Patented. Copyright 2020 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is:

RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA™.

tel: 540.313.5317 - fax: 877.455.5641 - email: info@iRooFA.solar

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: Anthony Desorbo; Location: 6615 Old Us Highway 421, Lillington, NC 27546

Prepared for:

Freedom Solar, LLC 4801 Freidrich Ln, Ste 100 - Austin, TX 78744

Calculation Report Index

<u>Pages</u> <u>Description</u>
1 Cover

2-4 Loading Summary

Roof Structural Calculations for PV Solar Installation

5-8 Location: MP 1

9-9 Snow Loading Calculations10-11 Truss FEA Calculations

Project Number: 36.111386, Rev. 0 Report Date: 07/19/2023 Report P

Report Prepared by:

Richard Pantel, P.E. NC License No. 43326

Loading Summary

Exposure and Occupancy Categories					
В		Exposure Category (ASCE 7-16 Table 26.7.3, Page 266)			
II		Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 4)			

	Wind Loading:							
	V	, 117 <i>mph</i>		ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(117 mph, 50				
l			•	year wind MRI)]				
١	qz	20.90	psf	Velocity qz, calculated at height z [ASD]				

	Snow Loading							
pg	pg 15 psf Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53)							
Total Snow Load								
ps 15.00		psf	Effective snow load on roof and modules					

Module Data						
WAAREE ENER	GIES LIMIT	TED: WSMI	D-400			
Dimensions	mm	ft	in			
Length	1,923	6.31	75.70			
Width	1,039	3.41	40.90			
Area (m^2, ft^2)	2.0	21.50				
Weight	kg	lb				
Module	22.00	48.50				

Roof Panel (Cladding) Loading Summary				Module Loading Summary			
	Upward	Upward	Upward	Downward			
	1,2e	2n,2r,3e	3r	All			
lb	-75	-159	-192	219			
		Upward 1,2e	Upward Upward 1,2e 2n,2r,3e Ib -75 -159	Upward Upward Upward 1,2e 2n,2r,3e 3r lb -75 -159 -192			

Positive values indicate net downward force

Lag Bolt Data	Size 5/16x2.20	Pre-drill 0.16" dia	Material Stainless

Rack Support Lag Bolt Pull-out Calculations in US Spruce Roof Framing							
Roof Zone		1,2e	2n,2r,3e	3r			
Bolt Pullout Per Module Connection	lb	75	159	192			
Number of Pullout Loads / Support		2	2	2			
Safety Factor		1.50	1.50	1.50			
Pull-out for 5/16 dia bolts	lb/in	206	206	206			
Min threaded inches embedment required	in	0.27	0.58	0.70			
Min threaded Inches embedment provided	in	1.20	1.20	1.20			
Min Lag Bolt length to use	in	2.20	2.20	2.20			

Stanchion support Lag Bolts sizes are indicated in the Module Loading Summary table above. Lift forces were determined from GCp and other coefficients contained in the ASCE nomographs

Conclusions

Princeton Engineering was asked to review the roof of Anthony Desorbo, located at 6615 Old Us Highway 421, Lillington, NC, by Freedom Solar, LLC, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure was field measured by Freedom Solar, LLC on 07/06/2023. The attached framing analyses reflect the results of those field measurements combined with the PV solar module locations shown on the PV solar roof layout design prepared by Freedom Solar, LLC. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

Freedom Solar, LLC selected the SunPower InvisiMount 6000 series racking system with QuickBolt 17662 stanchions for this project. The racking and support stanchions shall be placed as shown on their plans, dated 07/12/2023, and shall be fastened to the roof framing using lag bolt sizes indicated in this report. Rack support spacing shall be no more than that shown on each framing condition calculation. Note that support points for alternating rows shall share the same truss. Intermediate rows shall move the support points laterally to the next truss. The support rail can be cantilevered up to 1/3 of the maximum span between modules. 1/3 maximum span = 16.00 inches.

Google Location Map

Framing Summary

Based upon the attached calculations, the existing roof framing system is capable of supporting the additional loading for the proposed PV solar system along with the existing building and environmental loads. No supplemental roof framing structural supports are required. Minimum required anchorage bolting is described below.

Bracket to Roof Framing Lag Bolts

US Spruce framing material has a bolt pullout strength of 207 lb / inch of thread using the 5/16" dia. fasteners. In order to maintain at least a 1.5X Safety Factor for pullout, 1.2 inches of THREAD embedment are required. Use a 2.20" x 5/16" stainless lag bolt, or longer, in order to achieve the above specified embedment into each joist at each rail support point. Predrill with a 0.16" dia pilot hole.

Lag bolt/screws of a relatively small, 5/16 Inch diameter by 3 inches long can be embedded In the top 2x4 chord of a simple span member truss, with a required penetration minimum of 1.5" and a maximum of 2.5".

Notes: (1) Bolt threads must be embedded in the side grain of a roof support structural member or other structural member integrated into the building's structure. (2) Lag bolts must be located in the middle third of the structural member. (3) Install lag bolts with head and washer flush to surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) IBC 2018
- 3) 2018 NC Building Code
- 4) American Wood Council, NDS 2005, Table 11.2A, 11.3.2A.
- 5) American Wood Council, Wood Structural Design, 1992, Figure 6.

Location: MP 1

Member: Truss - Total Length 32 ft, Unsupported 32 ft

Roof Data						
θ	deg.	26.00	Angle of plane of roof from horizontal, in degrees			
L	ft.	79.50	Length of Building, in feet (meters).			
W	ft.	31.30	Width of Building, in feet (meters).			
h	ft.	19.00	Height of Building, in feet (meters).			

Roof Wind Zone Width					
	use, a =	3.13	ft		

Wind Veloc	Wind Velocity Pressure, q_z evaluated at the height z							
$q_z =$	20.90	psf	$Vasd q_z = 12.61 psf$ Basic wind pressure					
V=	117	mph						

Framing Data						
Wood type	US Spruce					
Wood source, moisture content	White 0.12%					
# Framing Members / Support		1				
Rafter / Truss OC	in	24.00				
Member Total Length	ft	32.00				

2	# Rafters / Rack Support Width
4.00	Rack Support Spacing (ft)
48	Max. Rack Support Spacing (in)
3	Max # of mod's / Top truss chord

Member Properties	Member
Name	(1) 2x4
Repetitive Member Factor (Cr)	1.15

* Mem properties based upon field measurements

Top truss chord

Module Data					
WAAREE ENERGIES LIMITED: WSMD-400					
Weight	kg	lb	psf load		
Module	22.00	48.50	2.26		
4 Stanchions	1.36	3.0	0.14		
Total Module and Support load	23.36	51.5	2.40		

Existing Dead Loads	Units	Value	Description
Roof Deck & Surface	psf	4.40	Truss members' self weight added to FEA analysis

Rack Support Spacing				
Across rafters	ft	4.0		
Along rafter slope	ft	6.3		
Area / support point	sf	12.6		
Uphill gap between modules	in	1.0	0.08	ft
Member Total Length	ft	32.00		
Maximum member free span	ft	32.00	Top truss cl	hord span

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

 γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes.

$$\Theta >= 7 \text{ deg}$$
 TRUE

	Exposed	FALSE
_	1.5(Lp) =	5.11
γE =	1	
γa =	0.67	

$$p = qh(GCp) (\gamma_E) (\gamma_a) (lb/ft2)$$
 (29.4-7)

Zones	1,2e	2n,2r,3e	3r
p, Windload (psf)	-12.46	-17.96	-20.18

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)					
Zones	1,2e	2n,2r,3e	3r	All Zones	
2.2 SYMBOLS AND NOTATION		Module	Module	Downward	
		Upward	Upward	Downward	
D = dead load of PV Module + Stanchion	2.40	2.40	2.40	2.40	
S = snow load	15.00	15.00	15.00	15.00	
W = wind load	-12.46	-17.96	-20.18	5.71	

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward	
Use this loading combination for DOWNWARD for Proposed PV Dead Load					
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	17.40	17.40	17.40	19.97	
Module Support point load (lb)	219	219	219	252	
Cr Factored Module Support point load (lb)	191	191	191	219	

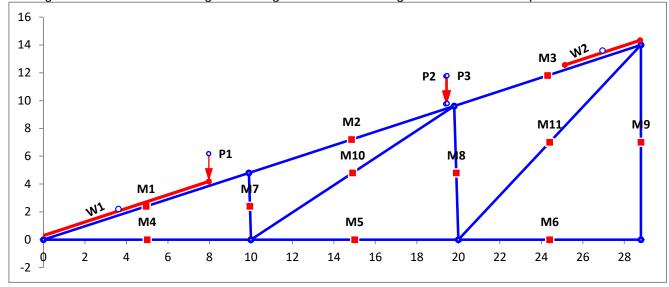
Use this loading combination for UPWARD for Proposed PV Dead Load					
7. 0.6D + 0.6W	-2.98	-6.28	-7.61	7.49	
Module Support point load (lb)	-38	-79	-96	95	

DOWNWARD

Presume loading directly over member.

	Combined Dead and Wind Pressure Downward Loading					
	Тор	truss chord	span			
PV Module Row	Point load loc's from Left support	Point Load #'s	Module Support Point Load	Comment	Module Orientation	
	ft from left		lb			
1	8.87		219		Portrait	
1	15.18			Support placed on adjoining truss	Portrait	
2	15.26			Support placed on adjoining truss	Portrait	
2	21.57		219		Portrait	
3	21.65		219		Portrait	
3	27.96			Support placed on adjoining truss	Portrait	

Truss Data and Loading for MP 1


Roof slope (degrees)	26.00
Top ridge height above floor plane	14.03

Length of roof plane	32.00
Length of floor plane	30.00

		_	Tr	uss Segme	ents
Roof	Plane	Floor	· Plane		
Mem #	Mem Type	Mem #	Мет Туре		М
1	2x4	4	2x4		
2	2x4	5	2x4		
3	2x4	6	2x4		

Diago	onals	Diagonals		
Mem # Mem Type		Mem #	Mem Type	
7	2x4	10	2x4	
8	2x4	11	2x4	
9	2x4			

* Loading includes member self weight & roofing materials. w loading = wind & snow on exposed areas

Snow Loading Analysis

where:

Fully Exposed Exposure category Exposure Factor, Ce (ASCE 7-16 Table 7.3-1, Page 58) Ce 0.9 Thermal Factor, Ct (ASCE 7-16 Table 7.3-2, Page 58) Ct 1.0 ls 1.0 Snow Importance Factor, Is (ASCE 7-16 Table 1.5-2, Page 5) Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53) 15 p_g 0.7CeCtIsPg Flat Roof Snow Load, pf (ASCE 7-16 Table 7.3-1, Page 58) 9.45 psf but where Pf is not less than the following: Minimum Snow Load pm (ASCE 7-16 Table 7.3.4, Page 53) 15 When $Pg \le 20$ psf, then use $Pf = Pg \times Is$ p_{m} 15 psf. Resultant Snow pressure to be used with Roof slope factor below Sloped Roof Snow Load ps (ASCE 7-16 Table 7.4, Page 54) p_s C_sp_f Roof Type Warm Roofs Roof slope factor Cs for Warm Roofs, where Ct = 1.0

Roof surface condition = Slippery Roof

Roof Slope Factor, Cs (ASCE 7-16 Table 7-2a, Page 36) $C_s =$

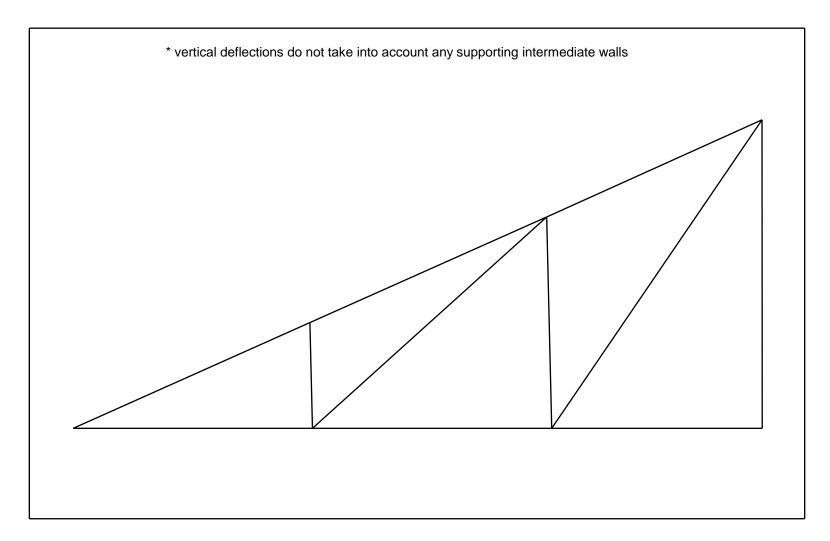
Total Snow Load

15.00 psf Roof snow load = p_s

FEA Calculation Results for Roof Plane MP 1 for Freedom Solar, LLC Client Anthony DeSorbo

IDSPL - 2D Frame Analysis of a 2D frame subject to distributed loads, point loads and moments

Equilibrium check	FX	FY
Total applied forces	0.00	2441
Total output reactions	0.00	-2441
Output error	-4.55E-13	-4.55E-13


7.9E-05

			Maximu	201100110110	
# of segments/beam	1		-4.81E-03	-3.51E-03	
* vertical deflections d	o not take	into accou	unt anv suppo	ortina intermed	liate walls

Maximum Deflections -4.81E-03 -3.51E-03

	Node Results			Beam End Results		
Direction	Deflection	Reaction	Beam	Shear	Ax	BM
DX1	0.00E+00	1307	1-1	-30	-1105	-24
DY1	0.00E+00	356	1-2	317	-1274	128
RZ1	1.24E-04	0	2-1	-135	-1241	456
DX2	-1.56E-03	0	2-2	213	-1409	-875
DY2	1.97E-04	0	3-1	-2938	-708	-1934
RZ2	3.55E-04	0	3-2	-1965	-1184	-28531
DX3	-4.79E-03	0	4-1	-99	-299	24
DY3	3.51E-03	0	4-2	48	-299	-951
RZ3	4.33E-04	0	5-1	0	299	0
DX4	-4.38E-03	0	5-2	0	299	0
DY4	6.21E-04	0	6-1	0	0	0
RZ4	6.66E-03	0	6-2	0	0	0
DX5	-3.18E-04	0	7-1	-159	440	1089
DY5	0.00E+00	-234	7-2	-159	424	328
RZ5	0.00E+00	-3094	8-1	-248	3552	1622
DX6	0.00E+00	193	8-2	-249	3497	-759
DY6	0.00E+00	-2112	9-1	1499	451	-5933
RZ6	0.00E+00	3934	9-2	1499	341	15055
DX7	0.00E+00	-1499	10-1	-122	-482	1054
DY7	0.00E+00	-451	10-2	-46	-557	-299
RZ7	0.00E+00	5933	11-1	1126	-987	-5556
			11-2	1206	-1115	13476

1 1 2 (c) 2 1 3 (c) 3 1 4 (c) 4 1	0.00 11.00 0.00 11.00 0.00 10.02 0.00 10.00 0.00	Shear -30 237 -135 132 -2938 -2364 -99 -33	Mom -24 543 456 -460 -1934 -21421	Ax -1105 -1235 -1241 -1370 -708 -989	DX 0.00E+00 -1.58E-03 -1.56E-03 -4.81E-03 -4.79E-03	DY 0.00E+00 -1.87E-04 -1.97E-04 -3.50E-03 -3.51E-03	1.24E-04 1.59E-04 3.55E-04 2.19E-04
2 1 3 (3 1 4 (4 1	0.00 11.00 0.00 10.02 0.00 10.00	-135 132 -2938 -2364 -99	456 -460 -1934 -21421	-1235 -1241 -1370 -708	-1.56E-03 -4.81E-03	-1.97E-04 -3.50E-03	3.55E-04 2.19E-04
2 1 3 0 3 1 4 0 4 1	11.00 0.00 10.02 0.00 10.00	132 -2938 -2364 -99	-460 -1934 -21421	-1370 -708	-4.81E-03	-3.50E-03	2.19E-04
3 1 3 1 4 (4 1	0.00 10.02 0.00 10.00	-2938 -2364 -99	-1934 -21421	-708			
3 1 4 (4 1	10.02 0.00 10.00	-2364 -99	-21421		-4.79E-03	2 51 ⊑ ∩2	
4 (0.00 10.00	-99		-989		-3.51E-03	4.33E-04
4 1	10.00		24		-4.72E-03	-4.58E-04	-1.41E-02
		-33		-299	0.00E+00	0.00E+00	1.24E-04
	0.00	00	-533	-299	-3.18E-04	2.71E-20	-2.15E-04
5 (0.00	0	0	299	-3.18E-04	0.00E+00	0.00E+00
5 1	10.00	0	0	299	0.00E+00	0.00E+00	0.00E+00
6 (0.00	0	0	0	0.00E+00	0.00E+00	0.00E+00
6 8	8.80	0	0	0	0.00E+00	0.00E+00	0.00E+00
7 (0.00	-159	1089	440	-3.18E-04	0.00E+00	0.00E+00
7 4	4.80	-159	328	428	-1.56E-03	-1.97E-04	2.85E-04
8 (0.00	-248	1622	3552	0.00E+00	0.00E+00	0.00E+00
8 9	9.60	-249	-759	3505	-4.79E-03	-3.51E-03	3.80E-04
9 (0.00	1499	-5933	451	0.00E+00	0.00E+00	0.00E+00
9 1	14.00	1499	15055	353	-4.38E-03	-6.20E-04	6.79E-03
10 (0.00	-122	1054	-482	-3.18E-04	0.00E+00	0.00E+00
10 1	13.72	-55	-295	-548	-4.79E-03	-3.51E-03	4.09E-04
11 (0.00	1126	-5556	-987	0.00E+00	0.00E+00	0.00E+00
11 1	16.54	1198	13479	-1103	-4.38E-03	-6.20E-04	6.76E-03

Scaled 2X Deflected Truss Plot
Roof Plane MP 1 for Freedom Solar, LLC Client Anthony DeSorbo