Paten like Copyright © 2020-2024 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is: RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA*.

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: Ketae Robbins, 105 Hallow Oak St, Spring Lake,, NC 28390

Prepared for:

LuminaSun SmartHome 114 Morlake Drive, Suite 201 - Mooresville,, NC 28117

	Calculation Report Index							
<u>Pages</u>	<u>Description</u>							
1	Cover	2-5	Loading Summary					
Roof	Structural Calculations for PV Solar Installation							
6-9	Location: MP 1							
10-10	Snow Loading Calculations							
11-12	Truss FEA Calculations							

Project No: 66.413379.4, Rev. 0

Report Date: 01/10/2025

Report Prepared by:

Richard Pantel, P.E. NC License No. 43326 Sealed 01/10/2025

V241201 ID.L1PW

Loading Summary

Exposure and Occupancy Categories					
В	Exposure Category (ASCE 7-16 Table 26.7.3, Page 274)				
II	Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 5)				

Wind Loading:								
V	110	mnh	ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(118 mph, 50					
v	110	то пірп	year wind MRI)]					
qz	21.22	psf	Velocity qz, calculated at height z [ASD]					

	Snow Loading						
pg	pg 10.00 psf Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 56-60)						
Total Snow	Total Snow Load						
ps 10.00 psf Effective snow load on roof and modules							

Module Data								
VSUN: VSUN400-108BMH								
Dimensions mm ft in								
Length	1,722	5.65	67.80					
Width	1,134	3.72	44.65					
Area (m^2, ft^2)	2.0	21.02						
Weight	kg	lb	Total Used					
Module	21.40	47.18	19					

Roof Panel (Cladding) Loading Sum	Module Loading Summary				
Support Point Loads		Upward	Upward	Upward	Downward
Roof Zones		1,2e,2r	2n,3r	3e	All
Net load per module	lb	-97	-129	-177	109

Positive values indicate net downward force

Primary Stanchion: IronRidge HALO ULTRAGRIP - (QM-HUG-01-B1)

Stanchion Fastener Pull-ou	it and Spac	ing Calcul	ations		
Framing spacing	ft	2.00			_
Rails / Module	ea	2]		
Max proposed stanchion span	ft	4.00]		
# fasteners per stanchion		2	1		
Bolt thread embedment depth	in	2.50]		
Safety Factor		1.10]		
Pull-out for #14 threaded fasteners	lb/in	134	/in		
Factored max fastener uplift capacity	lb	607]		
Fastener detailsMaterialStainless	Size	#14	Predrill hol	e 0.12" dia	or use self tapping
Max stanchion uplift capacity	lb	1100]		
Max support point uplift capacity	lb	607]		
			_		
Roof Zones		1,2e,2r	2n,3r	3e	
Net lift per module	lb	97	129	177	
Min tot bolt thread embedment depth rq'd	in	0.40	0.53	0.73	Ī
Net uplift pressure 7. 0.60D - 0.6W	psf	-6.54	-8.67	-11.88]
Allowable lift area / support point	sf	92.86	70.00	51.08]
Max rail span per support spacing	ft	4.00	4.00	4.00]
Landscape Modules					_
Length along rafter	ft	3.72			_
Lift calc'ed max stanchion EW spacing	ft	> 6	> 6	> 6	
Max stanchion EW spacing	ft	4.00	4.00	4.00	
Maximum module area / support point	sf	7.44	7.44	7.44	
Factored lift per support point	lb	-49	-65	-88	
Portrait Modules			_		
Length along rafter	ft	5.65			-
Lift calc'ed max stanchion EW spacing	ft	> 6	> 6	> 6	
Max stanchion EW spacing	ft	4.00	4.00	4.00	
Maximum module area / support point	sf	11.30	11.30	11.30	ļ
Factored lift per support point	lb	-74	-98	-134	

Stanchion support threaded fastener sizes are indicated in the Module Loading Summary table above. Lift forces were determined from GCp and other coefficients contained in the ASCE nomographs

Conclusions

We were asked to review the roof of Ketae Robbins, located at 105 Hallow Oak St, Spring Lake,, NC, by LuminaSun SmartHome, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure was field measured by LuminaSun SmartHome. The attached framing analyses reflect the results of those field measurements combined with the PV solar module locations shown on the PV solar roof layout design prepared by LuminaSun SmartHome. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

The IronRidge XR10 Rail racking and IronRidge HALO ULTRAGRIP - (QM-HUG-01-B1) stanchions were selected for this project by LuminaSun SmartHome. The racking and support stanchions shall be placed as shown on their plans, dated 01/10/2025, and shall be fastened to the roof framing using fastener sizes indicated in this report. Rack support spacing shall be no more than that shown above. Note that support points for alternating rows shall share the same truss. Intermediate rows shall move the support points laterally to the next truss.

Framing Summary

MP 1: Truss @ 24" OC

* Wood species used in these calculations assumes spruce, pine or fir, #2 grade.

Ex. Framing Total Ex DL 0.79 psf 5.94 psf

Based upon the attached calculations, the existing roof's framing system is capable of supporting the additional loading for the proposed PV solar system along with the existing building and environmental loads. No supplemental roof framing structural supports are required. No further structural alterations or modifications are needed to support the system. Minimum required anchorage fastening is described above.

Wood fastener notes: 1) Fastener threads must be embedded in the side grain of a roof support structural member or other structural member integrated into the building's structure. 2) Fastener must be located in the middle third of the structural member. 3) Install fasteners with head and where required, washer, flush to material surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) 2018 IBC
- 3) 2018 NC Building Code
- 4) American Wood Council, NDS 2018, Table 12.2A, 12.3.3A.
- 5) American Wood Council, Wood Structural Design, 1992, Figure 6.

Roof Structural Calculations for PV Solar Installation Location: MP 1 Member: Truss - Total Length 24 ft, Unsupported 24 ft

				Geom	etric Data		
	θ		deg.	30.00	Angle of ro	of plane fror	m horizontal, in degrees
	ω		deg.	0.00	Angle the s	solar panel n	nakes with the roof surface
	L		ft.	40.75	Length of r	oof plane, in	feet (meters)
	W		ft.	21.66	Plan view v	width of roof	plane, in feet (meters)
	h		ft.	25.49	Average he	eight of roof	above grade, in feet (meters)
	Root	f Wind Zone	Width		1		
		use, a =	3.00	ft	J		
Wind Veloc	ity Pressur	e, q _z evalua	ated at the he	eight z			
$q_z =$	21.22	psf	Vasd q _z =	12.89	psf	Basic wind	d pressure
V=	118				r	mph	
					-		
		Framing Da	ata				
Wood type			US S	pruce	1		
Wood source	ce, moistur	e content	White	0.12%	1	2	# Rafters / Rack Support Width
# Framing N	/lembers /	Support		1	1	4.00	Rack Support Spacing (ft)
Rafter / Trus	ss OC		in	24.00	1	48.00	Max. Rack Support Spacing (in)
Member Total Length			ft	24.00		5	Max # of mod's / Truss top chord
					1		
Member Pr	operties			Member	* Mem prop	perties base	d upon field measurements
Name	<u> </u>			(1) 2x4	4	Truss to	op chord
Repetitive N	/lember Fa	ctor (Cr)		1.15	J		
		M	de Dete			-	
	\ \ / a ¦ b 4	Modu		IL.	nofler	4	
	vveight	Madula	к <u>д</u>		psr load	4	
	4	Module	21.40	47.18	2.24	-	
	4.	SIGNCHIONS	0.91	2.0	0.10		
Existing De	ad I oade		1 Inits	Value	<u> </u>	Πρεσ	ription
Roof Deck S	& Surface M	Material*	nef	5 15	Truss men	nhers' self w	eight added to FFA analysis
NUOL DECK & SUITACE MALENAL			μ31	0.10	* Roof surf	ace: Shinale	es. Asphalt. Architectural (Typical)
R	ack Suppo	ort Spacing	and Loadir	ng]	acor crimigio	
Across rafte	ers		ft	4.0	1		
Along rafter	slope		ft	3.7	1		
Area / supp	ort point		sf	7.4	1		
Uphill gap b	etween mo	odules	in	1.0	0.08	ft	1
				-	-	•	-
Member To	tal Length		ft	24.00			1

π	24.00	
ft	24.00	Truss top chord span
	ft	ft 24.00

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

 γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

yE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes. TRUE

 $\Theta >= 7 \deg$

Min.d1: Exposed FALSE Max.d1: Exposed TRUE 1.5(Lp) =8.47 1.5 γE = 0.67 γa =

Use EXPOSED for uplift calculations

 $p = qh(GCp) (\gamma_E) (\gamma_a) (lb / ft2)$ (29.4-7)

Zones	1,2e,2r	2n,3r	3e
GCp	-1.48	-1.75	-2.16
p, Windload (psf)	-19.17	-22.73	-28.08

Downward, Zones All Zones GCp 0.77

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)								
Zones	1,2e,2r	2n,3r	3e	All Zones				
2.2 SYMBOLS AND NOTATION		Module	Module	Downword				
		Upward	Upward	Downwaru				
D = dead load of PV Module + Stanchion	2.34	2.34	2.34	2.34				
S = snow load	10.00	10.00	10.00	10.00				
W = wind load = (Vu Windload) = (Vasd Windload / 0.6)	-19.17	-22.73	-28.08	9.94				

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward
Use this loading combination for DOWNWARD f	or Propose	ed PV Dead	Load	
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	12.34	12.34	12.34	16.81
Module Support point load (lb)	92	92	92	125
Cr Factored Module Support point load (lb)	80	80	80	109

Use this loading combination for UPWARD for Proposed PV Dead Load											
7. 0.60D - 0.6W	-6.54	-8.67	-11.88	8.28							
Module Support point load (lb)	-49	-65	-88	62							

DOWNWARD

Presume loading directly over member.

Combined Dead and Wind Pressure Downward Loading									
	Trus	s top chord	span						
PV Module Row	Point load loc's from Left support	Point Load #'s	Module Support Point Load	Comment	Module Orientation				
	ft from left		lb						
1	0.92		109		Landscape				
1	4.64			Support placed on adjoining truss	Landscape				
2	4.72			Support placed on adjoining truss	Landscape				
2	8.44		109		Landscape				
3	8.53		109		Landscape				
3	12.25			Support placed on adjoining truss	Landscape				
4	12.33			Support placed on adjoining truss	Landscape				
4	16.05		109		Landscape				
5	16.14		109		Landscape				
5	19.86			Support placed on adjoining truss	Landscape				

Snow Loading Analysis

where:

			Fully Exp	bosed Exposure category
	Ce	=	0.9	Exposure Factor, Ce (ASCE 7-16 Table 7.3-1, Page 61)
	Ct	=	1.0	Thermal Factor, Ct (ASCE 7-16 Table 7.3-2, Page 61)
	ls	=	1.0	Snow Importance Factor, Is (ASCE 7-16 Table 1.5-2, Page 5)
	\mathbf{p}_{g}	=	10.00	Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 56-60)
	\mathbf{p}_{f}	=	0.7CeCt	IsPg Flat Roof Snow Load, pf (ASCE 7-16 Table 7.3-1, Page 61)
	\mathbf{p}_{f}	=	6.30	psf
				but where Pf is not less than the following:
				Minimum Snow Load pm (ASCE 7-16 Table 7.3.4, Page 62)
	p _m	=	10.00	When $Pg \leq 20 psf$, then use $Pf = Pg x Is$
	D,	=	10.00	psf. Resultant Snow pressure to be used with Roof slope factor below
	n.	=	C.p.	Sloped Roof Snow Load ps (ASCE 7-16 Table 7.4 Page 61)
	P5		- 51-1	Roof Type Warm Roofs
Roof	slop	e fa	ctor Cs fc	r Warm Roofs. where $Ct = 1.0$
	1-			Roof surface condition = Slippery Roof
	Cs	=	1.00	Roof Slope Factor, Cs (ASCE 7-16 Table 7.4-1a, Page 62)

Total Snow Load

p_s = **10.00 psf** Roof snow load

	Equilibriur	n check	FX	FY	0.00055					Shear	Ax				
	Total ap	plied forces	0.00	2064				I	Max (psi)	5	259				
	Total outpu	ut reactions	0.00	-2064				Allowa	able (psi)	115	5,610		Maximum Deflections		
	C	Dutput error	-2.28E-13	3 -1.36E-12				#	of segme	ents/beam	1		-2.38E-03	-6.25E-03	
-					-			* ve	rtical def	flections d	o not take	into acco	unt any suppo	orting intermed	diate walls
	Node R	esults		Bean	n End Res	ults		Beam	Х	Shear	Mom	Axial	DX	DY	RZ
Direction	Deflection	Reaction	Beam	Shear	Axial	BM		1	0.00	-91	0	902	0.00E+00	0.00E+00	0.00E+00
DX1	0.00E+00	0	1-1	-91	902	0		1	12.01	85	592	800	-2.38E-03	-6.23E-03	7.64E-04
DY1	0.00E+00	-791	1-2	184	743	0		2	0.00	-310	0	985	-2.35E-03	-6.25E-03	0.00E+00
RZ1	0.00E+00	0	2-1	-310	985	0	1	2	12.01	224	6181	677	1.13E-03	-1.51E-03	-2.04E-04
DX2	-2.35E-03	0	2-2	646	433	0		3	0.00	-262	0	-736	0.00E+00	0.00E+00	0.00E+00
DY2	6.25E-03	0	3-1	-262	-736	0	1	3	10.80	-74	612	-736	-8.46E-04	-5.98E-03	4.48E-04
RZ2	0.00E+00	0	3-2	27	-736	0		4	0.00	-195	0	0	-8.46E-04	-5.98E-03	0.00E+00
DX3	1.46E-03	0	4-1	-195	0	0		4	10.00	-86	0	0	-8.46E-04	8.67E-19	-5.43E-04
DY3	1.70E-03	0	4-2	-86	0	0		5	0.00	0	0	573	-8.46E-04	-5.98E-03	0.00E+00
RZ3	0.00E+00	0	5-1	0	573	0		5	6.01	-1	0	555	-2.35E-03	-6.25E-03	2.47E-04
DX4	-8.46E-04	0	5-2	-1	549	0		6	0.00	0	0	1359	-8.46E-04	0.00E+00	0.00E+00
DY4	5.98E-03	0	6-1	0	1359	0		6	12.00	0	0	1287	1.46E-03	-1.70E-03	-1.92E-04
RZ4	0.00E+00	0	6-2	0	1275	0		7	0.00	-27	0	-1057	-8.46E-04	-5.98E-03	0.00E+00
DX5	-8.46E-04	0	7-1	-27	-1057	0		7	15.62	51	5	-1152	1.46E-03	-1.70E-03	-3.74E-04
DY5	0.00E+00	-1273	7-2	61	-1163	0									
RZ5	0.00E+00	0													
Rel1-3	5.52E-04	0													
Rel1-6	1.10E-03	0													

FEA Calculation Results for Roof Plane MP 1 for LuminaSun SmartHome Client KETAE ROBBINS IDSPL - 2D Frame Analysis of a 2D frame subject to distributed loads, point loads and moments

Scaled 2X Deflected Truss Plot Roof Plane MP 1 for LuminaSun SmartHome Client KETAE ROBBINS