

December 19, 2024

BYLD Better 1213 W Moorehead Street Suite 500 Charlotte, NC 28208

> Re: Engineering Services Morales Residence 144 Smoketree Drive, Fuquay-Varina, NC 8.000 kW System

To Whom It May Concern:

We have received information regarding solar panel installation on the roof of the above referenced structure. Our evaluation of the structure is to verify the existing capacity of the roof system and its ability to support the additional loads imposed by the proposed solar system.

#### A. Site Assessment Information

- 1. Site visit documentation identifying attic information including size and spacing of framing for the existing roof structure.
- 2. Design drawings of the proposed system including a site plan, roof plan and connection details for the solar panels. This information will be utilized for approval and construction of the proposed system.

#### B. Description of Structure:

**Roof Framing:** Assumed prefabricated wood trusses at 24" on center. All truss members are constructed of 2x4 dimensional lumber.

Roof Framing: Assumed 2x6 dimensional lumber at 24" on center with knee wall supports.
Roof Material: Composite Asphalt Shingles
Roof Slope: 17 and 20 degrees
Attic Access: Inaccessible
Foundation: Permanent

#### C. Loading Criteria Used

- Dead Load
  - Existing Roofing and framing = 7 psf
  - New Solar Panels and Racking = 3 psf
  - TOTAL = 10 PSF
- Live Load = 20 psf (reducible) 0 psf at locations of solar panels
- Ground Snow Load = 15 psf
- Wind Load based on ASCE 7-10
  - Ultimate Wind Speed = 115 mph (based on Risk Category II)
  - Exposure Category C

Analysis performed of the existing roof structure utilizing the above loading criteria is in accordance with the 2018 North Carolina Residential Code, including provisions allowing existing structures to not require strengthening if the new loads do not exceed existing design loads by 105% for gravity elements and 110% for seismic elements. This analysis indicates that the existing framing will support the additional panel loading without damage, if installed correctly.

## D. Solar Panel Anchorage

- 1. The solar panels shall be mounted in accordance with the most recent Pegasus installation manual. If during solar panel installation, the roof framing members appear unstable or deflect nonuniformly, our office should be notified before proceeding with the installation.
- 2. The system utilizes the Pegasus SkipRail racking system. Please reference the stamped plan set for rail and mounting locations.
- 3. The maximum allowable withdrawal force for a 5/16" lag screw is 229 lbs per inch of penetration as identified in the National Design Standards (NDS) of timber construction specifications. Based on a minimum penetration depth of 2½", the allowable capacity per connection is greater than the design withdrawal force (demand). Considering the variable factors for the existing roof framing and installation tolerances, the connection using one 5/16" diameter lag screws with a minimum of 2½" embedment will be adequate and will include a sufficient factor of safety.
- 4. Considering the wind speed, roof slopes, size and spacing of framing members, and condition of the roof, the panel supports shall be placed no greater than 48" on center.

Based on the above evaluation, this office certifies that with the racking and mounting specified, the existing roof system will adequately support the additional loading imposed by the solar system. This evaluation is in conformance with the 2018 North Carolina Residential Code, current industry standards, and is based on information supplied to us at the time of this report.

Should you have any questions regarding the above or if you require further information do not hesitate to contact me.

truly yours

Scott E. Wyssling, PE North Carolina Licente For. 46546 North Carolina COA P-2308

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES




76 N Meadowbrook Drive Alpine UT 84004 North Carolina COA # P-2308 Signed 12/19/2024



# **NEW PV SYSTEM DESIGN**

20 MODULES - 8.000 kW DC, 5.900 kW AC SYSTEM SIZE MORALES RESIDENCE - 144 SMOKETREE DRIVE, FUQUAY-VARINA,



## **GOVERNING CODES**

2020 NATIONAL ELECTRIC CODE 2018 NORTH CAROLINA BUILDING CODE 2018 NORTH CAROLINA RESIDENTIAL CODE 2018 NORTH CAROLINA FIRE PREVENTION CODE 2018 NORTH CAROLINA FUEL GAS CODE 2018 NORTH CAROLINA EXISTING BUILDING CODE 2018 NORTH CAROLINA ENERGY CONSERVATION CODE 2018 NORTH CAROLINA MECHANICAL CODE 2018 NORTH CAROLINA PLUMBING CODE

AS ADOPTED BY FUQUAY VARINA INCLUDING ANY AMENDMENTS OR ADDITIONAL LISTED REQUIREMENTS. DESIGNED IN ACCORDANCE WITH THE REQUIREMENTS OF DUKE ENERGY UTILITY.

EQUIPMENT IS COMPATIBLE WITH UL2703, UL1741, AND UL1703 AS APPLICABLE

## **DESIGN CRITERIA**

WIND SPEED: 115 MPH GROUND SNOW LOAD: 15 PSF ASCE: 7-10 EXPOSURE CATEGORY: C **BUILDING OCCUPANCY: R-3** CONSTRUCTION TYPE: TYPE V-B SPRINKLERS: NO

## **SHEET INDEX**

| PV-1 | COVER PAGE           |
|------|----------------------|
| PV-2 | SITE PLAN            |
| PV-3 | PROPERTY PLAN        |
| PV-4 | ATTACHMENT PLAN      |
| PV-5 | MOUNTING DETAILS     |
| EE-1 | STRING PLAN          |
| EE-2 | THREE LINE DIAGRAM   |
| EE-3 | ELECTRICAL NOTES     |
| EE-4 | LABELS               |
| EE-5 | PLACARD              |
| PV-6 | DESIGN NOTES         |
| PV-7 | SITE PHOTOS          |
| SPEC | SPECIFICATION SHEETS |
|      |                      |

## **SCOPE OF WORK**

SYSTEM SIZE: 8.000kW DC / 5.900kW AC SYSTEM S PV MODULE: (20) LONGI LR5-54HABB-400M (BLAC INVERTER: (10) NEP BDM-600X [240V] COMBINER: (1) MINIMUM 125A LOAD CENTER MONITORING: (1) BDG-356 NEP MONITORING AC DISCONNECT: (1) 60A NON-FUSED AC DISCON

**ROOF STORIES: 1** ROOF TYPE(S): COMP SHINGLE MOUNTING(S) & RACKING(S): PEGASUS INSTAFLA RAIL FLASHING: PEGASUS INSTAFLASH FLASHING ROOF BEING REPLACED: NO ROOF CONDITION: GOOD ROOF HEIGHT: 15 FEET ROOF CONSTRUCTION: GABLE

INTERCONNECTION: LOAD BREAKER MAIN SERVICE PANEL RATING: (E) 200A MAIN BREAKER RATING: (E) 200A OCPD: 40A PV BREAKER

| ARRAY | TILT | AZIMUTH |
|-------|------|---------|
| 1     | 20°  | 245°    |
| 2     | 17°  | 245°    |

|                            |                                                                                                                       | DESIGN ENGINEER                                                                                                                                 |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                       | CORPORATE EXPERIENCE WITH SMALL BUSINESS VALUE                                                                                                  |
| NC 275                     | 26                                                                                                                    | <b>76 N. MEADOWBROOK DRIVE</b><br><b>ALPINE UT 84004</b><br>swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308                |
|                            |                                                                                                                       | SOLAR COMPANY/CLIENT                                                                                                                            |
|                            |                                                                                                                       | BYLD BETTER                                                                                                                                     |
|                            |                                                                                                                       | <b>BYLD BETTER</b><br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC                                                                        |
| SIZE<br>CK ON BLACK)       |                                                                                                                       | MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846                                    |
| NNECT                      |                                                                                                                       | inoemorales1977@gmail.com<br>9192980858                                                                                                         |
|                            |                                                                                                                       |                                                                                                                                                 |
| THIS PLAN F<br>SEALED BY S | AIL WITH PEGASUS<br>HAS BEEN ELECTRONICALLY SIGNED AND<br>SCOTT WYSSLING, PE USING A DIGITAL                          | SEAL<br>044546 *                                                                                                                                |
| DOCUMENT<br>SEALED AND     | AND DATE. PRINTED COPIES OF THIS<br>ARE NOT CONSIDERED SIGNED AND<br>THE SIGNATURE MUST BE VERIFIED<br>CTRONIC COPIES | Wyssling Consulting, PLLC<br>76 N Meadowbrook Drive Alpine UT 84004<br>North Carolina COA # P-2308<br>Signed 12/19/2024<br>SCOTT E WYSSLING, PE |
|                            |                                                                                                                       | NC LICENSE NO 46546<br>DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW                                                                       |
| DATE                       | REVISION                                                                                                              | PV-1                                                                                                                                            |
|                            |                                                                                                                       | AHJ: FUQUAY VARINA                                                                                                                              |
|                            |                                                                                                                       | UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                  |
|                            |                                                                                                                       | INITIAL DESIGN DATE: 12/18/2024                                                                                                                 |

| SY     | STEM IN |
|--------|---------|
| MODULE | (20) LO |

|                                                  | TOTAL ROOF AREA SQ. FT.                                                                                   | 1950 | TOTAL          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|----------------|
|                                                  | TOTAL ROOF AREA SQ. FT.<br>NERGY METER<br>N SERVICE PANEL<br>BLE LOCKABLE LABELED UTILITY /<br>C COMBINER |      | TOTAL          |
| 36" FIRE OFFSET                                  |                                                                                                           |      |                |
| (N) PV MODULE EQUIPF<br>MICRO INVERTER PER (2) I | PED W/ (1)<br>MODULES                                                                                     |      | 8" FIRE OFFSET |

FIRE DEPARTMENT ACCESS POINT-

. 44 SMOKETRE Π DRIVE

| SYSTEM INFORMATION      |                                                |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| MODULE<br>COUNT/TYPE    | (20) LONGI LR5-54HABB-400M<br>(BLACK ON BLACK) |  |  |  |  |  |  |  |
| INVERTER<br>COUNT/TYPE  | (10) NEP BDM-600X [240V]                       |  |  |  |  |  |  |  |
| MODULE<br>WEIGHT        | 49.6 LBS                                       |  |  |  |  |  |  |  |
| MODULE<br>DIMENSIONS    | 67.8" x 44.65"                                 |  |  |  |  |  |  |  |
| UNIT WEIGHT<br>OF ARRAY | 2.36 PSF                                       |  |  |  |  |  |  |  |
|                         |                                                |  |  |  |  |  |  |  |

LEGEND

 $\square$ 

Ο

A/C

Y

Т •

ROOF VENT (TYP.)

PLUMBING VENT (TYP.)

A/C UNIT

SATELLITE DISH

ELECTRICAL MAST

CHIMNEY

FIRECODE PATHWAY

| ROOF DESCRIPTION                                           |              |                 |               |                                      |                  |     |                           |       |  |  |
|------------------------------------------------------------|--------------|-----------------|---------------|--------------------------------------|------------------|-----|---------------------------|-------|--|--|
| ROOF # ROOF TYPE TILT AZIMUTH ROOF FRAMING MODULE<br>COUNT |              | MODULE<br>COUNT | ARRAY SQ. FT. | ATTACHMENT                           | MIN<br>EMBEDMENT |     |                           |       |  |  |
| 1                                                          | COMP SHINGLE | 20°             | 245°          | 2X4@24"O.C.<br>PREFABRICATED TRUSSES | 18               | 378 | (1) 5/16"X 4"LAG<br>SCREW | 2.5"  |  |  |
| 2                                                          | COMP SHINGLE | 17°             | 245°          | 2X6@24"O.C. RAFTERS                  | 2                | 42  | (1) 5/16"X 4"LAG<br>SCREW | 2.5"  |  |  |
|                                                            |              |                 |               |                                      |                  |     |                           |       |  |  |
| TOTAL ROOF AREA SQ. FT.                                    |              |                 | 1950          | TOTAL ARRAY SQ. F                    | T.               | 420 | ROOF COVER %              | 21.56 |  |  |

## **SITE PLAN NOTES**

- ALL OBSTRUCTIONS MUST BE VERIFIED BEFORE WORK COMMENCES 1.
- 2. CONDUIT TO BE RUN IN ATTIC IF POSSIBLE
- VISIBLE LOCKABLE LABELED UTILITY AC DISCONNECT WILL BE INSTALLED WITHIN 5' OF DUKE ENERGY METER. 3.
- AC DISCONNECT SHALL BE READILY ACCESSIBLE 24/7 4.
- 5. REQUIRED ELECTRICAL CLEARANCE TO BE MAINTAINED

#### DESIGN ENGINEER



#### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483 COA NO. P-2308

SOLAR COMPANY/CLIENT






BYLD BETTER 1213 W MOOREHEAD STREET SUITE 500 CHARLOTTE, NC

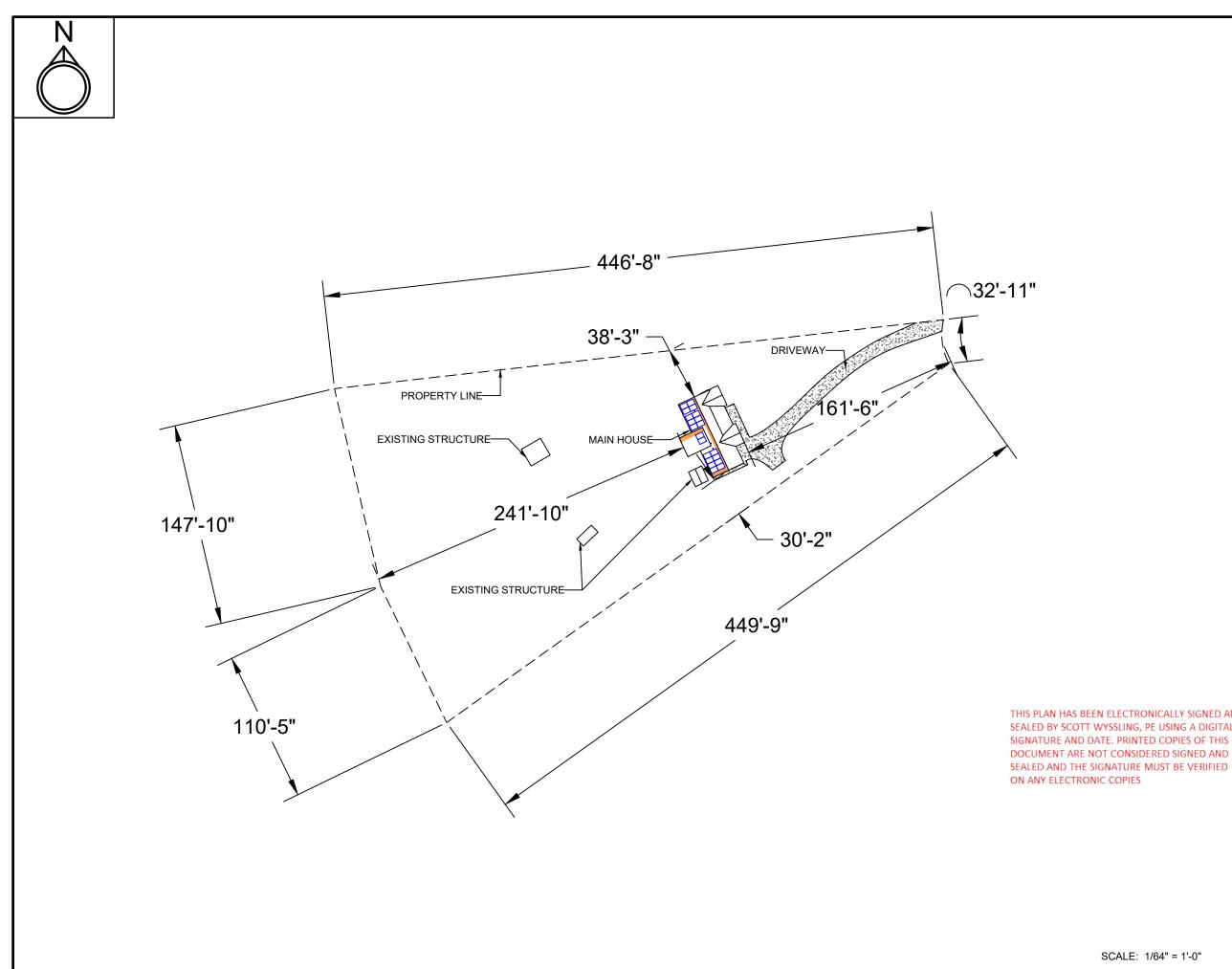
#### MORALES RESIDENCE

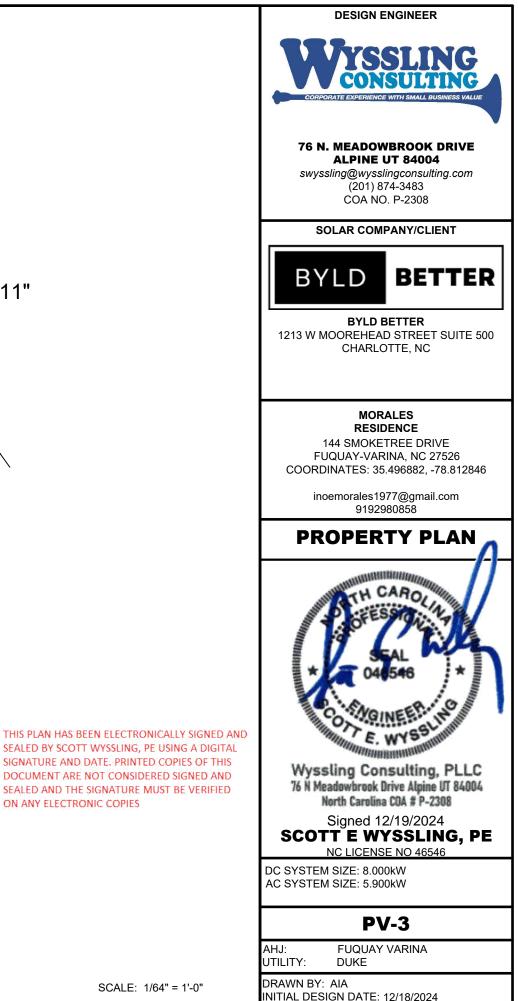
144 SMOKETREE DRIVE FUQUAY-VARINA, NC 27526 COORDINATES: 35.496882, -78.812846

> inoemorales1977@gmail.com 9192980858



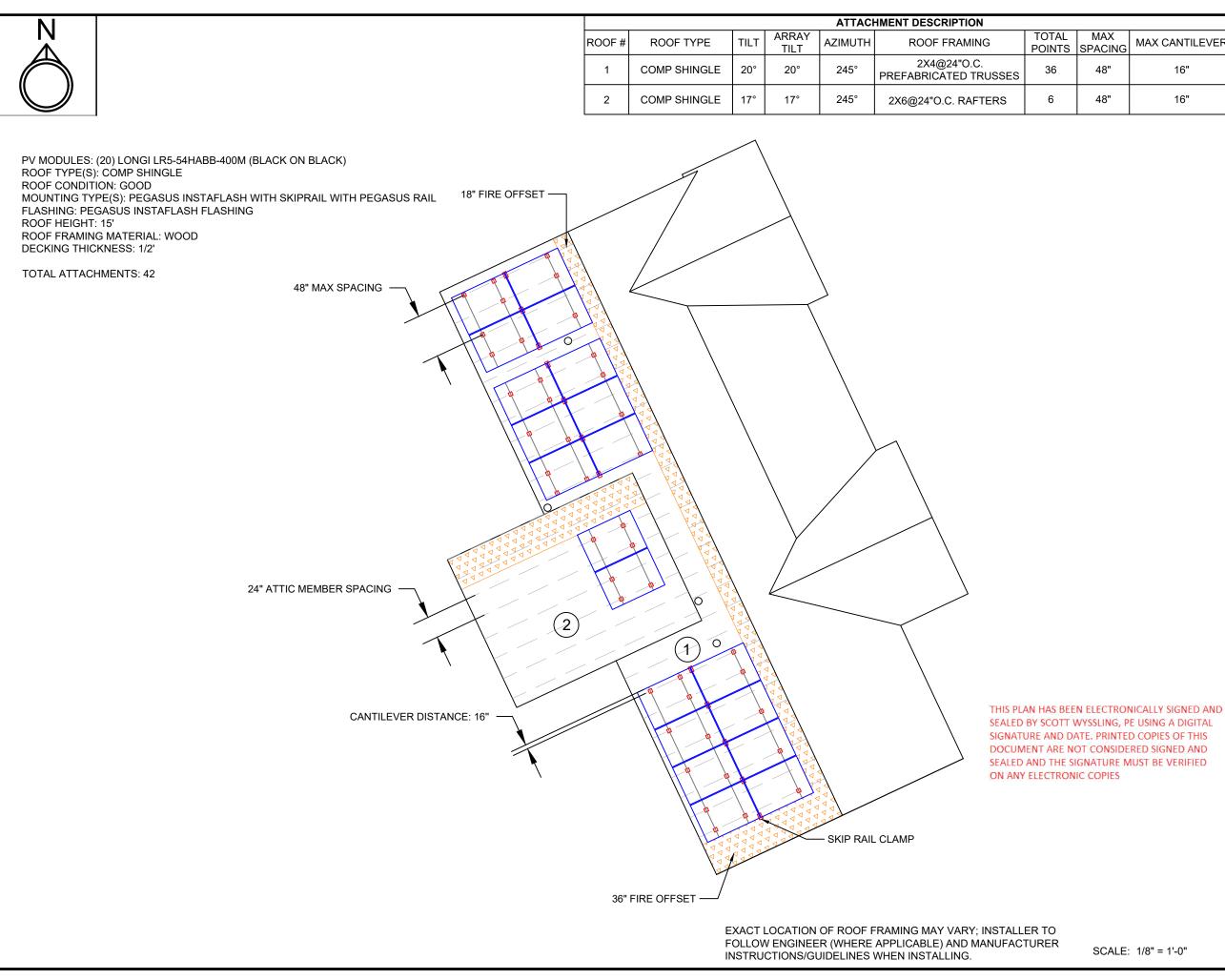



## **PV-2**


AHJ: UTILITY:

FUQUAY VARINA DUKE

DRAWN BY: AIA INITIAL DESIGN DATE: 12/18/2024


THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES





SCALE: 1/64" = 1'-0"

INITIAL DESIGN DATE: 12/18/2024



| //AX<br>ACING | MAX CANTILEVER |
|---------------|----------------|
| 48"           | 16"            |
| 48"           | 16"            |

#### DESIGN ENGINEER

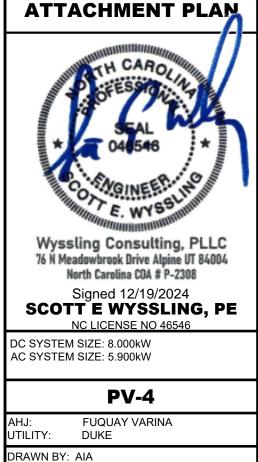


#### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483 COA NO. P-2308

SOLAR COMPANY/CLIENT

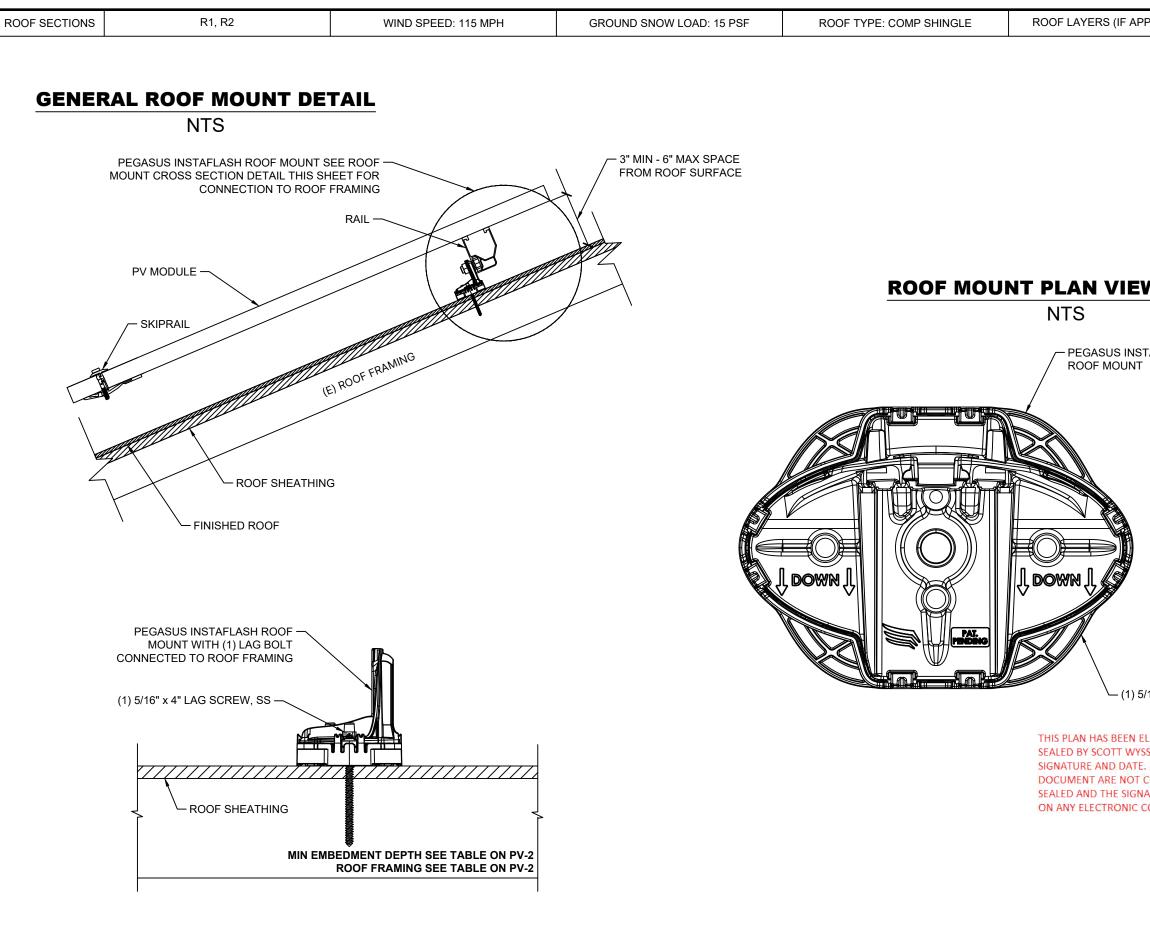





BYLD BETTER 1213 W MOOREHEAD STREET SUITE 500 CHARLOTTE, NC

#### MORALES RESIDENCE

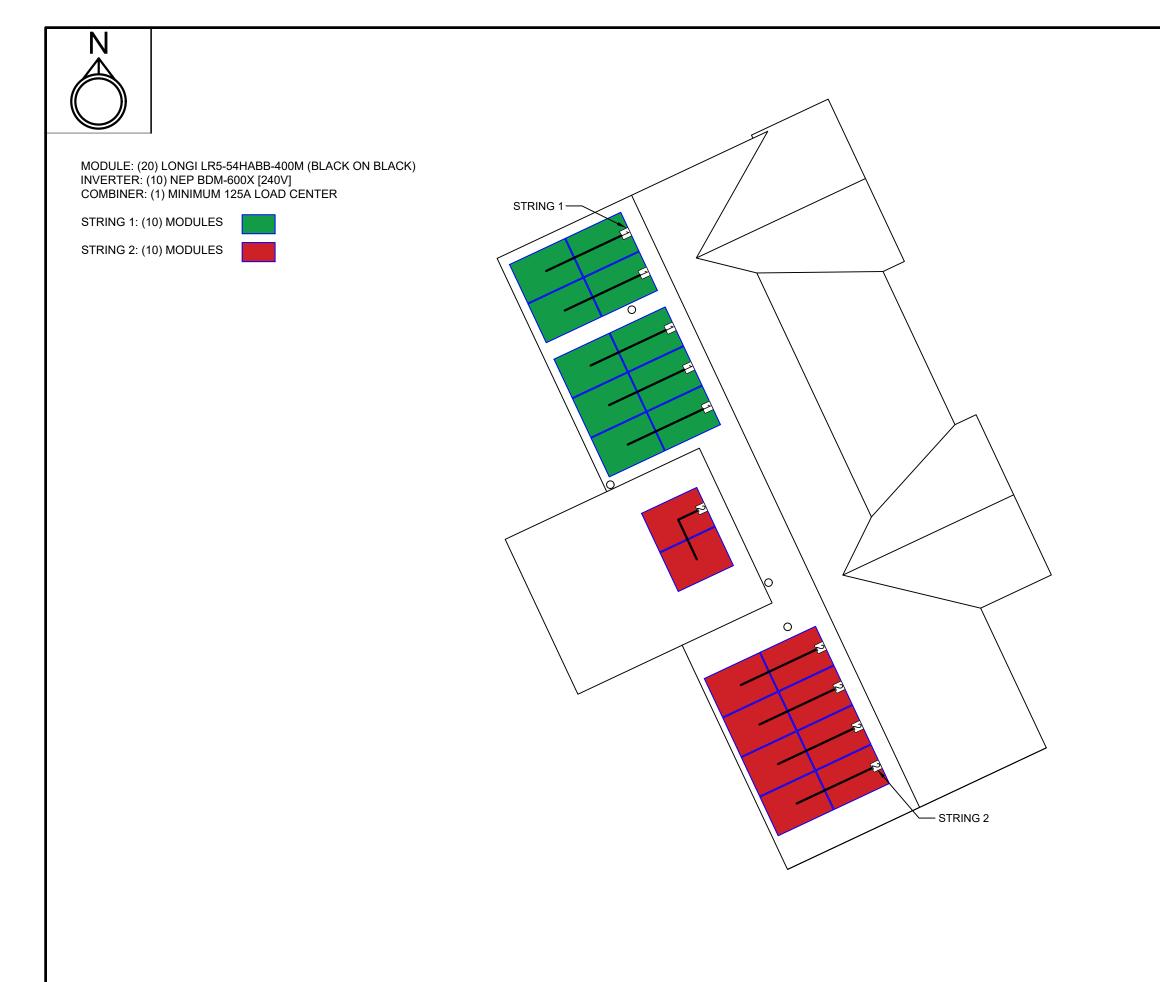
144 SMOKETREE DRIVE FUQUAY-VARINA, NC 27526 COORDINATES: 35.496882, -78.812846


> inoemorales1977@gmail.com 9192980858



SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED

SCALE: 1/8" = 1'-0"

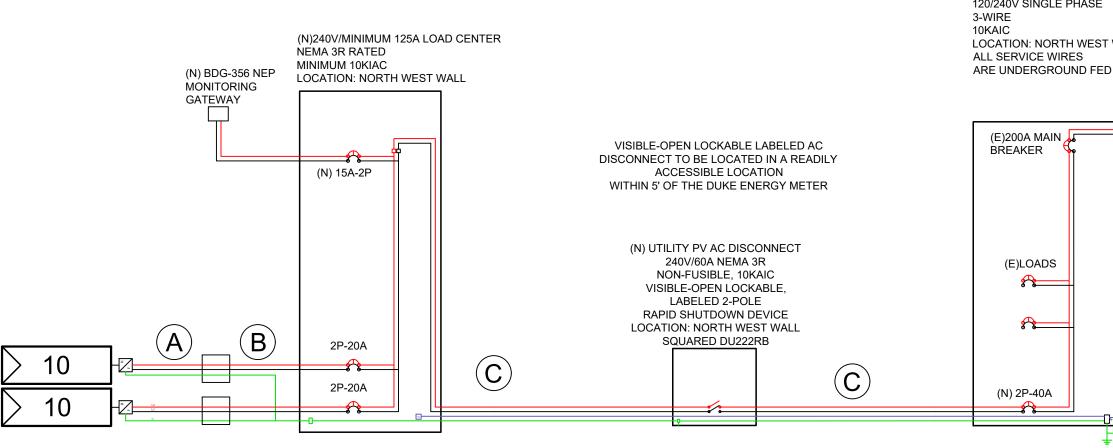

INITIAL DESIGN DATE: 12/18/2024



## **ROOF MOUNT CROSS SECTION DETAIL**

NTS

| PLICABLE): 1                                                                                                                                             | DESIGN ENGINEER                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          | CORPORATE EXPERIENCE WITH SMALL BUSINESS VALUE                                                                                            |
|                                                                                                                                                          | 76 N. MEADOWBROOK DRIVE<br>ALPINE UT 84004<br>swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308                        |
|                                                                                                                                                          | SOLAR COMPANY/CLIENT                                                                                                                      |
| V DETAIL                                                                                                                                                 | BYLD BETTER                                                                                                                               |
| -AFLASH                                                                                                                                                  | 1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC                                                                                        |
|                                                                                                                                                          | MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com |
|                                                                                                                                                          | 9192980858                                                                                                                                |
|                                                                                                                                                          | MOUNTING DETAILS                                                                                                                          |
| 16" x 4" LAG SCREW<br>LECTRONICALLY SIGNED AND<br>SLING, PE USING A DIGITAL<br>PRINTED COPIES OF THIS<br>CONSIDERED SIGNED AND<br>ATURE MUST BE VERIFIED | SEAL<br>044546<br>Wyssling Consulting, PLLC<br>76 N Meadowbrook Drive Alpine UT 84004                                                     |
| OPIES                                                                                                                                                    | North Carolina COA # P-2308<br>Signed 12/19/2024<br>SCOTT E WYSSLING, PE<br>NC LICENSE NO 46546<br>DC SYSTEM SIZE: 8.000kW                |
|                                                                                                                                                          | AC SYSTEM SIZE: 5.900kW                                                                                                                   |
|                                                                                                                                                          | PV-5                                                                                                                                      |
|                                                                                                                                                          | AHJ: FUQUAY VARINA<br>UTILITY: DUKE                                                                                                       |
|                                                                                                                                                          | DRAWN BY: AIA<br>INITIAL DESIGN DATE: 12/18/2024                                                                                          |
|                                                                                                                                                          |                                                                                                                                           |




| <image/> <section-header><section-header><section-header><section-header><section-header><text><text><text><section-header><section-header><text></text></section-header></section-header></text></text></text></section-header></section-header></section-header></section-header></section-header>                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALPINE UT 84004<br>Swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308<br>SOLAR COMPANY/CLIENT<br>BYLD BETTER<br>BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858 |
| ALPINE UT 84004<br>Swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308<br>SOLAR COMPANY/CLIENT<br>BYLD BETTER<br>BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858 |
| BYLD BETTER<br>BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846                                                                                                                                                               |
| BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858                                                                                                                                   |
| RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858                                                                                                                                                                                                                   |
| 9192980858                                                                                                                                                                                                                                                                                                                                                     |
| 9192980858                                                                                                                                                                                                                                                                                                                                                     |
| STRING PLAN                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |
| DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                |
| AC SYSTEM SIZE: 5.900kW<br>EE-1<br>AHJ: FUQUAY VARINA                                                                                                                                                                                                                                                                                                          |
| AC SYSTEM SIZE: 5.900kW                                                                                                                                                                                                                                                                                                                                        |

MODULE TYPE: (20) LONGI LR5-54HABB-400M (BLACK ON BLACK) INVERTER TYPE: (10) NEP BDM-600X [240V] 240V

DC SYSTEM SIZE: MODULE WATTAGE: 400W X 20 MODULES = 8.000KW AC SYSTEM SIZE: INVERTER WATTAGE: 590W X 10 INVERTERS = 5.900KW

|             |          |                       |                      |                          |                                                                                                                             | CONDUCTOR S                                      | CHEDULE            |                                     |                                        |                                                |                 | DESIGN ENGINEER                                                                                                                                                               |
|-------------|----------|-----------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|-------------------------------------|----------------------------------------|------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т           | AG       | # WIRES IN<br>CONDUIT | MINIMUM<br>WIRE SIZE | TYPE,<br>MATERIAL        | MINIMUM GROUND<br>WIRE SIZE                                                                                                 | GROUND<br>TYPE,MATERIAL                          |                    | AMPS (BEFORE 125%<br>SAFETY FACTOR) | TOTAL<br>AMPS                          | WIRE AMPERAGE<br>RATING TABLE<br>310.15(B)(16) | MINIMUM<br>OCPD |                                                                                                                                                                               |
|             | A        | 3                     | #10 AWG              | THWN-2, CU               | #6 AWG                                                                                                                      | BARE CU                                          | 3/4 EMT            | 12.3                                | 15.38                                  | 35                                             | 20              | YSSLING                                                                                                                                                                       |
|             | B<br>C   | 3 4                   |                      | THWN-2, CU<br>THWN-2, CU | #12 AWG<br>#10 AWG                                                                                                          | THWN-2, CU<br>THWN-2, CU                         | 3/4 EMT<br>3/4 EMT | 12.3<br>24.6                        | 15.38<br>30.75                         | 35<br>50                                       | 20<br>40        | <b>V CONSULTING</b>                                                                                                                                                           |
|             | <u> </u> |                       |                      |                          | , where the                                                                                                                 | ,                                                | <u> </u>           |                                     |                                        |                                                |                 | <b>CORPORATE EXPERIENCE WITH SMALL BUSINESS VALUE</b><br><b>76 N. MEADOWBROOK DRIVE</b><br><b>ALPINE UT 84004</b><br>swyssling@wysslingconsulting.com<br>(201) 874-3483       |
|             |          |                       |                      |                          |                                                                                                                             |                                                  |                    |                                     |                                        |                                                |                 | COA NO. P-2308 SOLAR COMPANY/CLIENT BYLD BETTER                                                                                                                               |
|             |          |                       |                      |                          |                                                                                                                             |                                                  |                    |                                     |                                        |                                                |                 | BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC                                                                                                             |
|             |          |                       |                      |                          |                                                                                                                             |                                                  |                    | CÓMBC<br>(E)2004                    | ) WITH (E) I<br>MAIN BRE<br>V SINGLE F |                                                |                 | MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858<br>THREE LINE DIAGRAM |
| TED<br>KIAC |          | LOAD CENTE            | ĸ                    |                          |                                                                                                                             |                                                  |                    | ALL SE<br>ARE UI                    | RVICE WIR                              |                                                | -               |                                                                                                                                                                               |
| 2P          |          |                       |                      | DISCON<br>WITHI          | BLE-OPEN LOCKABLE<br>INECT TO BE LOCAT<br>ACCESSIBLE LOC<br>N 5' OF THE DUKE E                                              | ED IN A READILY<br>ATION<br>NERGY METER          | (                  |                                     | 00A MAIN<br>AKER                       |                                                | ]=              |                                                                                                                                                                               |
| Ą           |          |                       |                      | X                        | 240V/60A NEMA<br>NON-FUSIBLE, 10<br>VISIBLE-OPEN LOC<br>LABELED 2-PO<br>RAPID SHUTDOWN<br>DCATION: NORTH WI<br>SQUARED DU22 | 3R<br>KAIC<br>KABLE,<br>LE<br>DEVICE<br>EST WALL |                    | (                                   | E)LOADS                                |                                                |                 |                                                                                                                                                                               |
| 4           | N        |                       |                      |                          |                                                                                                                             |                                                  | <b>C</b>           | (N                                  | ) 2P-40A                               |                                                |                 | DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW<br>EE-2                                                                                                                    |
|             |          | ]                     |                      |                          |                                                                                                                             | _                                                |                    | LOAD SIDE P<br>BE LOCATED           |                                        | EST (E) WATER                                  | D ROD +<br>BOND | AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                          |
|             |          |                       |                      |                          |                                                                                                                             |                                                  |                    | SLOT FROM N                         |                                        |                                                | VG CU           | INITIAL DESIGN DATE: 12/18/2024                                                                                                                                               |



UP TO (2) MODULE PER MICRO INVERTER

| PV N  | IODULE                   | INVERTER                        |                     |  |  |  |
|-------|--------------------------|---------------------------------|---------------------|--|--|--|
| MODEL | LONGI<br>LR5-54HABB-400M | MODEL                           | NEP BDM-600X [240V] |  |  |  |
|       | (BLACK ON BLACK)         | MAX INPUT DC                    | 60V                 |  |  |  |
| PMAX  | 400W                     | VOLTAGE                         |                     |  |  |  |
| VOC   | 37.05V                   | MAX DC CURRENT                  | 40A                 |  |  |  |
| VMP   | 30.94V                   | MAX OUTPUT POWER                | 590W                |  |  |  |
| IMP   | 12.93A                   | MAXIMUM CONT.<br>OUTPUT CURRENT | 2.46A               |  |  |  |
| ISC   | 13.72A                   | CEC EFFICIENCY                  | 0.955               |  |  |  |
|       |                          | NOMINAL AC<br>VOLTAGE           | 240V                |  |  |  |

## **ELECTRICAL CALCULATIONS**

TAG A FROM MODULES TO JUNCTION BOX

LARGEST STRING: 10 MODULES NUMBER OF INVERTERS: 5 AMPS PER INVERTER: 2.46 5 \* 2.46A = 12.3A \* 1.25 = 15.38A TOTAL AMPS

CONDUCTOR SIZE: #10 AWG CONDUCTOR MAX: 35A, GOOD OCPD: 20A, GOOD

TAG B FROM JUNCTION BOX TO AC COMBINER

LARGEST STRING: 10 MODULES NUMBER OF INVERTERS: 5 AMPS PER INVERTER: 2.46 5 \* 2.46A = 12.3A \* 1.25 = 15.38A TOTAL AMPS

CONDUCTOR SIZE: #10 AWG CONDUCTOR MAX: 35A, GOOD OCPD: 20A, GOOD

TAG C FROM AC COMBINER TO INTERCONNECTION

TOTAL MODULES: 20 TOTAL INVERTERS: 10 AMPS PER INVERTER: 2.46A 10 \* 2.46A = 24.6A \* 1.25 = 30.75A TOTAL AMPS

CONDUCTOR SIZE: #8 AWG CONDUCTOR MAX: 50A, GOOD OCPD: 40A, GOOD

| TEMPERATURE CORRECTED VOC |                    |                        |                 |                 |  |
|---------------------------|--------------------|------------------------|-----------------|-----------------|--|
| MODULE<br>VOC             | VOC<br>COEFFICIENT | COLDEST<br>TEMPERATURE | ADJUSTED<br>VOC | INVERTER<br>MAX |  |
| 37.05                     | -0.265             | -39                    | 43.33           | 60, GOOD        |  |

| INTERCONNECTION PER NEC 705.12<br>(B) "120% RULE" |                                    |  |  |  |
|---------------------------------------------------|------------------------------------|--|--|--|
| MSP RATING                                        | 200A                               |  |  |  |
| MAIN DISCONNECT<br>RATING                         | 200A                               |  |  |  |
| TOTAL BACK FEED<br>REQUIRED                       | 30.75A                             |  |  |  |
| OCPD RATING                                       | 40A                                |  |  |  |
| (MSP RATING * 1.2)-<br>MAIN DISCONNECT            | (200A * 1.2)-200<br>>=30.75A, GOOD |  |  |  |

#### DESIGN ENGINEER



#### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483 COA NO. P-2308

SOLAR COMPANY/CLIENT





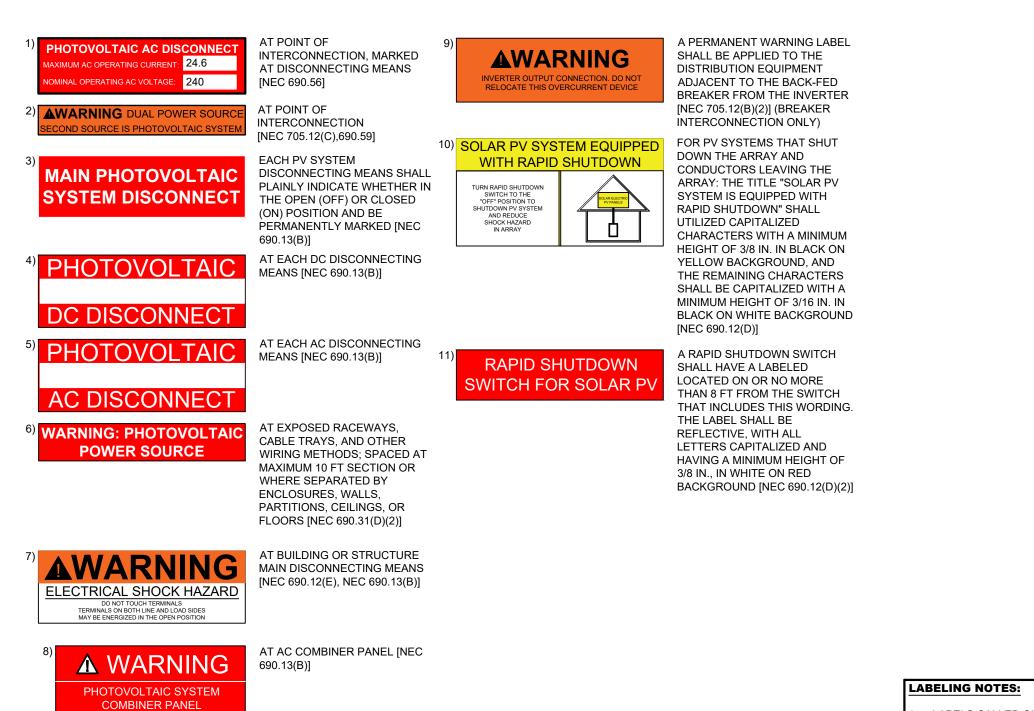
BYLD BETTER 1213 W MOOREHEAD STREET SUITE 500 CHARLOTTE, NC

#### MORALES RESIDENCE

144 SMOKETREE DRIVE FUQUAY-VARINA, NC 27526 COORDINATES: 35.496882, -78.812846

> inoemorales1977@gmail.com 9192980858

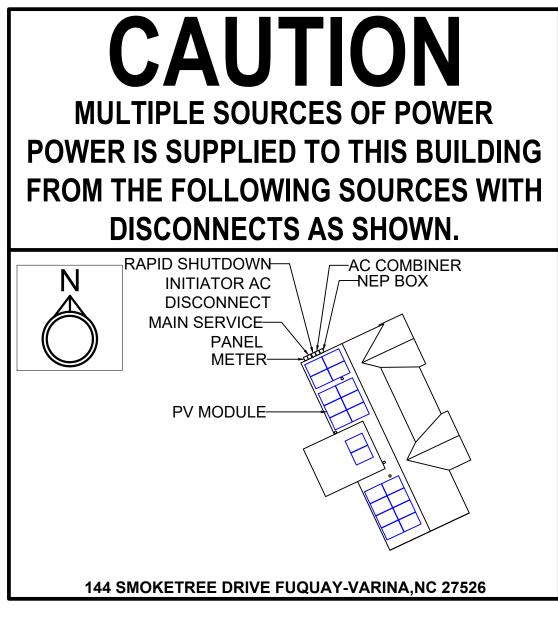
## **ELECTRICAL NOTES**


DC SYSTEM SIZE: 8.000kW AC SYSTEM SIZE: 5.900kW

## **EE-3**

AHJ: UTILITY:

FUQUAY VARINA DUKE


DRAWN BY: AIA INITIAL DESIGN DATE: 12/18/2024



DO NOT ADD LOADS

- LABELS CALLED OUT ACCORDING TO AI CONFIGURATIONS. ELECTRICIAN TO DE REQUIREMENTS IN THE FIELD PER CUR CODES AND MAKE APPROPRIATE ADJUST
- LABELING REQUIREMENTS BASED ON T CODE, OSHA STANDARD 19010.145, ANS
- MATERIAL BASED ON THE REQUIREMEN HAVING JURISDICTION.
- LABELS TO BE OF SUFFICIENT DURABIL ENVIRONMENT INVOLVED [NEC 110.21] T PERMANENTLY ATTACHED, WEATHER/S AND SHALL NOT BE HAND WRITTEN PER
- APPLICABLE LABELS TO BE A MINIMUM WHITE ON RED BACKGROUND; REFLEC AFFIXED [IFC 605.11.1.1]

|                                                                                  | DESIGN ENGINEER                                                                                                    |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                  | CORPORATE EXPERIENCE WITH SMALL BUSINESS VALUE                                                                     |
|                                                                                  | 76 N. MEADOWBROOK DRIVE<br>ALPINE UT 84004<br>swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308 |
|                                                                                  | SOLAR COMPANY/CLIENT                                                                                               |
|                                                                                  | BYLD BETTER                                                                                                        |
|                                                                                  | <b>BYLD BETTER</b><br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC                                           |
|                                                                                  | MODALES                                                                                                            |
|                                                                                  | MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846       |
|                                                                                  | inoemorales1977@gmail.com<br>9192980858                                                                            |
|                                                                                  | LABELS                                                                                                             |
|                                                                                  |                                                                                                                    |
|                                                                                  |                                                                                                                    |
|                                                                                  |                                                                                                                    |
|                                                                                  |                                                                                                                    |
| LL COMMON<br>ETERMINE EXACT<br>RENT NEC AND LOCAL<br>STMENTS.                    |                                                                                                                    |
| THE NATIONAL ELECTRIC<br>SI Z535.                                                |                                                                                                                    |
| NTS OF THE AUTHORITY                                                             |                                                                                                                    |
| LITY TO WITHSTAND THE<br>THEY SHALL BE<br>SUNLIGHT RESISTANT,<br>R NEC 110.21(B) | DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW                                                                 |
| LETTER HEIGHT OF 3/8",                                                           | EE-4                                                                                                               |
| TIVE, AND PERMANENTLY                                                            | AHJ: FUQUAY VARINA<br>UTILITY: DUKE                                                                                |
|                                                                                  | DRAWN BY: AIA<br>INITIAL DESIGN DATE: 12/18/2024                                                                   |
|                                                                                  |                                                                                                                    |



LOCATION: MSP NEC 705.10

| CONCURSE SUBJECT         AG N. MEADOWBROOK DRIVE         SWISSIING ONSUITING.COM         COA NO. P-2308         SOLAR COMPANY/CLIENT         DE DETTER         DI DETTER         1213 W MOOREHEAD STREET SUITE 500         CHARLOTTE, NC         MORALES         RESIDENCE         144 SMOKETREE DRIVE         FUQUAY-VARINA, NC 27526         CORDINATES: 35.496882, -78.812846         Inoemorales 1977@gmail.com         9192980858         DELACARD         DC SYSTEM SIZE: 8.000KW         AC SYSTEM SIZE: 5.900KW         AC SYSTEM SIZE: 5.900KW         EE-5         AHJ: Y EUQUAY VARINA         UTILITY: DUKE         DRAWN BY: AIA         MITIAL DESIGN DATE: 12/18/2024 |       | DESIGN E                              | NGINEER                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------------------------------------------|
| ALPINE UT \$4004<br>swyssling@wysslingconsulting.com<br>(201) 874-3483<br>COA NO. P-2308<br>SOLAR COMPANY/CLIENT<br>DYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858<br>PLACARD<br>DC SYSTEM SIZE: 8.000KW<br>AC SYSTEM SIZE: 5.900KW<br>AC SYSTEM SIZE: 5.900KW<br>EE-5<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                             | J     |                                       |                                                 |
| BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales 1977@gmail.com<br>9192980858<br>PLACARD<br>DC SYSTEM SIZE: 8.000KW<br>AC SYSTEM SIZE: 8.000KW<br>AC SYSTEM SIZE: 5.900KW<br>EE-S<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE                                                                                                                                                                                                                                                                                                             |       | ALPINE (<br>vyssling@wyssl<br>(201) 8 | <b>UT 84004</b><br>ingconsulting.com<br>74-3483 |
| BYLD BETTER<br>1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC<br>MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858<br>PLACARD<br>DLACARD<br>DL SYSTEM SIZE: 8.000KW<br>AC SYSTEM SIZE: 8.000KW<br>AC SYSTEM SIZE: 5.900KW<br>EE-5<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                  |       | SOLAR COM                             | PANY/CLIENT                                     |
| RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526<br>COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com<br>9192980858<br>PLACARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | BYLD E<br>W MOOREHEAI                 | BETTER<br>D STREET SUITE 500                    |
| PLACARD PLACARD DC SYSTEM SIZE: 8.000kW AC SYSTEM SIZE: 5.900kW EE-5 AHJ: FUQUAY VARINA UTILITY: DUKE DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | сос   | RESID<br>144 SMOKE<br>FUQUAY-VAR      | DENCE<br>TREE DRIVE<br>INA, NC 27526            |
| DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW<br>EE-5<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                       |                                                 |
| AC SYSTEM SIZE: 5.900kW<br>EE-5<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | PLAC                                  | CARD                                            |
| AC SYSTEM SIZE: 5.900kW<br>EE-5<br>AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                       |                                                 |
| AHJ: FUQUAY VARINA<br>UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                       |                                                 |
| UTILITY: DUKE<br>DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | EE                                    | -5                                              |
| DRAWN BY: AIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                       | VARINA                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAWN | BY: AIA                               |                                                 |

## **GENERAL NOTES**

- 1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS AND REVIEW ALL MANUFACTURER INSTALLATION DOCUMENTS PRIOR TO INITIATING CONSTRUCTION.
- 2. ALL COMPONENTS SHALL BE NEW AND LISTED BY A RECOGNIZED ELECTRICAL TESTING LABORATORY AND LISTED FOR THEIR SPECIFIC APPLICATION.
- 3. OUTDOOR EQUIPMENT SHALL BE NEMA 3R RATED OR BETTER.
- 4. ACCESS TO ELECTRICAL COMPONENTS OVER 150 VOLTS TO GROUND SHALL BE RESTRICTED TO QUALIFIED PERSONNEL
- 5. CONTRACTOR SHALL OBTAIN ELECTRICAL PERMITS PRIOR TO INSTALLATION AND SHALL COORDINATE ALL INSPECTIONS, TESTING COMMISSIONING, AND ACCEPTANCE WITH THE HOMEOWNER, UTILITY INSPECTORS AS NEEDED.
- 6. EACH MODULE TO BE GROUNDED USING THE SUPPLIED CONNECTION POINT PER THE MANUFACTURER'S REQUIREMENTS. ALL PV MODULES, EQUIPMENT, AND METALLIC COMPONENTS ARE TO BE B EXISTING GROUNDING ELECTRODE SYSTEM CANNOT BE VERIFIED OR IS ONLY METALLIC WATER PIPING, IT IS THE CONTRACTOR'S RESPONSIBILITY TO INSTALL A SUPPLEMENTAL GROUNDING ELECTRODE
- 7. DC CONDUCTORS SHALL BE RUN IN EMT AND/OR MC (METAL CLAD CABLE) AND SHALL BE LABELED.
- 8. EXPOSED NON-CURRENT CARRYING METAL PARTS OF ELECTRICAL EQUIPMENT SHALL BE GROUNDED IN ACCORDANCE WITH APPLICABLE NEC.
- 9. CONFIRM LINE SIDE VOLTAGE AT THE ELECTRIC UTILITY SERVICE PRIOR TO CONNECTING INVERTER. VERIFY SERVICE VOLTAGE IS WITHIN INVERTER VOLTAGE OPERATIONAL RANGE.
- 10. ELECTRICAL CONTRACTOR TO PROVIDE CONDUIT EXPANSION JOINTS AND ANCHOR CONDUIT RUNS AS REQUIRED PER CODE.
- 11. ALL WIRING MUST BE PROPERLY SUPPORTED BY DEVICES OR MECHANICAL MEANS DESIGNED AND LISTED FOR SUCH USE, AND FOR ROOF-MOUNTED SYSTEMS, WIRING MUST BE PERMANENTLY ANI HELD OFF OF THE ROOF SURFACE.
- 12. ALL ROOF PENETRATIONS MUST BE SEALED OR FLASHED.
- 13. EQUIPMENT MAY BE SUBSTITUTED FOR SIMILAR EQUIPMENT BASED ON AVAILABILITY, SUBSTITUTED EQUIPMENT SHALL COMPLY WITH DESIGN CRITERIA.
- 14. REMOVAL OF AN INTERACTIVE INVERTER OR OTHER EQUIPMENT SHALL NOT DISCONNECT THE BONDING CONNECTION BETWEEN THE GROUNDING ELECTRODE CONDUCTOR AND THE PHOTOVOLTAIC SO OUTPUT CIRCUIT GROUNDED CONDUCTORS.
- 15. WHENEVER A DISCREPANCY IN THE QUALITY OF EQUIPMENT ARISES ON THE DRAWING OR SPECIFICATIONS, THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING AND INSTALLING ALL MATERIAL REQUIRED BY THE STRICTEST CONDITIONS NOTED ON THE DRAWINGS OR IN THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE STRICTEST CONDITIONS NOTED ON THE DRAWINGS OR IN THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE STRICTEST CONDITIONS NOTED ON THE DRAWINGS OR IN THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE STRICTEST CONDITIONS NOTED ON THE DRAWINGS OR IN THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE SPECIFICATIONS TO ENSURE COMPLETE COMPLIANCE AND LONGEVITY OF THE OPERABLE SYSTEM REQUIRED BY THE SPECIFICATIONS TO ENSURE COMPLETE COMPLEXES ON THE SPECIFICATIONS TO ENSURE COMPLEXES ON THE SPECIFICATIONS TO ENSURE SYSTEM REQUIRED BY THE SPECIFICATIONS TO ENSURE COMPLEXES ON THE SPECIFICATIONS TO ENSURE SYSTEM REQUIRED BY THE SYSTEM REQUI
- 16. AC DISCONNECT SHALL BE LOCATED WITHIN 5' OF DUKE ENERGY METER. AC DISCONNECT SHALL BE LOCATED ON SAME WALL OF HOUSE WHERE POSSIBLE. IF AC DISCONNECT CANNOT BE WITHIN 5' O PHOTOS SHALL BE PROVIDED OF THE OBSTRUCTION FOR REVIEW.
- 17. IF APPLICABLE, ENERGY STORAGE SYSTEM (ESS) CAN BE USED DURING ON-GRID OPERATION TO SHIFT GENERATION FOR TIME OF USE (TOU) AND WILL NOT OPERATE OFF GRID.

## **GENERAL ELECTRICAL NOTES**

- 1. CONDUIT A AND B AMPS EQUAL TO LARGEST STRING ON TAG.
- 2. CONDUIT A SHALL BE RUN THROUGH ATTIC IF POSSIBLE.
- 3. EQUIPMENT MAY BE SUBSTITUTED FOR SIMILAR EQUIPMENT BASED ON AVAILABILITY, SUBSTITUTED EQUIPMENT SHALL COMPLY WITH DESIGN CRITERIA. WIRE SIZES ARE BASED ON MINIMUMS AND ARE MEANT TO LIMIT UPSIZING AS REQUIRED BY FIELD CONDITIONS/AVAILABILITY.
- 4. WIRING SHALL COMPLY WITH MAXIMUM CONTINUOUS CURRENT OUTPUT AT 25°C AND MAXIMUM VOLTAGE AT 600V; WIRE SHALL BE WET RATED AT 90°C.
- 5. EXPOSED PHOTOVOLTAIC SYSTEM CONDUCTORS ON THE ROOF WILL BE TYPE 2 OR PV-TYPE WIRE.
- 6. PHOTOVOLTAIC SYSTEM CONDUCTORS SHALL BE IDENTIFIED AND GROUPED. THE MEANS OF IDENTIFICATION SHALL BE PERMITTED BY SEPERATE COLOR-CODING, MARKING TAPE, TAGGING OR OTHER A MEANS.
- 7. ALL CONDUCTORS AND TERMINATIONS SHALL BE RATED FOR INSTALL LOCATION
- 8. ALL EXTERIOR CONDUIT, FITTINGS, AND BOXES SHALL BE RAIN-TIGHT AND APPROVED FOR USE IN WET LOCATIONS.
- 9. ALL METALLIC RACEWAYS AND EQUIPMENT SHALL BE BONDED AND ELECTRICALLY CONTINUOUS.
- 10. WHERE SIZES OF JUNCTION BOXES, RACEWAYS, AND CONDUITS ARE NOT SPECIFIED, CONTRACTOR SHALL SIZE THEM ACCORDING TO APPLICABLE CODES.
- 11. REMOVAL OF A UTILITY-INTERACTIVE INVERTER OR OTHER EQUIPMENT SHALL NOT DISCONNECT THE BUILDING CONNECTION BETWEEN THE GROUNDING ELECTRODE CONDUCTOR AND THE PV SOURCE OUTPUT CIRCUIT GROUNDED CONDUCTOR.
- 12. FOR GROUNDED SYSTEMS, THE PHOTOVOLTAIC SOURCE AND OUTPUT CIRCUITS SHALL BE PROVIDED WITH A GROUND-FAULT PROTECTION DEVICE OR SYSTEM THAT DETECTS A GROUND FAULT, INDICA FAULT HAS OCCURRED, AND AUTOMATICALLY DISCONNECTS ALL CONDUCTORS OR CAUSES THE INVERTER TO AUTOMATICALLY CEASE SUPPLYING POWER TO OUTPUT CIRCUITS.
- 13. FOR UNGROUNDED SYSTEMS, THE INVERTER IS EQUIPPED WITH GROUND FAULT PROTECTION AND A GFI FUSE PORT FOR GROUND FAULT INDICATION.
- 14. PV MODULE FRAMES SHALL BE BONDED TO RACKING RAIL OR BARE COPPER GEC/GEC PER THE MODULE MANUFACTURER'S LISTED INSTRUCTION SHEET.
- 15. PV MODULE RACKING RAIL SHALL BE BONDED TO BARE COPPER GEC VIA WEEB LUG, IL SCO GBL-4DBT LAY IN LUG, OR EQUIVALENT LISTED LUG.
- 16. THE PHOTOVOLTAIC INVERTER WILL BE LISTED AS AUL 1741 COMPLIANT.
- 17. RACKING AND BONDING SYSTEM TO BE UL2703 RATED.
- 18. ANY REQUIRED GROUNDING ELECTRODE CONDUCTOR WILL BE CONTINUOUS, EXCEPT FOR SPLICES OR JOINTS AS BUSBARS WITHIN LISTED EQUIPMENT
- 19. WHEN BACKFEED BREAKER IS THE METHOD OF UTILITY INTERCONNECTION, THE BREAKERS SHALL NOT READ "LINE AND LOAD."
- 20. WHEN APPLYING THE 120% RULE, THE SOLAR BREAKER TO BE POSITIONED AT THE OPPOSITE END OF THE BUSBAR FROM THE MAIN BREAKER.
- 21. THE WORKING CLEARANCE AROUND THE EXISTING ELECTRICAL EQUIPMENT AS WELL AS THE NEW ELECTRICAL EQUIPMENT WILL BE MAINTAINED.
- 22. LISTED CONDUIT AND CONDUCTOR SIZES ARE BASED ON MINIMUM CODE REQUIREMENTS AND ARE NOT MEANT TO LIMIT UPSIZING AS REQUIRED BY FIELD CONDITIONS/AVAILABILITY.
- 23. NEP BDM-600X [240V] INVERTERS HAVE INTEGRATED GROUND AND DOUBLE INSULATION. NO GEG OR EGC IS REQUIRED. THE DC CIRCUIT IS ISOLATED AND INSULATED FROM GROUND AND MEETS THE REQUIREMENTS OF NEC.
- 24. CALCULATIONS ARE BASED ON A) ASHRAE 2# AVERAGE HIGH = 32°C B)NEC TABLE 310.15(B)2(a) 75° DERATE FACTOR = 0.96 C) NEC TABLE NEC 310.15(B)(16) 75°C.
- 25. SUPPLEMENTAL GROUNDING ELECTRODE TO BE INSTALLED NO CLOSER THAN 6' FROM EXISTING WHEN REQUIRED. NEC 250.53(A)(2) DOES NOT REQUIRE IT IF CONTRACTOR CAN PROVE THAT A SINGLE R RESISTANCE TO EARTH OF 25 OHMS OR LESS.
- 26. WHEN CABLE, INCLUDING PV CABLE(S), IS RUN BETWEEN ARRAYS OR TO JUNCTION BOXES IT SHALL BE ENCLOSED IN CONDUIT. [NEC 300.4, 690.31(A) AND (C)]
- 27. THE CABLE CONNECTORS USED ON THE OUTPUT SIDE OF THE OPTIMIZER OR MICROINVERTER TOGETHER WITH THE ARRAY CABLE USED BETWEEN THEM ARE OF THE SAME MANUFACTURER OR ARE LIS COMPATIBILITY. [NEC 690.33(C)]
- 28. SOME WIRE CONNECTORS SUPPLY INSTRUCTIONS FOR THE PRELIMINARY PREPARATION OF CONDUCTORS, SUCH AS USE OF CONDUCTOR TERMINATION COMPOUND (ANTIOXIDANT COMPOUND). SOME CONNECTORS ARE SHIPPED PRE-FILLED WITH CONDUCTOR TERMINATION COMPOUND (ANTIOXIDANT COMPOUND). FOR NON-PREFILLED CONNECTORS, CONDUCTOR TERMINATION COMPOUND MAY BE L RECOMMENDED BY THE CONNECTOR MANUFACTURER AS PRELIMINARY PREARATION OF THE CONDUCTOR.

THIS PLAN HAS BEEN ELEC SEALED BY SCOTT WYSSLI SIGNATURE AND DATE. PF DOCUMENT ARE NOT CO SEALED AND THE SIGNATI ON ANY ELECTRONIC COF

|                                                                               | DESIGN ENGINEER                                                                                    |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                               | WYSSLING<br>CONSULTING A                                                                           |
|                                                                               | CORPORATE EXPERIENCE WITH SMALL BUSINESS VALUE                                                     |
| TY CO. AND CITY<br>BONDED. IF THE                                             | 76 N. MEADOWBROOK DRIVE<br>ALPINE UT 84004<br>swyssling@wysslingconsulting.com                     |
| DE.                                                                           | (201) 874-3483<br>COA NO. P-2308<br>SOLAR COMPANY/CLIENT                                           |
| ID COMPLETELY                                                                 | BYLD BETTER                                                                                        |
| SOURCE AND/OR                                                                 | BYLD BETTER                                                                                        |
| L AND SERVICES<br>ENGINEERS.<br>DF METER, THEN                                | 1213 W MOOREHEAD STREET SUITE 500<br>CHARLOTTE, NC                                                 |
|                                                                               | MORALES<br>RESIDENCE<br>144 SMOKETREE DRIVE<br>FUQUAY-VARINA, NC 27526                             |
| NOT                                                                           | COORDINATES: 35.496882, -78.812846<br>inoemorales1977@gmail.com                                    |
| APPROVED                                                                      |                                                                                                    |
|                                                                               | TH CAROLUM                                                                                         |
| E AND/OR                                                                      | POFESSION                                                                                          |
| ATES THAT                                                                     | Seal Way                                                                                           |
| ECTRONICALLY SIGNED AND<br>LING, PE USING A DIGITAL<br>PRINTED COPIES OF THIS | * 040546 *                                                                                         |
| DNSIDERED SIGNED AND<br>TURE MUST BE VERIFIED<br>OPIES                        | CONGINEER INCOM                                                                                    |
|                                                                               | Wyssling Consulting, PLLC<br>76 N Meadowbrook Drive Alpine UT 84004<br>North Carolina CDA # P-2308 |
| ROD HAS A                                                                     | Signed 12/19/2024<br>SCOTT E WYSSLING, PE<br>NC LICENSE NO 46546                                   |
| STED FOR                                                                      | DC SYSTEM SIZE: 8.000kW<br>AC SYSTEM SIZE: 5.900kW                                                 |
| USED IF                                                                       | PV-6                                                                                               |
|                                                                               | AHJ: FUQUAY VARINA<br>UTILITY: DUKE                                                                |
|                                                                               | DRAWN BY: AIA<br>INITIAL DESIGN DATE: 12/18/2024                                                   |









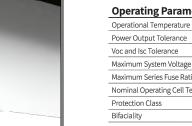


| DESIGN E                                 | NGINEER                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------|
|                                          | SLING<br>SULTING                                                                          |
| <br>ALPINE U<br>yssling@wyssl<br>(201) 8 | <b>BROOK DRIVE</b><br><b>JT 84004</b><br><i>ingconsulting.com</i><br>74-3483<br>9. P-2308 |
| <br>SOLAR COM                            | PANY/CLIENT                                                                               |
| YLD<br>Byld e                            | BETTER                                                                                    |
| <br>RESID                                | ALES                                                                                      |
|                                          | FREE DRIVE<br>INA, NC 27526<br>.496882, -78.812846                                        |
| inoemorales19<br>91929                   | 77@gmail.com<br>80858                                                                     |
|                                          | HOTOS                                                                                     |
|                                          |                                                                                           |
|                                          |                                                                                           |
| EM SIZE: 8.000<br>EM SIZE: 5.900         |                                                                                           |
| EM SIZE: 5.90                            |                                                                                           |
| EM SIZE: 5.90<br>PV<br>FUQUAY            | 0kW<br><b>/-7</b>                                                                         |

# Hi-MO 5

# LR5-54HABB 390~415M

- Suitable for distributed projects
- Advanced module technology delivers superior module efficiency •M10 Gallium-doped Wafer •Integrated Segmented Ribbons •9-busbar Half-cut Cell
- Globally validated bifacial energy yield
- High module quality ensures long-term reliability




30 30-year Warranty for Extra Linear Power Output

Complete System and **Product Certifications** 

IEC 61215, IEC 61730, UL 61730 ISO9001:2015: ISO Quality Management System ISO14001: 2015: ISO Environment Management System ISO45001: 2018: Occupational Health and Safety IEC62941: Guideline for module design qualification and type approval

LONGI





| ), | 22                                                     |
|----|--------------------------------------------------------|
|    | No.8369 Shangyuan Road, Xi'an Economic And             |
|    | Technological Development Zone, Xi'an, Shaanxi, China. |

Web: www.longi.com

| dditional Valu       | le                                                                     |                             |
|----------------------|------------------------------------------------------------------------|-----------------------------|
| 30-Year Power \      | Warranty                                                               |                             |
| 00%                  | +2,75%                                                                 | =                           |
| 7.7%                 | +4.00%                                                                 |                             |
| 4.5%                 | +4.95% +6.50%                                                          |                             |
| 0.7%                 |                                                                        |                             |
| 1 5<br>Mechanical Pa | 10 15 20 25 30<br>rameters                                             |                             |
| Cell Orientation     | 108 (6×18)                                                             |                             |
| Junction Box         | IP68, three diodes                                                     |                             |
| Dutput Cable         | 4mm <sup>2</sup> , $\pm$ 1200mm<br>length can be customized            | 1134                        |
| Glass                | Dual glass, 2.0+1.6mm heat strengthened glass                          |                             |
| Frame                | Anodized aluminum alloy frame                                          |                             |
| Veight               | 22.5kg                                                                 | Tolerance:                  |
| Dimension            | 1722×1134×30mm                                                         | Length: ±2mm<br>Width: ±2mm |
| Packaging 36pcs per  | pallet / 216pcs per 20' GP / 936pcs or 792pcs(Only for USA) per 40' HC |                             |

**<2%** FIRST YEAR POWER DEGRADATION

0.45%

YEAR 2-30 POWER DEGRADATION



HALF-CELL

Electrical Characteristics STC: AM1.5 1000W/m<sup>2</sup> 25°C NOCT: AM1.5 800W/m<sup>2</sup> 20°C 1m/s Test uncertainty for Pm LR5-54HABB-390M LR5-54HABB-395M LR5-54HABB-LR5-54HABB-405M Module Type LR5-54HABB-400M STC NO STC NOCT STC NOCT STC NOCT STC NOCT Testing Condition 295.2 302.7 410 3 390 291.5 395 400 299.0 405 Maximum Power (Pmax/W) 37.05 37.53 Open Circuit Voltage (Voc/V) 36.58 34.39 34.61 34.84 37.29 35.06 36.81 3 Short Circuit Current (Isc/A) 13.57 10.95 13.65 11.01 13.72 11.07 13.79 11.13 13.87 1 30.47 28.43 30.70 28.64 30.94 28.86 31.18 29.09 31.42 2 Voltage at Maximum Power (Vmp/V) 12.93 10.36 12.99 10.41 13.05 1 12.80 10.26 12.87 10.31 Current at Maximum Power (Imp/A) Module Efficiency(%) 20.0 20.2 20.5 20.7 21.0

#### Electrical characteristics with different rear side power gain (reference to 400W front)

| Lecencer characteristics with difference is she power gain (reference to soon nonc) |       |        |       |        |           |
|-------------------------------------------------------------------------------------|-------|--------|-------|--------|-----------|
| Pmax /W                                                                             | Voc/V | Isc /A | Vmp/V | Imp /A | Pmax gain |
| 420                                                                                 | 37.05 | 14.41  | 30.94 | 13.58  | 5%        |
| 440                                                                                 | 37.05 | 15.09  | 30.94 | 14.22  | 10%       |
| 460                                                                                 | 37.15 | 15.78  | 31.04 | 14.87  | 15%       |
| 480                                                                                 | 37.15 | 16.46  | 31.04 | 15.52  | 20%       |
| 500                                                                                 | 37.15 | 17.15  | 31.04 | 16.16  | 25%       |
|                                                                                     |       |        |       |        |           |

#### **Operating Parameters**

Hi-MO 5

0~3%

POWER TOLERANCE

21.3% MAX MODULE EFFICIENCY

A

Ν

C

| Operational Temperature                                              | -40°C ~ +85°C        |  |
|----------------------------------------------------------------------|----------------------|--|
| Power Output Tolerance                                               | 0~3%                 |  |
| Voc and Isc Tolerance                                                | ±3%                  |  |
| Maximum System Voltage                                               | DC1500V (IEC/UL)     |  |
| Maximum Series Fuse Rating                                           | 30A                  |  |
| Nominal Operating Cell Temperature                                   | 45±2°C               |  |
| Protection Class                                                     | Class II             |  |
| Bifaciality                                                          | 70±5%                |  |
| Fire Rating                                                          | UL Similar type 38 * |  |
| rite Ratilig                                                         | IEC Class C          |  |
| *Reference Standard : UL61730 Second Edition, Dated October 28, 2022 |                      |  |

Temperature Coefficient of Pmax

**Mechanical Loading** Front Side Maximum Static Loading Rear Side Maximum Static Loading Hailstone Test 25mm Hai

## Temperature Ratings (STC) Temperature Coefficient of Isc Temperature Coefficient of Voc

#### DESIGN ENGINEER



#### **76 N. MEADOWBROOK DRIVE ALPINE UT 84004**

swyssling@wysslingconsulting.com (201) 874-3483



Lower operating temperature



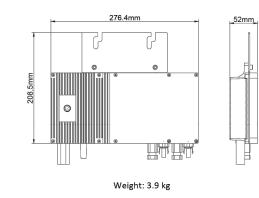
| ax: ±3% |          |         |  |
|---------|----------|---------|--|
| 410M    | LR5-54H/ | BB-415M |  |
| ЮСТ     | STC      | NOCT    |  |
| 06.5    | 415      | 310.2   |  |
| 5.29    | 37.77    | 35.51   |  |
| 1.19    | 13.94    | 11.25   |  |
| 9.31    | 31.66    | 29.54   |  |
| 0.45    | 13.11    | 10.50   |  |
|         | 2        | 1.3     |  |
|         |          |         |  |

| 5400Pa                        |
|-------------------------------|
| 2400Pa                        |
| ilstone at the speed of 23m/s |

Specifications included in this datasheet are subject to change without notice. LONGi reserves the right of final interpretation. (20230112DraftV02) Only for North America

## MODULE

# **PRODUCT DATASHEET**


BDM-500/(300x2)600X MICROINVERTER CEC Listing as Utility Interactive Grid Support Inverter

(NC0141, NC0142)



STANDARD DIMENSIONS

(mm)



#### Certifications

UL 1741, CSA C22.2, NO. 107.1, IEC/EN 62109-1, IEC/EN 62109-2, IEEE 1547, VDE-AR-N 4105\*, VDE V 0126-1-1/A1, G83/2, CEI 21, AS 4777.2, AS 4777.3, EN50438, ABNT NBR 16149/16150





Per box: 5 pcs Boxes per layer: 8 Layers: 3 Pallet Qty: 120 pcs Pallet weight: 473 kg

# NORTHERN ELECTRIC

### SPECIFICATIONS

| 375 W x 2                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 375 W x 2                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 515 11 12                                              | 450 W x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60 Vdc                                                 | 60 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 A x 2                                               | 20 A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| > 99.5%                                                | > 99.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22 – 55 Vdc                                            | 22 – 55 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20 A x 2                                               | 20 A x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 A                                                    | 0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 500 W                                                  | 600 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | 590 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | 590 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        | 40 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        | 1φ: 2.46 A<br>3φ: 2.84 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · ·                                                  | 1φ: 6 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| •                                                      | 3φ: 5 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 59.3 - 60.5 H                                          | Iz (adjustable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| < 5% (at r                                             | ated power)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.9                                                   | 9~0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9.4 A                                                  | , 15 US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60 Hz                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.4 Arms                                               | for 3 cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1(                                                     | 0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 95                                                     | 5.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3                                                    | 2 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| , N                                                    | /es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | /es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        | /es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Yes                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Yes                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Yes                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Yes<br>NEMA-6 / IP-66 / IP-67                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -40°F to +149°F (-40°C to +65°C)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -40°F to +185°F (-40°C to +85°C)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LED Light                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Power line Communications / WiFi<br>Indoor and outdoor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Suitable                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PD 3<br>II(PV), III (AC MAINS)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        | > 99.5%<br>22 - 55 Vdc<br>20 A x 2<br>0 A<br>500 W<br>500 W<br>476 W<br>10: 2<br>30: 2<br>10: 211-264 W<br>30: 183-228 V<br>10: 2.08A<br>30: 2.29 A<br>10: 7 units<br>30: 7 units<br>59.3 - 60.5 H<br>< 5% (at ra<br>-0.5<br>9.4 A<br>60<br>2.4 Arms 1<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>9.5<br>0.2<br>0.5<br>0.2<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |

All NEC required adjustment factors have been considered for AC outputs. AC current outputs will not exceed stated values for Rated output AC Current.

#### COMPLIANCE

- NEC 2023 Section 690.11 DC Arc-Fault Circuit Protection
- NEC 2023 Section 690.12 Rapid Shutdown of PV Systems on Buildings
- NEC 2023 Section 690.33 Mating Connectors
- NEC 2023 Section 705.12 Point of Connection (AC Arc-Fault Protection)

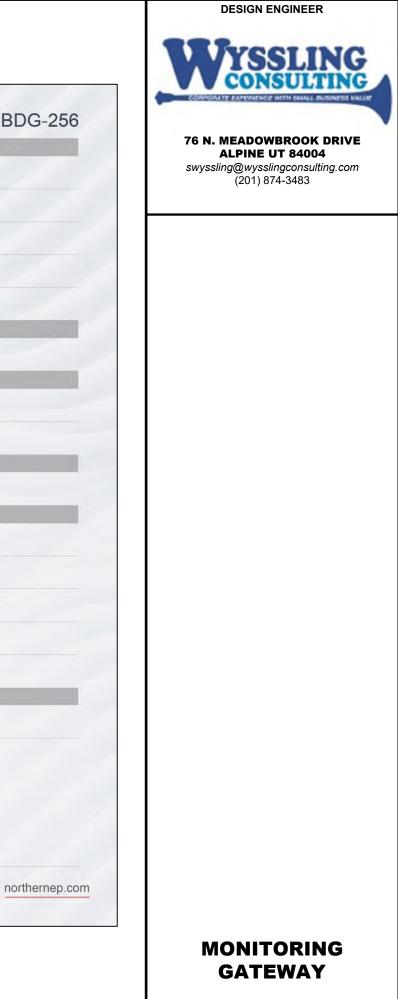
www.northernep.com

#### BDM-500/600X-070824

Page 1 of 1

#### DESIGN ENGINEER




#### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483

## INVERTER



| lodel                               |                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communications interface            | BDM-256                                                                                                                                                                                                                                                                                                                                       |
| Communication with Microinverter    | PLC                                                                                                                                                                                                                                                                                                                                           |
| Ethernet                            | 10/100 auto-sensing, auto-negotiation                                                                                                                                                                                                                                                                                                         |
| USB                                 | USB 2.0 interface, auto-sensing, auto-negotiation                                                                                                                                                                                                                                                                                             |
| Wi-Fi                               | Support                                                                                                                                                                                                                                                                                                                                       |
| Monitoring Capability               | 255 devices (depending on power grid interference)                                                                                                                                                                                                                                                                                            |
| Human interface                     |                                                                                                                                                                                                                                                                                                                                               |
| Display                             | LCD touch screen                                                                                                                                                                                                                                                                                                                              |
| Power requirements                  |                                                                                                                                                                                                                                                                                                                                               |
| AC input                            | 100-240 Vac, 50/60Hz, 60mA                                                                                                                                                                                                                                                                                                                    |
| Power Consumption                   | 3.5 Watts maximum                                                                                                                                                                                                                                                                                                                             |
| Revenue Grade Production Monitoring |                                                                                                                                                                                                                                                                                                                                               |
| Accessory required                  | ANSI C12.20 +/-0.5% accuracy                                                                                                                                                                                                                                                                                                                  |
| Mechanical data                     |                                                                                                                                                                                                                                                                                                                                               |
| Dimensions                          | 6.69" x 4.33" x 1.46" (170mm x 110 mm x 37 mm)                                                                                                                                                                                                                                                                                                |
| Weight                              | 5.29 oz (150g)                                                                                                                                                                                                                                                                                                                                |
| Ambient temperature range           | 40°C to +55°C (-40°F to 131°F)<br>-40°C to +49°C (-40°F to 120°F) if installed in an enclosure                                                                                                                                                                                                                                                |
| Cooling                             | Natural convection - no fans                                                                                                                                                                                                                                                                                                                  |
| Environmental Rating                | IP30. For installation indoors or in an NRTL-certified<br>NEMA type 3R enclosure                                                                                                                                                                                                                                                              |
| Characteristics                     |                                                                                                                                                                                                                                                                                                                                               |
| Standard warranty term              | 5 year                                                                                                                                                                                                                                                                                                                                        |
| Compliance                          | UL 60950-1 2nd Edition Rev Dec 19, 2011<br>CSA C22.2 2nd Edition Rev Dec 19, 2011<br>FCC Part 15 Class B<br>AS/NZS 60950.1:2011 Inc A1<br>AS/NZS CISPR 22: 2009+A1:2010<br>EN 60950-1:2006+A11:2009+A1:2010<br>+A12:2011 EN 55022:201<br>EN 61000-3-2:2006+A1:2009+A2:2009<br>EN 61000-3-3:2008<br>EN 55024:2010<br>EMC Directive 2004/108/EC |



## Product data sheet

Specifications



Safety switch, general duty, non fusible, 60A, 2 pole, 10hp, 240VAC, NEMA 3R, bolt on provision

DU222RB

Product availability: Stock - Normally stocked in distribution facility

Price\*: 353.00 USD

## Main

| Product                   | Single Throw Safety Switch                 |
|---------------------------|--------------------------------------------|
| Duty Rating               | General duty                               |
| Device Application        | Residential                                |
| Disconnect Type           | Non-fusible disconnect switch              |
| Factory Installed Neutral | None                                       |
| Phase                     | 1 phase                                    |
| Number Of Poles           | 2                                          |
| Current Rating            | 60 A                                       |
| Voltage Rating            | 240 V AC                                   |
| Enclosure Rating Nema     | NEMA 3R                                    |
| Motor Power Hp            | 10 hp at 240 V AC 60 Hz for 1 phase motors |

## Complementary

| Mounting Type         | Surface                                                                                                                                                                                                                                                                           |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Electrical Connection | Lugs                                                                                                                                                                                                                                                                              |  |
| Wiring Configuration  | 2 wires                                                                                                                                                                                                                                                                           |  |
| Wire Size             | AWG 12AWG 3 aluminium<br>AWG 14AWG 3 copper                                                                                                                                                                                                                                       |  |
| Tightening Torque     | 35 lbf.in (3.95 N.m) 0.000.01 in² (2.085.26 mm²) (AWG 14AWG 10)<br>35 lbf.in (3.95 N.m) (AWG 14AWG 10)<br>45 lbf.in (5.08 N.m) 0.01 in² (8.37 mm²) (AWG 8)<br>45 lbf.in (5.08 N.m) 0.020.03 in² (12.321.12 mm²) (AWG 6AWG 4)<br>50 lbf.in (5.65 N.m) 0.04 in² (26.67 mm²) (AWG 3) |  |
| Depth                 | 3.75 in (95.25 mm)                                                                                                                                                                                                                                                                |  |
| Width                 | 7.75 in (196.85 mm)                                                                                                                                                                                                                                                               |  |
| Height                | 9.63 in (244.60 mm)                                                                                                                                                                                                                                                               |  |
| Net Weight            | 16.98 lb(US) (7.7 kg)                                                                                                                                                                                                                                                             |  |

#### Environment

Certifications UL listed file E2875

#### Ordering and shipping details

Price is "List Price" and may be subject to a trade discount - check with your local distributor or retailer for actual price.

Jun 1, 2024

Life Is On Schneider

1

| Category          | US1DE1A00106 |
|-------------------|--------------|
| Discount Schedule | DE1A         |
| Gtin              | 785901491491 |
| Returnability     | Yes          |
| Country Of Origin | MX           |

#### **Packing Units**

| Packing Units                |                            |
|------------------------------|----------------------------|
| Unit Type Of Package 1       | PCE                        |
| Number Of Units In Package 1 | 1                          |
| Package 1 Height             | 5.30 in (13.462 cm)        |
| Package 1 Width              | 7.20 in (18.288 cm)        |
| Package 1 Length             | 10.00 in (25.4 cm)         |
| Package 1 Weight             | 4.65 lb(US) (2.109 kg)     |
| Unit Type Of Package 2       | PAL                        |
| Number Of Units In Package 2 | 120                        |
| Package 2 Height             | 36.50 in (92.71 cm)        |
| Package 2 Width              | 40.00 in (101.6 cm)        |
| Package 2 Length             | 48.00 in (121.92 cm)       |
| Package 2 Weight             | 610.00 lb(US) (276.691 kg) |
| Unit Type Of Package 3       | CAR                        |
| Number Of Units In Package 3 | 5                          |
| Package 3 Height             | 10.70 in (27.178 cm)       |
| Package 3 Width              | 10.20 in (25.908 cm)       |
| Package 3 Length             | 23.50 in (59.69 cm)        |
| Package 3 Weight             | 24.60 lb(US) (11.158 kg)   |
|                              |                            |

#### **Contractual warranty**

18 months

Warranty

2

Life is On Schneider

#### DESIGN ENGINEER



#### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483

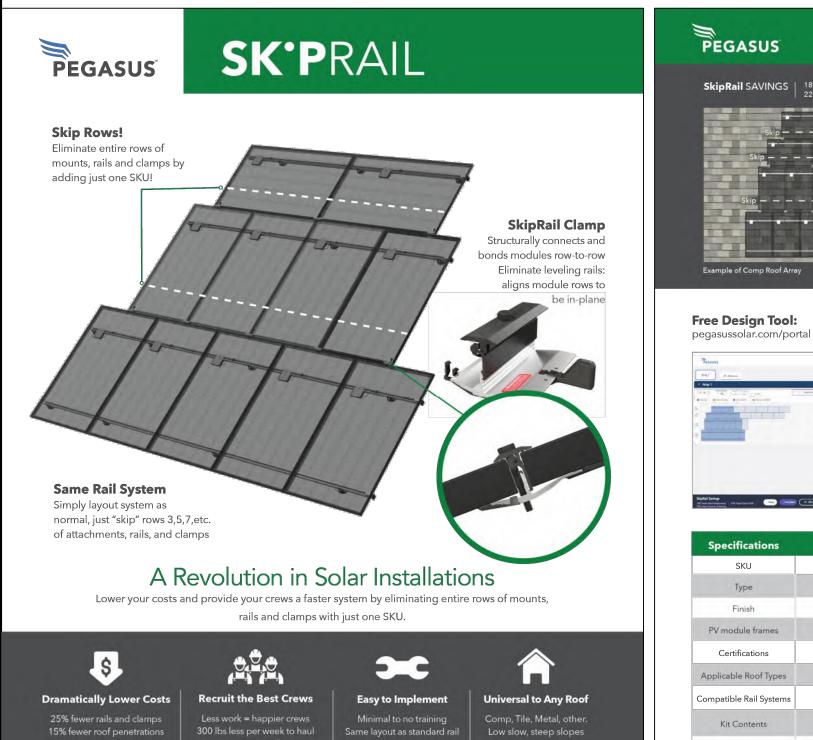
Jun 1, 2024

## **AC DISCONNECT**



Pegasus Solar Inc | 506 West Ohio Avenue, Richmond, CA 94804 | www.pegasussolar.com

#### DESIGN ENGINEER




#### **76 N. MEADOWBROOK DRIVE** ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483



## ATTACHMENT



SK'PRAIL



FRANKIN MARKED ALL -9 01 Red Days (re) Building Sergin 10 212 - 80

Where SkipRail Works



| Specifications          | SkipRail Kits               |                                          |
|-------------------------|-----------------------------|------------------------------------------|
| SKU                     | PSR-SRC                     | PSR-SRCK                                 |
| Туре                    | Floating Clamp              | Extra support with Kickstand             |
| Finish                  | Black                       |                                          |
| PV module frames        | 30, 32, 35, 40mm            |                                          |
| Certifications          | ASCE 7-16, IBC, CBC, UL2703 |                                          |
| Applicable Roof Types   | Any                         |                                          |
| Compatible Rail Systems | Pegasus Rail System         |                                          |
| Kit Contents            | Pegasus SkipRail Clamp      | Pegasus SkipRail Clamp<br>with Kickstand |
| Kit Quantity            | 20                          | 30                                       |

Pegasus Solar Inc | 506 West Ohio Avenue, Richmond, CA 94804 | www.pegasussolar.com

3500 lbs less per MW to ship,

Faster install

Auto-levels modules

Same open-channel

Easily work around

Pegasus Solar Inc | 506 West Ohio Avenue, Richmond, CA 94804 | www.pegasussolar.com

#### DESIGN ENGINEER



### 76 N. MEADOWBROOK DRIVE ALPINE UT 84004

swyssling@wysslingconsulting.com (201) 874-3483



## ATTACHMENT



Pegasus Max Rail Splice and Max Splice Pegasus Rail Dovetail T-bolt Available in 14' and 7' lengths for easy Maximum-strength design. Installs by hand. Dovetail shape for extra strength. layout and shipping. Meets specifications for high Works over mounts. Uses ½" socket. Open-channel design holds MC4 connectors, PV wire and trunk cables. snow-load and hurricane zones. Structurally connects and bonds rails automatically; UL2703 listed as reusable Black and Mill finish Black and Mill finish my Hidden End Clamp Multi-Clamp Ground Lug N-S Bonding Jumper Fits 30-40mm PV frames, as mid- or Holds 6 or 8 AWG wire. Installs by hand, eliminates row-to-row Offers premium edge appearance. end-clamp. copper wire. Preinstalled pull-tab grips rail edge, Mounts on top or side of rail. UL2703 listed as reusable only Twist-locks into position; doesn't pinch allowing easy, one-hand installation Assembled on MLPE Mount. wires in rail with Pegasus Rail. Tucks away for reuse. UL2703 listed as reusable. Bonds modules to rail; UL2703 listed End Cap and Max End Cap MLPE Mount Cable Grip Wire Clip Secures and bonds most micro-inverters Secures four PV wires or two trunk cables. Hand operable. Fits flush to PV module and hides and optimizers to rail. raw or angled cuts. Stainless-steel backing provides Holds wires in channel. Connectors and wires easily route durable grip. Hidden drain quickly clears Won't slip. underneath after installation water from rail. Eliminates sagging wires UL2703 listed as reusable. LOAD SPAN SNOW (PSF) WIND (MPH) 32" Certifications: • UL 2703, Edition 1 120 • LTR-AE-001-2012 160 • ASCE 7-16 PE certified 190 • Class A fire rating for any slope roof 140 15 160 190 FREE 160 PEGASUS SOLAR 30 190 L Design Tool 45 190 Quickly calculate the most efficient layout, spans and 70 190 materials needed to suit your job. Visit the Pegasus 190 110 Customer Portal. pegasussolar.com/portal

Patents pending. All rights reserved. ©2021 Pegasus Solar Inc.

For reference only. Spans above are calculated using ASCE 7-16 for a Gable Roof, Exposure Category B, 7-20deg roof angle, 30ft mean roof height with non-exposed modules. For PE certified span tables, visit www.pegasussolar.com/spans.

Pegasus Solar Inc | 506 West Ohio Avenue, Richmond, CA 94804 | T: 510.210.3797 | www.pegasussolar.com

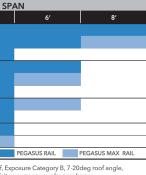
Pegasus Mounts, for composite Backed by a 25-year warranty.

Pegasus Solar Inc | 506 West Ohio Avenue, Richmond, CA 94804 | T: 510.210.3797 | www.pegasussolar.com

#### DESIGN ENGINEER



#### 76 N. MEADOWBROOK DRIVE **ALPINE UT 84004**


swyssling@wysslingconsulting.com (201) 874-3483



**RAIL SYSTEM** 







## RAIL