

PV Letters

January 18, 2024

Contractor Name: Top Tier Solar Solutions
Contractor Address: 1530 Center Park Dr #2911,
Charlotte, NC 28217

Subject: Proposed Solar Panel Installation
Stephen Register Residence, 3495 Rawls Church Rd, Fuquay-Varina, NC
DC System Size: 10.270 kW
PV Letters Job #004-5087

To Whom it May Concern,

We have reviewed information, provided by our client, related to the proposed solar panel installation at the above-referenced address. The purpose of the review was to determine if the existing roof is structurally adequate for the proposed installation. Based on our review and analysis of the given information, and in accordance with governing building codes, it is our professional opinion that the existing structure is permitted to remain unaltered for the proposed solar installation.

Design Parameter Summary

Governing Building Code: 2018 North Carolina Residential Code
Risk Category: II
Wind Exposure: B
Design Wind Speed: 115 mph (per city/county requirements)
Ground Snow Load: 15 psf (per city/county requirements)

Roof Information

Roof Structure: 2x6 Rafters @ 16" O.C.
Roofing Material: Asphalt Shingles
Roof Slope: 42 degrees

Roof Connection Details

Wood Screws: (2) #14 Self-Drilling Screw with a min. 2.5" embedment into rafter only, at 64" O.C. max
Stagger attachments to avoid overloading any individual rafter.

Engineering Analysis

The proposed installation - including weight of panels, racking, mounts, and inverters where applicable - will be approximately 3 psf. In the areas where panels are installed, roof live loads will not be present. Also, where applicable, roof snow loads will be reduced because the slippery surface of the panels will cause the roof to shed additional snow loads relative to the existing roof surface. The reduction of roof live and snow load is adequate to fully or partially compensate for the addition of the panel installation. Because the member forces in the area of the solar panels are not increased by more than 5%, and so per provisions in the adopted building codes, the structure need not be altered for gravity loading.

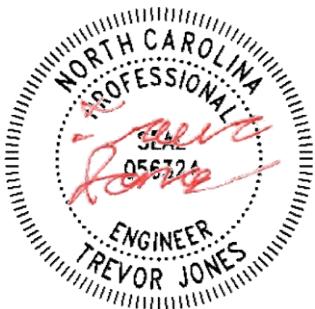
The proposed installation will be 6" max. above the roof surface (flush mounted) and parallel to the roof surface. Therefore, any increase in wind loading on the building structure from the solar panel installation is expected to be negligible. Wind is the governing lateral load case. Because the increase in lateral loading is not increased by more than 10%, per provisions in the adopted building codes, the structure need not be altered for lateral loading.

Wind uplift on the panels has been calculated in accordance with the relevant provisions of ASCE 7-16. This loading has been used to verify the adequacy of the connection specified above. Connection locations should be in accordance with design drawings.

IronRidge XR10 rails will support the modules and will fasten to the roof structure with IronRidge QuickMount Halo Ultragrip along the rail.

Conclusion

The roof structure need not be altered for either gravity loading (including snow) or lateral loading (including wind). Therefore, the existing structure is permitted to remain unaltered. Connections to the roof must be made per the "Roof Connection Details" section above. Copies of all relevant calculations are enclosed.


Limitations and Disclaimers

The opinion expressed in this letter is made in reliance on the following assumptions: the existing structure is in good condition; the existing structure is free from defects in design or workmanship; and the existing structure was code-compliant at the time of its design and construction. These assumptions have not been independently verified, and we have relied on representations made by our client with respect to the foregoing. The undersigned has not inspected the structure for defects, although we have reviewed the information provided by our client, including pictures where applicable.

Electrical design is excluded from this analysis. Waterproofing is the sole responsibility of the installer and is also excluded from this analysis. Solar panels must be installed per manufacturer specifications. Structural design and analysis of the adequacy of solar panels, racks, mounts, and other components is performed by each component's respective manufacturer; the undersigned makes no statement of opinion regarding such components. This letter and the opinions expressed herein are rendered solely for the benefit of the permitting authority (city or county building department) and your office, and may not be utilized or relied on by any other party.

If you have any questions or concerns, please contact me at (208)-994-1680, or email me directly at Trevor@pvletters.com.

Sincerely,
Trevor A. Jones, P.E.

1/18/2024

PV Letters

Standard Loading Comparison

This calculation justifies the additional solar load by comparing existing to proposed gravity loads in the location of the solar panels.

Without Solar With Solar

Dead Load

	<u>Without Solar</u>	<u>With Solar</u>
Asphalt Shingles	5	5
1/2" Plywood	1	1
Framing	2	2
Insulation	--	--
1/2" Gypsum Ceiling	--	--
M,E, & Misc	--	--
Solar Panel	0	3
Total Dead Load	8	11

Snow Load

Ground Snow Load, P_g	15	psf
Exposure Factor, C_e	0.90	
Thermal Factor, C_t	1.1	
Importance Factor, I_s	1	
Flat Roof Snow Load	10	Eqn. 7.3-1 or jurisdiction min.
Slope	42	degrees
Unobstructed Slippery Surface?	No	Yes
Slope Factor, C_s	0.86	0.47
Sloped Roof Snow Load	9.0	psf

Live Load

Roof Live Load	20	0	psf
----------------	----	---	-----

Load Combination

D + Lr	28.0	11.0	psf
D + S	17.0	15.9	psf

Max. Load

% of original	28.0	15.9	psf
56.62%			

Result:

Because the total forces are decreased, per the relevant code provisions stated in the body of the letter, the existing roof structure is permitted to remain unaltered.

PV Letters

Wood Screw Calculation (per ASCE 7-16)

This calculation justifies the connection of the solar panels to existing roof members, by showing the connection capacity is equal to or greater than the uplift force demands.

Connection Demand

Spacing perpendicular to rail, in
 Roof Angle, degrees
 Roof Layout
 Wind Speed, mph
 Exposure Coefficient, K_z
 Topographic Factor, K_{zt}
 Directionality Factor, K_d
 Elevation Factor, K_e
 Velocity Pressure q_z , psf

38
42
Gable
115
0.57
1.00
0.85
0.99
16.3

Zones:

Spacing parallel to rail, in
 GC_p (max)
 Exposed Panels? ($\gamma_E = 1.5$)
 Effective Wind Area on each con., ft^2
 Pressure Equalization Factor, γ_a
 Uplift Force, psf
 Max. Uplift Force / Connection (0.6 WL), lbs
 Solar Dead Load (0.6 DL). Lbs
 Max. Uplift Force (0.6 WL - 0.6 DL), lbs

<u>1</u>	<u>2n, 2r, 2e</u>	<u>3r, 3e</u>
64	64	64
1.58	1.83	2.27
No	No	No
16.7	16.7	16.7
0.71	0.71	0.71
18.3	21.2	26.3
183.1	212.3	263.3
30.0	30.0	30.0
153.1	182.2	233.2

Connection Capacity

Attachment FTG
 Attachment location
 Fastener Type
 Fastener Diameter, in
 Embedment Length, in
 Lumber Species & Grade
 Nominal Withdrawal Capacity W , lbs
 # of Screws
 Load Duration Factor C_d
 Screw Adj. Withdrawal Cap. W' , lbs
 Attachment FTG Strength with C_d , lbs

IronRidge QuickMount Halo Ultragrip
Framing
Wood Screw
0.242
2.5
SPF #2 (Assumed)
304
2
1.6
973
1606

Max applied load, lbs
 Max allowable load, lbs

233
973

Compare Adjusted Withdrawal Capacity to ASD Factored Demand

<u>Zones:</u>	<u>1</u>	<u>2n, 2r, 2e</u>	<u>3r, 3e</u>
	O.K.	O.K.	O.K.