

STRUCTURAL CERTIFICATION REPORT

Roof-mounted Solar Panels April 16, 2024

**To: Poly Energy** 174 Corley Mill Rd

Lexington, SC 29072

Re: Marie Whitaker 105 Wrench St Erwin, NC 28339 AHJ: Erwin (City), NC

Poly Energy proposes to install new roof-mounted solar panels at this residence and asked *Right Angle Engineering* to review the existing structure for suitability. This letter summarizes the methods that were used to survey, evaluate, and certify the existing roof framing and the attachment of the new solar panels to it.

#### STRUCTURAL DESIGN

| Building Code:    | North Carolina Residential Code 2018                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Design Standards: | ASCE 7-16                                                                                                          |
| Snow:             | Ground: p <sub>g</sub> = 10.0 psf   Flat Roof: p <sub>f</sub> = 11.93 psf   Sloped Roof: p <sub>s</sub> = 8.75 psf |
| Wind:             | Ultimate Wind Speed = 119.0 mph   Exposure = C                                                                     |
| Seismic:          | Risk Category = 2   Seismic Design Category = B   Site Class = D                                                   |

#### STRUCTURE

Field Technicians from Poly Energy visited the site and observed the existing structure :

| Array Name | Panel Quantity | Roof Framing                         | Material         | Pitch |
|------------|----------------|--------------------------------------|------------------|-------|
| Array 1    | 6              | Pre-Manufactured Truss   24"<br>o.c. | Asphalt Shingles | 26°   |

### ANCHORAGE

The solar panel anchorage shall be installed according to the manufacturer's most current installation manual. Anchorage shall be staggered to distribute the load evenly to adjacent roof members. The solar panels should be mounted parallel (max 10 inches) to the roof surface.

| Array Name | Connection Type | Fastener                                                      | Max Anchorage Spacing |
|------------|-----------------|---------------------------------------------------------------|-----------------------|
| Array 1    | Comp Mount      | 5/16" lag screw (2.5"<br>embedment) into roof<br>substructure | 48"                   |

#### Installation Instructions

Solar panels and the equipment shall be installed per the manufacturer's installation specifications. Improper installation will void this certification. Deviations from the approved structural plans (including equipment substitutions) are not allowed without written approval from Right Angle Engineering. Prior to installation, the installer should:

- Confirm that the existing structure matches the information provided in the structural survey, the approved installation plans and this certification.
- Identify discrepancies between this certification and the approved installation plans. If found, then this certification shall govern.
- Identify structural elements that are dangerous (cracked, broken, excessive sag, signs of overstress, rot,decay, fire, water). If found, installation shall cease until those elements are adequately abated and made to comply with the referenced building code.
- Verify that both the existing structure and the solar addition has been permitted through the AHJ.

#### STRUCTURAL CERTIFICATION

I certify the addition of solar panels on the roof of this structure does not cause the structure to become unsafe or make it generally less compliant with the life-safety requirements of the referenced building code. Based on the evaluation methods described below, for the loads that exist at this site, the existing framing will safely support the new solar panels if they are installed and attached correctly. Electrical design is not included in this certification.

| Array Name | Certification Method                                            | Retrofits     |
|------------|-----------------------------------------------------------------|---------------|
| Array 1    | Prescriptive method North Carolina Existing Building code 807.4 | None required |

Regards,



04/16/2024

Robert D. Smythe, P.E. Right Angle Engineering

## **Job Details**

| Roof Snow Load - ASCE 7-16                                      |           | Design Criteria                                              |            |
|-----------------------------------------------------------------|-----------|--------------------------------------------------------------|------------|
| Ground Snow Load (p <sub>g</sub> )<br>Section 7.2               | 10.0 psf  | <b>Wind Speed (V<sub>ult</sub>)</b><br>Local Design Criteria | 119.0mph   |
| Exposure Factor (C <sub>e</sub> )                               | 0.9       | Exposure Category                                            | С          |
| Table 7.3-1                                                     |           | Risk Category                                                | 2          |
| <b>Thermal Factor (C<sub>t</sub>)</b><br>Table 7.3-2            | 1.1       | Mean Roof Height                                             | 20 ft      |
| Importance Factor (/)                                           |           | Roof Type                                                    | Gable Roof |
| Table 1.5-2                                                     | 1         | Building Type                                                | Enclosed   |
| Flat Roof Snow Load (p <sub>f</sub> )<br>Equation 7.3-1         | 11.93 psf |                                                              |            |
| Non-Slippery Surface Slope Factor                               |           | Roof Live Load                                               |            |
| $(C_s)$ Figure 7.4-1                                            | 1         | Existing Roof Live Load<br>ASCE 7-16 Table 4.3-1             | 20 psf     |
| Slippery Surface Slope Factor (C <sub>s</sub> )<br>Figure 7.4-1 | 0.73      | Roof Live Load with Solar Panels                             | 0.0 psf    |
| Roof Snow Load<br>Equation 7.4-1                                | 11.93 psf |                                                              |            |
| Reduced Snow Load (Slippery<br>Surface)<br>Equation 7.4-1       | 8.75 psf  |                                                              |            |
| <sup>1</sup> Roof Dead Load                                     |           |                                                              |            |
| Asphalt Shingles                                                | 2.0 psf   | No Drywall                                                   | 0.0 psf    |
| 5/8" Plywood Sheathing                                          | 2.0 psf   | Solar Panel Array                                            | 2.8 psf    |
| Roof Framing                                                    | 4 psf     | Dead Load Without Panels                                     | 9.2 psf    |
| Insulation                                                      | 1.2 psf   |                                                              |            |

<sup>1</sup>Roof Dead Load is taken from the worst case scenario dead load from all arrays of the job in order to provide a more conservative evaluation.

# Array 1

| Array Details                                                            |                           | GCP Zones                                                                            | 1/2e  | 2n/2r | 3r         |
|--------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|-------|-------|------------|
| Roof Framing                                                             | Pre-Manufactured<br>Truss | GC                                                                                   | 4.5   | /3e   | 2.0        |
| Spacing                                                                  | 24.0"                     | Figure 30.3-(2A-5B)                                                                  | -1.5  | -2.5  | -3.6       |
| Beam Span                                                                | 22.0'                     | <b>Design Pressure Up [psf]</b><br>Equation 29.4-7 $\gamma_a$ =0.75 $\gamma_F$ =1.0, | -31.1 | -51.8 | -74.6      |
| Roof Pitch                                                               | 26°                       | Factored Design Pressure                                                             | -17.1 | -29.6 | -43.3      |
| Solar Rails                                                              | Pegasus Rail              | Up [psf]                                                                             |       |       |            |
| Module Type                                                              | Q.PEAK DUO BLK            | ASD LC (.6D + .6W)                                                                   |       |       |            |
|                                                                          | ML-G10+ 405               | Exposed Design Pressure                                                              | -46.6 | -77.7 | -111.<br>9 |
| Module Wind rating [psf] Safety Factor = 1.5                             | 55.69                     | <b>Up [psf]</b><br>$\gamma_a = 0.75 \gamma_E = 1.5,$                                 |       |       |            |
| Panel Quantity                                                           | 6                         | Design Pressure Down<br>[psf]                                                        | 10.4  | 10.4  | 10.4       |
| Panel Array Area                                                         | 126.81 ft <sup>2</sup>    | Tributary Area [ft <sup>2</sup> ]                                                    | 37.5  | 22.5  | 15.4       |
| Panel Orientation                                                        | Portrait                  | Maximum Connection                                                                   |       |       |            |
| Lag Screw Embedment                                                      | 2.5"                      | Spacing [in]                                                                         | 146   | 88    | 60         |
| Roof Attachment Type                                                     | Comp Mount 5/16" lag      | Maximum Rail Span [in]                                                               | 67    | 67    | 61         |
|                                                                          | screw                     | Maximum Rail Cantilever                                                              | 16    | 16    | 16         |
| Shear Capacity                                                           | 190.0 lbs                 | [in]                                                                                 | 10    | 10    | 10         |
| NDS 2015 Table 12K                                                       | Design Connection         |                                                                                      | 48    | 48    | 48         |
| Pullout Capacity NDS 2015 Table 12K                                      | 665.0 lbs                 | Spacing [in]                                                                         |       |       |            |
| Velocity Pressure                                                        |                           | Deign Connection Spacing<br>(exposed) [in]                                           | 67    | 48    | 24         |
| Equation 26.10-1 ( $K_z$ =0.9, $K_{ht}$ =1,<br>$K_d$ =0.85, $K_e$ =0.99) | 27.61 psf                 |                                                                                      |       |       |            |

| Prescriptive Method: North Carolina Existing Building Code 807.4 |            |  |
|------------------------------------------------------------------|------------|--|
| Total load on member without solar                               | 1372.4 lbs |  |
| Total load on member with solar                                  | 1372.4 lbs |  |
| Percentage of total design load on member with solar             | 1.0%       |  |

The 2018 North Carolina Existing Building section 807.4 indicates that alterations to an existing building that results in less than a 10.0% increase in the total stress may be performed without a structural evaluation of the existing building. As demonstrated in the above calculations, the additional weight of the solar panels will be less than 10.0% increase in the gravity loading and therefore stress on the existing roof framing. Load case before and load case after solar panels have been added have both been considered.