Patented. Copyright 2020-2024 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is: RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA®.

tel: 540.313.5317 - email: info@iRooFA.solar

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: Gabriella Alban, 95 Dive Bomb St, Lillington, NC 27546

Prepared for:

Freedom Solar, LLC 4801 Freidrich Ln, Ste 100 - Austin, TX 78744

Calculation Report Index

Pages **Description**

> 1 Cover 2-4 Loading Summary

Roof Structural Calculations for PV Solar Installation

5-9 Location: MP 1

10-10 **Snow Loading Calculations** Truss FEA Calculations 11-12

Project Number: 36.113633, Rev. 0

Report Date: 01/31/2024 Report Prepared by:

Richard Pantel, P.E. NC License No. 43326 Sealed 01/31/2024

Digitally signed by Richard Pantel BFCA00007095, cn=Richard Pantel Date: 2024.01.31 16:35:10 -05'00'

Loading Summary

Exposure and Occupancy Categories					
В		Exposure Category (ASCE 7-16 Table 26.7.3, Page 274)			
ll l		Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 5)			

	Wind Loading:							
v 118 mph ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(118 mph, 50 vear wind MRI)]								
qz	21.13	psf	Velocity qz, calculated at height z [ASD]					

	Snow Loading							
pg	pg 15 psf Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 56-60)							
Total Snow Load								
ps	15.00	psf	Effective snow load on roof and modules					

Module Data							
Mission S	Solar: MSE3	895SX9R					
Dimensions	mm	ft	in				
Length	1,907	6.26	75.08				
Width	1,054	3.46	41.50				
Area (m^2, ft^2)	2.0	21.64					
Weight	kg	lb					
Module	22.00	48.50					

Roof Panel (Cladding) Loading Sum	Module Loading Summary				
Support Point Loads		Upward	Upward	Upward	Downward
Roof Zones		1,2e,2r	2n,3r	3e	All
Net load per module	lb	-170	-223	-302	237

Positive values indicate net downward force

Stanc	ner Pull-ou	it and Spac	ing Calcul	ations		
Framing spacing			ft	2.00		
Rails / Module			ea	2		
Max proposed stanchi	on span		ft	4.00		
# fasteners per stanch	ion			1		
Bolt thread embedmer	nt depth		in	3	1	
Safety Factor	-			1.10	1	
Pull-out for 5/16 thread	ded fastene	rs	lb/in	220	1	
Factored max fastener	lb	599	1			
Fastener details <i>Material</i> Stainless			Size	5/16	Predril	
Max stanchion uplift ca	lb	618				
Max support point uplit	lb	599	1			

Predrill hole 0.16" dia or use self tapping

Roof Zones		1,2e,2r	2n,3r	3e	
Net lift per module	lb	170	223	302	
Min tot bolt thread emi	pedment depth rq'd	in	0.85	1.12	1.52
Net uplift pressure	7. 0.60D - 0.6W	psf	-6.78	-8.92	-12.08
Allowable lift area / sup	oport point	sf	88.34	67.14	49.56
Max rail span per fram	ing spacing	ft	4.00	4.00	4.00
Landscape Modules				_	
Length along rafter		ft	3.46		
Lift calc'ed max stand	ft	> 6	> 6	> 6	
Max stanchion EW spacing		ft	4.00	4.00	4.00
Maximum module area / support point		sf	6.92	6.92	6.92
Factored lift per support point		lb	-47	-62	-84
Portrait Modules			_		
Length along rafter	ft	6.26			
Lift calc'ed max stanchion EW spacing		ft	> 6	> 6	> 6
Max stanchion EW spacing		ft	4.00	4.00	4.00
Maximum module area / support point		sf	12.51	12.51	12.51
Factored lift per supp	ort point	lb	-85	-112	-151

Stanchion support threaded fastener sizes are indicated in the Module Loading Summary table above. Lift forces were determined from GCp and other coefficients contained in the ASCE nomographs

Conclusions

We were asked to review the roof of Gabriella Alban, located at 95 Dive Bomb St, Lillington, NC, by Freedom Solar, LLC, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure was field measured by Freedom Solar, LLC on 01/30/2024. The attached framing analyses reflect the results of those field measurements combined with the PV solar module locations shown on the PV solar roof layout design prepared by Freedom Solar, LLC. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

The Pegasus PSR-B Rail w SkipRail racking and Pegasus Solar InstaFlash PIF-RB0 stanchions were selected for this project by Freedom Solar, LLC. The racking and support stanchions shall be placed as shown on their plans, dated 01/31/2024, and shall be fastened to the roof framing using fastener sizes indicated in this report. Rack support spacing shall be no more than that shown above. Note that support points for alternating rows shall share the same truss. Intermediate rows shall move the support points laterally to the next truss. The support rail can be cantilevered up to 1/3 of the maximum span between modules. 1/3 maximum span = 16.00 inches.

Google Location Map

Framing Summary

Based upon the attached calculations, the existing roof's framing system is capable of supporting the additional loading for the proposed PV solar system along with the existing building and environmental loads. No supplemental roof framing structural supports are required. Minimum required anchorage fastening is described above.

Wood fastener notes: 1) Fastener threads must be embedded in the side grain of a roof support structural member or other structural member integrated into the building's structure. 2) Fastener must be located in the middle third of the structural member. 3) Install fasteners with head and where required, washer, flush to material surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) IBC 2018
- 3) 2018 NC Building Code
- 4) American Wood Council, NDS 2018, Table 12.2A, 12.3.3A.
- 5) American Wood Council, Wood Structural Design, 1992, Figure 6.

Location: MP 1

Member: Truss - Total Length 24 ft, Unsupported 24 ft

Geometric Data					
Θ	deg.	30.00	Angle of roof plane from horizontal, in degrees		
ω	deg.	0.00	Angle the solar panel makes with the roof surface		
L	ft.	36.42	Length of roof plane, in feet (meters)		
W	ft.	20.50	Plan view width of roof plane, in feet (meters)		
h	ft.	24.33	Average height of roof above grade, in feet (meters)		

Roof Wind Zone Width				
	use, a =	3.00	ft	

Wind Veloc	Wind Velocity Pressure, q_z evaluated at the height z						
$q_z =$	21.13	psf	f Vasd q_z = 12.89 psf Basic wind pressure				
V=	118		mph				

Framing Data						
Wood type	US Spruce					
Wood source, moisture content White 0.12%						
# Framing Members / Support		1				
Rafter / Truss OC	in	24.00				
Member Total Length	ft	24.00				

2	# Rafters / Rack Support Width
4.00	Rack Support Spacing (ft)
48	Max. Rack Support Spacing (in)
3	Max # of mod's / Top truss chord

Member Properties	Member
Name	(1) 2x4
Repetitive Member Factor (Cr)	1.15

* Mem properties based upon field measurements

Top truss chord

Module Pr	nysical Data	1		
Weight	kg	lb	psf load	
Module	22.00	48.50	2.24	
4 Stanchions	1.36	3.0	0.14	
Existing Dead Loads	Units	Value		Description
Roof Deck & Surface	psf	4.40	Truss memb	bers' self weight added to FEA analys

Rack Support Spacing					
Across rafters	ft	4.0			
Along rafter slope	ft	6.3			
Area / support point	sf	12.5			
Uphill gap between modules	in	1.0	0.08	ft	

Member Total Length	ft	24.00	
Maximum member free span	ft	24.00	Top truss chord span

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes.

$$\Theta >= 7 \text{ deg}$$
 TRUE

Min.d1: Exposed FALSE
Max.d1: Exposed TRUE

1.5(Lp) = 5.19

Use EXPOSED for uplift calculations

yE = 1.5 ya = 0.67

 $p = qh(GCp) (\gamma_e) (\gamma_a) (lb/ft2)$ (29.4-7)

Zones	1,2e,2r	2n,3r	3e
p, Windload (psf)	-18.86	-22.43	-27.71

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)						
Zones		1,2e,2r	2n,3r	3e	All Zones	
2.2 SYMBOLS AND NOTATION		Module	Module	Module	Downward	
		Upward	Upward	Upward	Downward	
D = dead load of PV Module + Stanchion		2.38	2.38	2.38	2.38	
S = snow load		15.00	15.00	15.00	15.00	
W = wind load		-18.86	-22.43	-27.71	9.87	

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward
Use this loading combination for DOWNWARD	for Propos	ed PV Dead	l Load	
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	17.38	17.38	17.38	21.82
Module Support point load (lb)	217	217	217	273
Cr Factored Module Support point load (lb)	189	189	189	237

Use this loading combination for UPWARD fo	r Proposed	PV Dead L	.oad	
7. 0.60D - 0.6W	-6.78	-8.92	-12.08	7.57
Module Support point load (lb)	-85	-112	-151	95

DOWNWARD

Presume loading directly over member.

Treeding and early ever members				
Combined Dead and Wind Pressure Downward Loading				
Top truss chord span				

PV Module Row	Point load loc's from Left support	Point Load #'s	Module Support Point Load	Comment	Module Orientation
	ft from left		lb		
1	3.34		237		Portrait
1	9.60			Support placed on adjoining truss	Portrait
2	9.68			Support placed on adjoining truss	Portrait
2	15.94		237		Portrait
3	16.02		237		Portrait
3	22.28			Support placed on adjoining truss	Portrait


Truss Data and Loading for	Truss Data	and	Loading	for	MP 1	
----------------------------	-------------------	-----	---------	-----	------	--

Roof slope (degrees)	30.00
Top ridge height above floor plane	12.00

Length of roof plane	24.00
Length of floor plane	20.50

			ire	
Roof Plane		Floor Plane		
Mem #	Mem Type	Mem #	Mem Type	
1	2x4	3	2x4	
2	2x4	4	2x4	

russ Segments								
	Diagonals		Diagonals					
]	Mem #	Mem Type	Mem #	Мет Туре				
]	5	2x4	7	2x4				
	6	2x4						

Snow Loading Analysis

where:

Fully Exposed Exposure category Exposure Factor, Ce (ASCE 7-16 Table 7.3-1, Page 61) Ce 0.9 Thermal Factor, Ct (ASCE 7-16 Table 7.3-2, Page 61) Ct 1.0 ls 1.0 Snow Importance Factor, Is (ASCE 7-16 Table 1.5-2, Page 5) Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 56-60) 15 p_g 0.7CeCtIsPg Flat Roof Snow Load, pf (ASCE 7-16 Table 7.3-1, Page 61) 9.45 psf but where Pf is not less than the following: Minimum Snow Load pm (ASCE 7-16 Table 7.3.4, Page 62) 15 When $Pg \le 20$ psf, then use $Pf = Pg \times Is$ p_{m} 15 psf. Resultant Snow pressure to be used with Roof slope factor below Sloped Roof Snow Load ps (ASCE 7-16 Table 7.4, Page 61) p_s C_sp_f Roof Type Warm Roofs Roof slope factor Cs for Warm Roofs, where Ct = 1.0

Roof slope factor Cs for Warm Roofs, where Ct = 1.0

Roof surface condition = Slippery Roof

 C_s = 1.00 Roof Slope Factor, Cs (ASCE 7-16 Table 7.4-1a, Page 62)

Total Snow Load

p_s = **15.00 psf** Roof snow load