Ix (in.^4) = Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fv (psi) = Wood Fv (psi) = Wood E (psi) = C _D (Wind) = C _{LS} = 1.15 C _M = C _t = C _t = C _{fu} = C _{fu} = C _{fu} = C _{fu} = 1.00 C _r = 1.15 C _{fu} = 1.00 C _r = 1.25 C _{fu} = 1.00 C _r = 1.25 C _{fu} = 1.00 C _r = 1.15 C _{fu} = 1.00 C _r = 1.25 C _{fu} = 1.25 C _{fu} = 1.00 C _r = 1.25 C _{fu} = 1.00 C _r = 1.15 C _{fu} = 1.15 C _{fu} = 1.00 C _r = 1.25 C _{fu} = 1.00 C _r = 1.15 C _{fu} = 1.00 C _r = 1.25 C _{fu} =	Section Depth, d (in.) =	3.5							
Framing Span (ft) = Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fv (psi) = 180	Section Modulus, Sx (in.^3) =	3.1							
Deflection Limit D+L (in.) = Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fb (psi) = Wood F (psi) = Wood E (psi) = 1.6 C _D (Wind) = C _D (Wind) = C _D (Snow) = C _D (Snow) = C _T	Moment of Inertia, lx (in.^4) =	5.4							
Deflection Limit S or W (in.) = Attachments Pattern = Framing Upgrade = Sister Size = Wood Species = Wood Fv (psi) = Wood E (psi) = Wood E (psi) = CDD (Wind) = CDD (Wind) = CDD (Snow) = C	Framing Span (ft) =	8							
Attachments Pattern = Framing Upgrade = Sister Size = NA Wood Species = Wood Fb (psi) = 900 Wood Fv (psi) = 180 Wood E (psi) = 1600000 C_D (Wind) = 1.6 C_D (Snow) = 1.15 $C_{LS} = 1.15$ $C_{LS} = 1.5$ $C_{M} = C_t = C_t = C_i = 1.0$ $C_F = 1.5$ $C_{fu} = 1.00$ $C_F = 1.15$ F'b_wind (psi) = 2857 F'b_snow (psi) = 2053 F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008	Deflection Limit D+L (in.) =	1.6							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Deflection Limit S or W (in.) =								
Sister Size = Wood Species = Wood Fb (psi) = 900 Wood Fv (psi) = 180 Wood E (psi) = 1600000 C _D (Wind) = 1.6 C _D (Snow) = 1.15 C _{LS} = 1.15 C _M = C _t = C _L = C _i = 1.0 C _F = 1.5 C _{fu} = 1.00 C _r = 1.15 F'b_wind (psi) = 2857 F'b_snow (psi) = 2857 F'v_wind (psi) = 2857 F'v_wind (psi) = 2857 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008									
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Framing Upgrade =	· · · · · · · · · · · · · · · · · · ·							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NA							
$Wood Fv (psi) = \\ Wood E (psi) = \\ C_D (Wind) = \\ C_D (Snow) = \\ C_L = \\ C_L$	·								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$C_{D} \text{ (Wind)} = \\ C_{D} \text{ (Snow)} = \\ C_{LS} = \\ 1.15$ $C_{LS} = \\ 1.15$ $C_{M} = C_{t} = C_{t} = C_{i} = \\ C_{F} = \\ 1.5$ $C_{fu} = \\ C_{fu} = \\ 1.00$ $C_{r} = \\ 1.15$ $F'b_wind \text{ (psi)} = \\ 2857$ $F'b_snow \text{ (psi)} = \\ 2053$ $F'v_wind \text{ (psi)} = \\ 288$ $F'v_wind \text{ (psi)} = \\ 288$ $F'v_snow \text{ (psi)} = \\ 207$ $M_allowable_wind \text{ (lb-ft)} = \\ N_allowable_snow \text{ (lb-ft)} = \\ V_allowable_wind \text{ (lbs)} = \\ 1008$	**								
$C_{D} (Snow) = \\ C_{LS} = \\ 1.15$ $C_{M} = C_{t} = C_{L} = C_{i} = \\ C_{F} = \\ 1.5$ $C_{fu} = \\ C_{fu} = \\ 1.00$ $C_{r} = \\ 1.15$ $F'b_wind (psi) = \\ 2857$ $F'b_snow (psi) = \\ 2053$ $F'v_wind (psi) = \\ 288$ $F'v_wind (psi) = \\ 288$ $F'v_snow (psi) = \\ 207$ $M_allowable_wind (lb-ft) = \\ M_allowable_snow (lb-ft) = \\ V_allowable_wind (lbs) = \\ 1008$		1600000							
$C_{LS} = $		1.6							
$C_{M} = C_{t} = C_{L} = C_{i} = 1.0$ $C_{F} = 1.5$ $C_{fu} = 1.00$ $C_{r} = 1.15$ $C_{fu} = 1.15$ $C_{fu} = 1.00$ $C_{r} = 1.15$ $C_{fu} = 1.00$ $C_{r} = 1.15$ $C_{fu} = 1.00$ $C_{r} =$	C_D (Snow) =	1.15							
$C_F = 1.5$ $C_{fu} = 1.00$ $C_r = 1.15$ $F'b_wind (psi) = 2857$ $F'b_snow (psi) = 2053$ $F'v_wind (psi) = 288$ $F'v_snow (psi) = 207$ $M_allowable_wind (lb-ft) = 729$ $M_allowable_snow (lb-ft) = 524$ $V_allowable_wind (lbs) = 1008$	C _{LS} =	1.15							
$C_{fu} = 1.00$ $C_r = 1.15$ $F'b_wind (psi) = 2857$ $F'b_snow (psi) = 2053$ $F'v_wind (psi) = 288$ $F'v_snow (psi) = 207$ $M_allowable_wind (lb-ft) = 729$ $M_allowable_snow (lb-ft) = 524$ $V_allowable_wind (lbs) = 1008$	$C_{M} = C_{t} = C_{L} = C_{i} =$	1.0							
C _r = 1.15 F'b_wind (psi) = 2857 F'b_snow (psi) = 2053 F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008	C _F =	1.5							
F'b_wind (psi) = 2857 F'b_snow (psi) = 2053 F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008	C _{fu} =	1.00							
F'b_wind (psi) = 2857 F'b_snow (psi) = 2053 F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008	$C_r =$	1.15							
F'b_snow (psi) = 2053 F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008	F'b wind (psi) =								
F'v_wind (psi) = 288 F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008									
F'v_snow (psi) = 207 M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008									
M_allowable_wind (lb-ft) = 729 M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008									
M_allowable_snow (lb-ft) = 524 V_allowable_wind (lbs) = 1008									
V_allowable_wind (lbs) = 1008		524							
		1008							
	V_allowable_snow (lbs) =	725							


3 of 6

E' (psi) = 1600000

Load Calculation:

Dead Load Calculations:
Panels Dead Load (psf) = 3.0
Roof 1
Roofing Weight (psf) = 3.0
Decking Weight (psf) = 2.0
Framing Weight (psf) = 0.6
Misc. Additional Weight (psf) = 1.0
Existing Dead Load (psf) = 6.6
Total Dead Load (psf) = 9.6
Snow Load Calculations:
Ground Snow Load, pg (psf) = 10
Min Flat Snow, pf_min (psf) = NA
Min Sloped Snow, ps_min (psf) = NA
Snow Importance Factor, Ic = 1.0
Exposure Factor, Ce = 0.9
Roof 1
Thermal Factor, Ct = 1.2
Flat Roof Snow, pf (psf) = 7.56
Slope Factore, Cs = 1.00
Sloped Roof Snow, ps (psf) = 8
Wind Load Calculations:
, , ,
Directionality Factor, kd = 0.85 Topographic Factor, kzt = 1.0
Topographic Factor, kzt = 1.0 Roof 1
Velocity Press Exp Factor, kz = 0.70
Solar Equalization Factor, γa = 1.00
External Pressure Up, GCp_1 = -0.85
External Pressure Up, GCp_2 = -1.55
External Pressure Up, GCp 3 = -2.45
External Pressure Down, GCp = 0.45
Design Pressure Up, p_1 (psf) = -17.4
Design Pressure Up, p_2 (psf) = -31.8
Design Pressure Up, p_3 (psf) = -50.3
Design Pressure Down, p (psf) = 16.0

Hardware Checks:

Attachment Checks:

	Roof 1
Attachment Type =	QM HUG
Allowable Up Force (lbs) =	1000
	2000
Allowable Side Force (lbs) =	240
Applied Uplift Force (lbs) =	-97
Uplift DCR =	0.10
Applied Down Force (lbs) =	164
Down DCR =	0.08
Applied Lateral Force (lbs) =	53
Lateral DCR =	0.22

Roof Framing Checks:

Force Checks:

	Roof 1
LC1: D+S	
Applied Moment (lb-ft) =	183
Applied Shear (lbs) =	137
Allowable Moment (lb-ft) =	524
Allowable Shear (lbs) =	725
Moment DCR =	0.35
Shear DCR =	0.19
LC2: D+0.6W	
Applied Moment (lb-ft) =	205
Applied Shear (lbs) =	154
Allowable Moment (lb-ft) =	729
Allowable Shear (lbs) =	1008
Moment DCR =	0.28
Shear DCR =	0.15
LC3: D+0.75(S+0.6W)	
Applied Moment (lb-ft) =	240
Applied Shear (lbs) =	180
Allowable Moment (lb-ft) =	729
Allowable Shear (lbs) =	1008
Moment DCR =	0.33
Shear DCR =	0.18
LC4: 0.6D+0.6W	

Applied Moment (lb-ft) = 50
Applied Shear (lbs) = 38
Allowable Moment (lb-ft) = 729
Allowable Shear (lbs) = 1008
Moment DCR = 0.07
Shear DCR = 0.04

Deflection Checks (Service Level):

		Roof 1	
LC1: D+L	-		
	Deflection (in.) =	0.06	
	Deflection Limit (in.) =	1.84	
	Deflection DCR =	0.03	
LC2: S			
	Deflection (in.) =	0.03	
	Deflection Limit (in.) =	1.23	
	Deflection DCR =	0.03	
LC3: W (Down)			
	Deflection (in.) =	0.03	
	Deflection Limit (in.) =	1.23	
	Deflection DCR =	0.02	
LC4: W (Up)			
	Deflection (in.) =	-0.03	
	Deflection Limit (in.) =	1.23	
	Deflection DCR =	0.03	

Seismic Check:

Existing Weight:

Total Existing Weight (lbs) =	50702
Total Roof Weight (lbs) =	9902
Roof Area (ft ²) =	1500
Roof Weight (psf) =	7
Total Wall Weight (lbs) =	40800
Tributary Wall Area (ft ²) =	2400
Wall Weight (psf) =	17

Additional PV Weight:

PV Panel Weight (lbs) =	54
Number of Panels =	23
Total Additional PV Weight (lbs) =	1252

Date :5/2/2025 Job Code: STEVEN RICHARDSON

6 of 6

Weight Increase:

(Existing W + Additional W)/(Existing W) = 1.02

The increase in weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required.

Limits of Scope of Work and Liability:

Existing structure is assumed to have been designed and constructed following appropriate codes at time of erection, and assumed to have appropriate permits. The calculations produced are only for the roof framing supporting the proposed PV installation referenced in the stamped planset and were completed according to generally recognized structural analysis standards and procedures, professional engineering and design experience, opinions and judgements. Existing deficiencies which are unknown or were not observable during time of inspection are not included in this scope of work. All PV modules, racking, and mounting equipment shall be designed and installed per manufacturer's approved installation specifications. The Engineer of Record and the engineering consulting firm assume no responsibility for misuse or improper installation. This analysis is not stamped for water leakage. Framing was determined based on information in provided plans and/or photos, along with engineering judgement. Prior to commencement of work, the contractor shall verify the framing sizes, spacings, and spans noted in the stamped plans, calculations, and cert letter (where applicable) and notify the Engineer of Record of any discrepancies prior to starting construction. Contractor shall also verify that there is no damaged framing that was not addressed in stamped plans, calculations, and cert letter (where applicable) and notify the Engineer of Record of any concerns prior to starting construction.