Patented. © Copyright © 2020 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is:

RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA™.

www.iroofa.solar

tel: 540.313.5317 - email: info@iRooFA.solar

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: Frederick J Bushey, 271 Horse Whisperer Lane, Lillington, NC 27546

Prepared for:

Freedom Solar, LLC

4801 Freidrich Ln, Ste 100 - Austin, TX 78744

Calculation Report Index

Pages Description

1 Cover 2-4 Loading Summary

Roof Structural Calculations for PV Solar Installation

5-9 Location: MP 1

10-10 Snow Loading Calculations13-14 Truss FEA Calculations

Project Number: 36.113163, Rev. 0 Report Date: 11/21/2023 Report Prepared by:

Richard Pantel, P.E. NC License No. 43326 Sealed 11/21/2023

Richard Pante DN: c=US, o=TECTONICORP PC, dnQualifier=A01410D00000178D0DC

Digitally signed by Richard Pantel DN: c=US, o=TECTONICORP PC, dnQualifier=A01410D00000178D0DC BFCA00007095, cn=Richard Pantel Date: 2023.11.21 16:29:53 -05'00'

Cover

Loading Summary

Exposure and Occupancy Categories					
В		Exposure Category (ASCE 7-16 Table 26.7.3, Page 266)			
II		Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 4)			

Wind Loading:							
V	117	mph	ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(117 mph, 50				
		,	year wind MRI)]				
qz	21.00	psf	Velocity qz, calculated at height z [ASD]				

	Snow Loading						
pg	pg 10 psf Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53)						
Total Snow	Total Snow Load						
ps 10.00		psf	Effective snow load on roof and modules				

Module Data						
Mission S	Solar: MSE3	895SX9R				
Dimensions	mm	ft	in			
Length	1,907	6.26	75.08			
Width	1,054	3.46	41.50			
Area (m^2, ft^2)	2.0	21.64				
Weight	kg	lb				
Module	22.00	48.50				

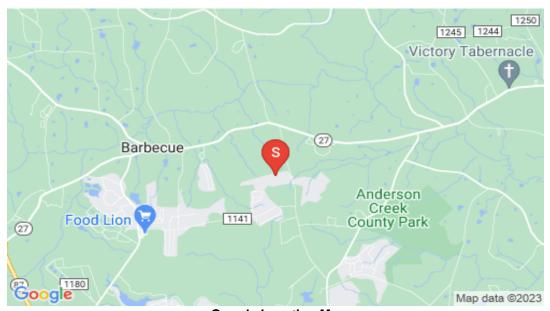
Roof Panel (Cladding) Loading Sum	Module Loading Summary				
Support Point Loads		Upward	Upward	Upward	Downward
Roof Zones		1,2e,2r	2n,3r	3e	All
Net load per module	lb	-164	-216	-293	182

Positive values indicate net downward force

Stand	hion Faste	ner Pull-ou	it and Spac	cing Calcul	ations
Framing spacing			ft	2.00	
Rails / Module			ea	2	
Max proposed stanchi	on span		ft	4.00	
# fasteners per stanch	ion			1	1
Bolt thread embedmer	nt depth		in	2.5	1
Safety Factor				1.10	1
Pull-out for 5/16 thread	ded fastene	rs	lb/in	220	1
Factored max fastener	r uplift capa	city	lb	499	1
Fastener details	Material	Stainless	Size	5/16	Predril
Max stanchion uplift ca	lb	618	1		
Max support point upli	lb	499	1		

Predrill hole 0.16" dia or use self tapping

Roof Zones		1,2e,2r	2n,3r	3e	
Net lift per module	lb	164	216	293	
Min tot bolt thread emi	pedment depth rq'd	in	0.82	1.08	1.47
Net uplift pressure	7. 0.60D - 0.6W	psf	-6.53	-8.63	-11.72
Allowable lift area / sup	oport point	sf	76.38	57.84	42.56
Max rail span per fram	ing spacing	ft	4.00	4.00	4.00
Landscape Modules					
Length along rafter	ft	3.46			
Lift calc'ed max stand	ft	> 6	> 6	> 6	
Max stanchion EW s	ft	4.00	4.00	4.00	
Maximum module are	sf	6.92	6.92	6.92	
Factored lift per support point		lb	-45	-60	-81
Portrait Modules					
Length along rafter	ft	6.26			
Lift calc'ed max stand	ft	> 6	> 6	> 6	
Max stanchion EW s	ft	4.00	4.00	4.00	
Maximum module are	sf	12.51	12.51	12.51	
Factored lift per supp	ort point	lb	-82	-108	-147


Stanchion support threaded fastener sizes are indicated in the Module Loading Summary table above. Lift forces were determined from GCp and other coefficients contained in the ASCE nomographs

Conclusions

Princeton Engineering was asked to review the roof of Frederick J Bushey, located at 271 Horse Whisperer Lane, Lillington, NC, by Freedom Solar, LLC, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure was field measured by Freedom Solar, LLC on 11/17/2023. The attached framing analyses reflect the results of those field measurements combined with the PV solar module locations shown on the PV solar roof layout design prepared by Freedom Solar, LLC. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

Freedom Solar, LLC selected the Pegasus Max Rail racking with Pegasus Solar InstaFlash PIF-RBDT stanchions for this project. The racking and support stanchions shall be placed as shown on their plans, dated 11/20/2023, and shall be fastened to the roof framing using fastener sizes indicated in this report. Rack support spacing shall be no more than that shown above. Note that support points for alternating rows shall share the same truss. Intermediate rows shall move the support points laterally to the next truss. The support rail can be cantilevered up to 1/3 of the maximum span between modules. 1/3 maximum span = 16.00 inches.

Google Location Map

Framing Summary

Based upon the attached calculations, the existing roof's framing system is capable of supporting the additional loading for the proposed PV solar system along with the existing building and environmental loads. No supplemental roof framing structural supports are required. Minimum required anchorage fastening is described above.

Wood fastener notes: 1) Fastener threads must be embedded in the side grain of a roof support structural member or other structural member integrated into the building's structure. 2) Fastener must be located in the middle third of the structural member. 3) Install fasteners with head and where required, washer, flush to material surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) IBC 2018
- 3) 2018 NC Building Code
- 4) American Wood Council, NDS 2018, Table 12.2A, 12.3.3A.
- 5) American Wood Council, Wood Structural Design, 1992, Figure 6.

Location: MP 1

Member: Truss - Total Length 24 ft, Unsupported 24 ft

Geometric Data					
Θ	deg.	34.00	Angle of roof plane from horizontal, in degrees		
ω	deg.	0.00	Angle the solar panel makes with the roof surface		
L	ft.	43.33	Length of roof plane, in feet (meters)		
W	ft.	19.58	Plan view width of roof plane, in feet (meters)		
h	ft.	24.33	Average height of roof above grade, in feet (meters)		

Roof Wind Zone Width			
	use, a =	3.00	ft

Wind Velo	Wind Velocity Pressure, q_z evaluated at the height z						
$q_z =$	21.00	psf	of $Vasd q_z = 12.61 psf$ Basic wind pressure				
V=	117				n	nph	

Framing Data						
Wood type	US S	oruce				
Wood source, moisture content	White 0.12%					
# Framing Members / Support		1				
Rafter / Truss OC	in	24.00				
Member Total Length	ft	24.00				

2	# Rafters / Rack Support Width
4.00	Rack Support Spacing (ft)
48	Max. Rack Support Spacing (in)
3	Max # of mod's / Top truss chord

Member Properties	Member
Name	(1) 2x4
Repetitive Member Factor (Cr)	1.15

* Mem properties based upon field measurements

Top truss chord

Module Pr	nysical Data	1		
Weight	kg	lb	psf load	
Module	22.00	48.50	2.24	
4 Stanchions	1.36	3.0	0.14	
Existing Dead Loads	Units	Value		Description
Roof Deck & Surface	psf	4.40	Truss members' self weight added to FEA analys	

Rack Support Spacing	and Loadir	ng			
Across rafters	ft	4.0			
Along rafter slope	ft	6.3			
Area / support point	sf	12.5			
Uphill gap between modules	in	1.0	0.08	ft	

Member Total Length	ft	24.00	
Maximum member free span	ft	24.00	Top truss chord span

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes.

$$\Theta >= 7 \text{ deg}$$
 TRUE

Min.d1: Exposed Max.d1: Exposed TRUE

1.5(Lp) = 5.19

Use EXPOSED for uplift calculations

 $\gamma E = \frac{1.5}{\gamma a} = 0.67$

 $p = qh(GCp) (\gamma_E) (\gamma_a) (lb/ft2)$ (29.4-7)

Zones	1,2e,2r	2n,3r	3e
p, Windload (psf)	-18.46	-21.95	-27.11

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)						
Zones	1,2e,2r	2n,3r	3e	All Zones		
2.2 SYMBOLS AND NOTATION		Module	Module	Downward		
2.2 STIVIBULS AIND INOTATION	Upward	Upward	Upward	Downward		
D = dead load of PV Module + Stanchion	2.38	2.38	2.38	2.38		
S = snow load	10.00	10.00	10.00	10.00		
W = wind load	-18.46	-21.95	-27.11	9.66		

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward	
Use this loading combination for DOWNWARD for Proposed PV Dead Load					
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	12.38	12.38	12.38	16.73	
Module Support point load (lb)	155	155	155	209	
Cr Factored Module Support point load (lb)	135	135	135	182	

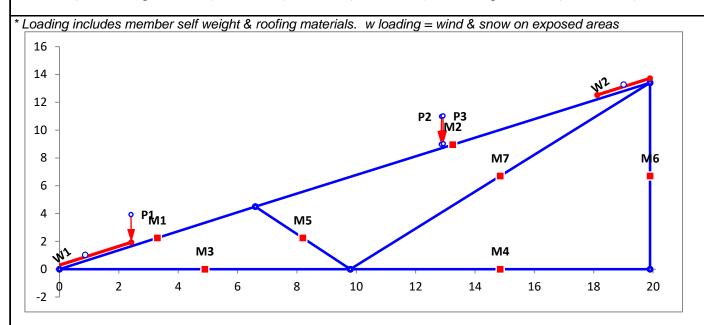
Use this loading combination for UPWARD for Proposed PV Dead Load						
7. 0.60D - 0.6W	-6.53	-8.63	-11.72	7.57		
Module Support point load (lb)	-82	-108	-147	95		

DOWNWARD

Presume loading directly over member.

. resume reading amount of the members						
Combined Dead and Wind Pressure Downward Loading						
9						
Top truss chord span						

PV Module Row	Point load loc's from Left support	Point Load #'s	Module Support Point Load	Comment	Module Orientation
	ft from left		lb		
1	2.92		182		Portrait
1	9.18			Support placed on adjoining truss	Portrait
2	9.26			Support placed on adjoining truss	Portrait
2	15.52		182		Portrait
3	15.60		182		Portrait
3	21.86			Support placed on adjoining truss	Portrait


Truss Data	and Load	ling for	MP 1
------------	----------	----------	------

Roof slope (degrees)	34.00
Top ridge height above floor plane	13.42

Length of roof plane	24.00
Length of floor plane	19.58

			I r	
Roof Plane		Floor Plane		
Mem #	Mem Type	Mem #	Мет Туре	
1	2x4	3	2x4	
2	2v1	1	2v4	

russ Segments						
	Diagonals		Diagonals			
	Mem #	Mem Type	Mem #	Мет Туре		
]	5	2x4	7	2x4		
	6	2x4				

Snow Loading Analysis

where:

Fully Exposed Exposure category Exposure Factor, Ce (ASCE 7-16 Table 7.3-1, Page 58) Ce 0.9 Thermal Factor, Ct (ASCE 7-16 Table 7.3-2, Page 58) Ct 1.0 ls 1.0 Snow Importance Factor, Is (ASCE 7-16 Table 1.5-2, Page 5) Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53) 10 p_g 0.7CeCtIsPg Flat Roof Snow Load, pf (ASCE 7-16 Table 7.3-1, Page 58) 6.3 psf but where Pf is not less than the following: Minimum Snow Load pm (ASCE 7-16 Table 7.3.4, Page 53) 10 When $Pg \le 20$ psf, then use $Pf = Pg \times Is$ p_{m} 10 psf. Resultant Snow pressure to be used with Roof slope factor below Sloped Roof Snow Load ps (ASCE 7-16 Table 7.4, Page 54) p_s C_sp_f Roof Type Warm Roofs Roof slope factor Cs for Warm Roofs, where Ct = 1.0

Roof slope factor Cs for Warm Roofs, where Ct = 1.0

Roof surface condition = Slippery Roof

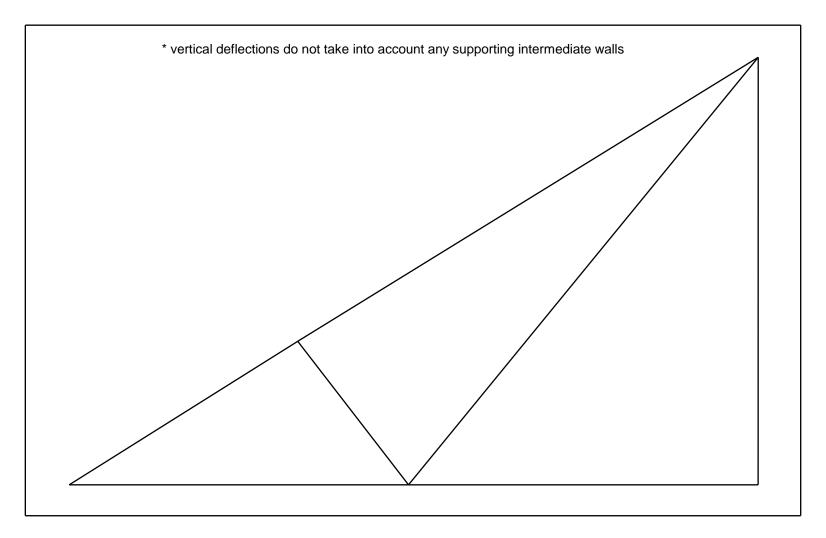
C_s = 1.00 Roof Slope Factor, Cs (ASCE 7-16 Table 7-2a, Page 36)

Total Snow Load

p_s = **10.00 psf** Roof snow load

FEA Calculation Results for Roof Plane MP 1 for Freedom Solar, LLC Client FREDERICK J BUSHEY

IDSPL - 2D Frame Analysis of a 2D frame subject to distributed loads, point loads and moments


Equilibrium check	FX	FY
Total applied forces	0.00	2605
Total output reactions	0.00	-2605
Output error	-1.56E-13	-4.55E-13

2.1E-05

	Node Results			Bean	n End Res	ults
Direction	Deflection	Reaction	Beam	Shear	Ax	BM
DX1	0.00E+00	-403	1-1	-1222	1321	3507
DY1	0.00E+00	-1652	1-2	-980	1156	-5545
RZ1	-4.30E-04	0	2-1	-1337	449	-9457
DX2	7.48E-04	0	2-2	80	-499	-21866
DY2	8.05E-04	0	3-1	102	0	-3507
RZ2	-1.17E-03	0	3-2	428	0	803
DX3	1.44E-03	0	4-1	0	0	0
DY3	0.00E+00	-153	4-2	0	0	0
RZ3	0.00E+00	-21139	5-1	-677	383	-158
DX4	0.00E+00	460	5-2	-689	366	-3912
DY4	0.00E+00	-768	6-1	57	32	-384
RZ4	0.00E+00	1072	6-2	57	-71	384
DX5	0.00E+00	-57	7-1	-3	524	-111
DY5	0.00E+00	-32	7-2	92	398	343
RZ5	0.00E+00	384				

			Maximum Deflections		
# of segments/beam	1		1.44E-03	-8.05E-04	
* vertical deflections do not take into account any supporting intermediate walls					

DX Beam Shear Ax DY RΖ Mom 0.00 -1222 3507 1321 0.00E+00 0.00E+00 -4.30E-04 7.99 -1033 -5265 1192 7.31E-04 -7.93E-04 -1.48E-03 2 0.00 -1337 -9457 449 7.48E-04 -8.05E-04 -1.17E-03 -134 2 9.70E-04 3.12E-04 -1.31E-02 16.00 -465 -13978 3 -3507 0.00E+00 0.00E+00 -4.30E-04 0.00 102 3 9.80 348 1221 0 0.00E+00 -7.18E-20 1.33E-04 0.00E+00 4 0.00 0 0.00E+00 0.00E+00 0 0 0.00E+00 4 10.10 0 0 0 0.00E+00 0.00E+00 -677 0.00E+00 0.00E+00 5 0.00 -158 383 0.00E+00 -3913 -8.05E-04 -1.16E-03 5 5.52 -686 370 7.48E-04 0.00E+00 6 0.00 57 -384 32 0.00E+00 0.00E+00 6.99E-07 8.85E-06 6 13.40 57 384 -58 1.44E-03 0.00 -3 524 0.00E+00 0.00E+00 0.00E+00 -111 16.78 82 348 411 1.44E-03 5.60E-07 2.63E-06

Scaled 2X Deflected Truss Plot
Roof Plane MP 1 for Freedom Solar, LLC Client FREDERICK J BUSHEY