Patented. Copyright © 2020 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is: RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA[™].

tel: 540.313.5317 - fax: 877.455.5641 - email: info@iRooFA.solar

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: Zachary Kennedy; Location: 5671 Elliott Bridge Road Linden Nc 28356, Linden, NC 28356

Prepared for:

Freedom Solar, LLC 4801 Freidrich Ln, Ste 100 - Austin, TX 78744

	Calculation Report Index							
Pages	<u>Description</u>	Pages Description						
1	Cover							
2-4	Loading Summary							
Roof	Structural Calculations for PV Solar Installation	Roof Structural Calculations for PV Solar Installation						
5-7	Location: MP 1	8-10 Location: MP 2						
11-11	Snow Loading Calculations							

Project Number: 36.110584, Rev. 0

Report Date: 06/07/2023

Report Prepared by:

Richard Pantel, P.E. NC License No. 43326

Loading Summary

Exposure and Occupancy Categories						
В	Exposure Category (ASCE 7-16 Table 26.7.3, Page 266)					
II	Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 4)					

Wind Loading:							
	v	119	mph	ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(119 mph, 50 year wind MRI)]			
C	ĮΖ	21.53	psf	Velocity qz, calculated at height z [ASD]			

Snow Loading								
pg	pg 10 psf Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53)							
Total Snow	Total Snow Load							
ps	ps 10.00 psf Effective snow load on roof and modules							

Module Data								
WAAREE ENERGIES LIMITED: WSMD-400								
Dimensions	тт	ft	in					
Length	1,923	6.31	75.70					
Width	1,039	3.41	40.90					
Area (m^2, ft^2)	2.0	21.50						
Weight	kg	lb						
Module	22.00	48.50						

Roof Panel (Cladding) Loading Sum	Module Loading Summary				
Support Point Loads		Upward	Upward	Upward	Downward
Roof Zone		1,2e,2r	2n,3r	3e	All
Net total load / support point	lb	-71	-108	-162	186
Positive values indicate net downward f					

Lag Bolt Data	Size 5/16x2.10	Pre-drill 0.16" dia	Material Stainless

Rack Support Lag Bolt Pull-out Calculations in US Spruce Roof Framing							
Roof Zone		1,2e,2r	2n,3r	3e			
Bolt Pullout Per Module Connection	lb	71	108	162			
Number of Pullout Loads / Support		2	2	2			
Safety Factor		1.50	1.50	1.50			
Pull-out for 5/16 dia bolts	lb/in	206	206	206			
Min threaded inches embedment required	in	0.26	0.39	0.59			
Min threaded Inches embedment provided	in	1.10	1.10	1.10			
Min Lag Bolt length to use	in	2.10	2.10	2.10			

Conclusions

Princeton Engineering was asked to review the roof of Zachary Kennedy, located at 5671 Elliott Bridge Road Linden Nc 28356, Linden, NC by Freedom Solar, LLC, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure has been field measured by Freedom Solar, LLC on 06/01/2023. The framing calculations we prepared reflect the results of those field measurements combined with the PV solar module locations shown on the construction PV solar roof layout design prepared by Freedom Solar, LLC. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

Freedom Solar, LLC has selected the SunPower InvisiMount 6000 series racking system. The racking and support stanchions shall be placed as shown on the plans prepared by Freedom Solar, LLC, dated 06/05/2023, and shall be fastened to the roof deck using lag bolt sizes as indicated in this report. Rack support spacing shall be no more than shown on each calculation. Note that support points for alternating rows shall share the same rafter. Intermediate rows shall move the support points to laterally the next rafter.

Google Location Map

Framing Summary

Based upon the attached calculations, the roofs are capable of supporting the additional loading for the proposed Freedom Solar, LLC PV system along with the existing building and environmental loads. No supplemental roof framing structural supports are required.

Bracket to Roof Framing Lag Bolts

US Spruce rafters have a bolt pullout strength of 207 lb / inch of thread using the 5/16" dia. fasteners. In order to maintain at least a 1.5X Safety Factor for pullout, 1.1 inches of THREAD embedment are required. Use a 2.10" x 5/16" stainless lag bolt, or larger, in order to achieve the above specified embedment into each joist at each rail support point. Predrill with a 0.16" dia pilot hole.

Notes: (1) Bolt threads must be embedded in the side grain of a rafter or other structural member integral with the building structure. (2) Lag bolts must be located in the middle third of the structural member. (3) Install lag bolts with head and washer flush to surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) IBC 2018

- 3) 2018 International Residential Code, NC Edition
- 4) American Wood Council, NDS 2005, Table 11.2A, 11.3.2A.
- 5) American Wood Council, Wood Structural Design, 1992, Figure 6.

Roof Structural Calculations for PV Solar Installation Location: MP 1 Member: Rafter - Total Length 15.29 ft, Unsupported 15.29 ft

Roof Data							
Θ	deg.	43.99	Angle of plane of roof from horizontal, in degrees				
L	ft.	72.00	Length of Building, in feet (meters).				
W	ft.	11.00	Width of Building, in feet (meters).				
h	ft.	15.00	Height of Building, in feet (meters).				

Roof Wind Zone Width						
	use, a =	3.00	ft			

Wind Ve	Wind Velocity Pressure, q_z evaluated at the height z								
q	q_z = 21.53 psf Vasd q_z = 13.17 psf Basic wind pressure								
\ \	V= 119 mph								

Framing Data						
Wood type US Spru						
Wood source, moisture content White 0.12%						
# Framing Members / Support		1				
Rafter / Truss OC	in	16.00				
Member Total Length	ft	15.29				

3	# Rafters / Rack Support Width
4.00	Rack Support Spacing (ft)
48	Max. Rack Support Spacing (in)
2	Max # of mod's / Rafter

Member Properties	Member	* Mem prop	erties base	d upon field measurements	
Name		(1)1.5x7.5		Ra	after
Repetitive Member Factor (Cr)		1.15			
Max Shear perp. to grain	psi	530			
Max Shear parallel to grain	psi	1,100		16.00	Collar tie OC spacing, in.

16.00	Collar tie OC	spacing, in,

Module Data							
WAAREE ENERGIES LIMITED: WSMD-400							
Weight kg lb psf load							
Module	22.00	48.50	2.26				
4 Stanchions	1.36	3.0	0.14				
Total Module and Support load	Total Module and Support load 23.36 51.5 2.40						

Existing Dead Loads	Units	Value	Description
Framing Member	psf	1.43	
Roof Deck & Surface	psf	4.40	0.50 in. Plywood w/ Standard Asphalt Shingles

Rack Support Spacing	and Loadin	g		
Across rafters	ft	4.0		
Along rafter slope	ft	6.3		
Area / support point	sf	12.6		
Uphill gap between modules	in	1.0	0.08	ft

Member Total Length	ft	15.29	
Maximum member free span	ft	15.29	Rafter span
Rafter segment to calc	ft	15.29	Free span
Deflection Ratio		180	Use max delta 1/x for deflection

Eave Overhang Length past Rafter Plate	0.83	ft
Uphill Distance from Eave to Lowest Support	2.67	ft

Method for Calculating Uplift on PV Modules **ASCE 7-16**

Notation

Lp = Panel chord length.

p = uplift wind pressure

 γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

 γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes. TRUE

 $\Theta >= 7 \deg$

Exposed FALSE 1.5(Lp) =5.11 vE =1 0.67 γa =

 $p = qh(GCp) (\gamma_E) (\gamma_a) (lb/ft2)$ (29.4-7)

	,	(,		
	Zones		1,2e,2r	2n,3r	3e
p, Windlo	ad (psf)		-12.90	-15.33	-18.93

ASCE 7-16 Chapter 2 Combinations of Loads	, Table 2.4,	Page 8 (in	psf)		
Zones	1,2e,2r	2n,3r	3e	All Zones	
2.2 SYMBOLS AND NOTATION	Module	Module	Module	Deurourerd	
2.2 STMBOES AND NOTATION	Upward	Upward	Upward	Downward	
D = dead load of PV Module + Stanchion	2.40	2.40	2.40	2.40	
S = snow load	10.00	10.00	10.00	10.00	
W = wind load	-12.90	-15.33	-18.93	10.10	

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

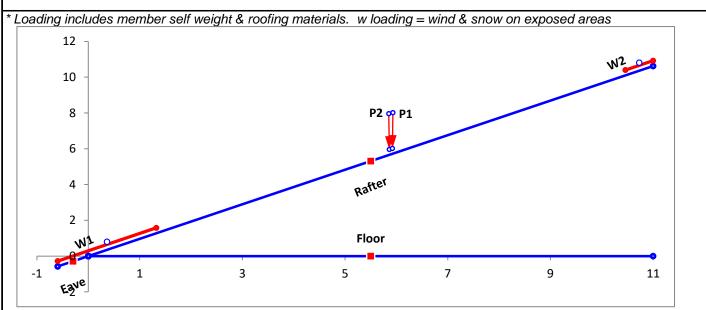
2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward			
Use this loading combination for DOWNWARD for Proposed PV Dead Load							
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	12.40	12.40	12.40	16.94			
Module Support point load (lb)	156	156	156	214			
Cr Factored Module Support point load (lb)	136	136	136	186			

Use this loading combination for UPWARD for Proposed PV Dead Load							
7. 0.6D + 0.6W -2.80 -4.26 -6.43 8.22							
Module Support point load (lb)	-35	-54	-81	104			

DOWNWARD

Presume loading directly over member.


		Combined	Dead and W	Vind Pressure Downward Loading	
		Rafter spar	า		
PV Module Row	Point load loc's from Left support		Module Support Point Load	Comment	Module Orientation
	ft from left		lb		
1	1.84			Support placed on adjoining rafter	Portrait
1	8.15		186		Portrait

2	8.23	186		Portrait
2	14.54		Support placed on adjoining rafter	Portrait

Analysis for PV impacted areas

5. Simple Beam - Exposed Roof Snow Load - Above and Below PV								
Parameter	Units	Total	Allowed	Check				
Delta @ mid span	in	0.01	1.02	ΟΚ				
M at mid span	lb-ft	13	7,656	ΟΚ				

Sum Downward Loading Conditions: PV; Beam DL; Exposed Roof							
Environmental Load							
Parameter	Units	Total	Allowed	Check			
Delta	in	0.70	1.02	ΟΚ			
Percent Max Delta	%	69%	100%	ΟΚ			
Moment	lb-ft	1,503	7,656	ОК			
fs	psi	1,283	6,533	ΟΚ			

Framing section with max stress: Rafter span

Roof Structural Calculations for PV Solar Installation Location: MP 2 Member: Rafter - Total Length 16.68 ft, Unsupported 16.68 ft

Roof Data							
θ	deg.	44.01	Angle of plane of roof from horizontal, in degrees				
L	ft.	72.00	Length of Building, in feet (meters).				
W	ft.	12.00	Width of Building, in feet (meters).				
h	ft.	15.00	Height of Building, in feet (meters).				

Roof Wind Zone Width					
	use, a =	3.00	ft		

Wind Velocity Pressure, q_z evaluated at the height z							
q_z = 21.53 psf Vasd q_z = 13.17 psf Basic wind pressure							
V=	119	mph					

Framing Data						
Wood type	US Sp	oruce				
Wood source, moisture content	White 0.12%					
# Framing Members / Support		1				
Rafter / Truss OC	in	16.00				
Member Total Length	ft	16.68				

3	# Rafters / Rack Support Width
4.00	Rack Support Spacing (ft)
48	Max. Rack Support Spacing (in)
3	Max # of mod's / Rafter

Member Properties		Member	* Mem properties based upon field measurements
Name		(1)1.5x7.5	Rafter
Repetitive Member Factor (Cr)		1.15	
Max Shear perp. to grain	psi	530	
Max Shear parallel to grain	psi	1,100	16.00 Collar tie OC spacing, in.

Module Data						
WAAREE ENERGIES LIMITED: WSMD-400						
Weight kg Ib psf load						
Module	22.00	48.50	2.26			
4 Stanchions	1.36	3.0	0.14			
Total Module and Support load	23.36	51.5	2.40			

Existing Dead Loads	Units	Value	Description
Framing Member	psf	1.43	
Roof Deck & Surface	psf	4.40	0.50 in. Plywood w/ Standard Asphalt Shingles

Rack Support Spacing	and Loadir	ng		
Across rafters	ft	4.0		
Along rafter slope	ft	6.3		
Area / support point	sf	12.6		
Uphill gap between modules	in	1.0	0.08	ft

Member Total Length	ft	16.68	
Maximum member free span	ft	16.68	Rafter span
Rafter segment to calc	ft	16.68	Free span
Deflection Ratio		180	Use max delta 1/x for deflection

Eave Overhang Length past Rafter Plate	0.83	ft
Uphill Distance from Eave to Lowest Support	0.58	ft

Method for Calculating Uplift on PV Modules **ASCE 7-16**

Notation

Lp = Panel chord length.

p = uplift wind pressure

 γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

 γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes. TRUE

 $\Theta >= 7 \deg$

Exposed FALSE 1.5(Lp) =5.11 vE =1 0.67 γa =

 $p = qh(GCp) (\gamma_E) (\gamma_a) (lb/ft2)$ (29.4-7)

	,	(,		
	Zones		1,2e,2r	2n,3r	3e
p, Windlo	ad (psf)		-12.90	-15.33	-18.93

ASCE 7-16 Chapter 2 Combinations of Loads	, Table 2.4,	Page 8 (in	psf)	
Zones	1,2e,2r	2n,3r	3e	All Zones
2.2 SYMBOLS AND NOTATION		Module	Module	Downward
		Upward	Upward	Downward
D = dead load of PV Module + Stanchion	2.40	2.40	2.40	2.40
S = snow load	10.00	10.00	10.00	10.00
W = wind load	-12.90	-15.33	-18.93	10.10

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf)

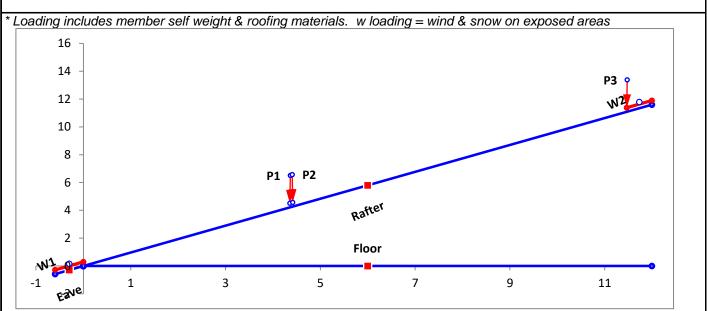
2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae	Upward	Upward	Upward	Downward
Use this loading combination for DOWNWARD	ed PV Deac	l Load		
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	12.40	12.40	12.40	16.94
Module Support point load (lb)	156	156	156	214
Cr Factored Module Support point load (lb)	136	136	136	186

Use this loading combination for UPWARD for Proposed PV Dead Load						
7. 0.6D + 0.6W	-2.80	-4.26	-6.43	8.22		
Module Support point load (lb)	-35	-54	-81	104		

DOWNWARD

Presume loading directly over member.


		Combined	Dead and W	Vind Pressure Downward Loading	
		Rafter spar	า		
PV Module Row	Point load loc's from Left support		Module Support Point Load	Comment	Module Orientation
	ft from left		lb		
1	-0.25			Support outside of max stressed section	Portrait
1	6.06		186		Portrait

2	6.14	186		Portrait
2	12.45		Support placed on adjoining rafter	Portrait
3	12.53		Support placed on adjoining rafter	Landscape
3	15.94	186		Landscape

Analysis for PV impacted areas

5. Simple Beam - Exposed Roof Snow Load - Above and Below PV						
Parameter	Units	Total	Allowed	Check		
Delta @ mid span	in	0.00	1.11	ΟΚ		
M at mid span	lb-ft	2	7,656	ΟΚ		

Sum Downward Loading Conditions: PV; Beam DL; Exposed Roof							
Environmental Load							
Parameter	Units	Total	Allowed	Check			
Delta	in	0.89	1.11	ОК			
Percent Max Delta	%	80%	100%	ОК			
Moment	lb-ft	1,407	7,656	OK			
fs	psi	1,201	6,533	ОК			

Framing section with max stress: Rafter span

Snow Loading Analysis

where:

	•••		Fully Ex	posed Exposure category
	Ce	=	0.9	Exposure Factor, Ce (ASCE 7-16 Table 7.3-1, Page 58)
	Ct	=	1.0	Thermal Factor, Ct (ASCE 7-16 Table 7.3-2, Page 58)
	ls	=	1.0	Snow Importance Factor, Is (ASCE 7-16 Table 1.5-2, Page 5)
	p_g	=	10	Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53)
	\mathbf{p}_{f}	=	0.7CeCt	tlsPg Flat Roof Snow Load, pf (ASCE 7-16 Table 7.3-1, Page 58)
	\mathbf{p}_{f}	=	6.3	psf
				but where Pf is not less than the following:
				Minimum Snow Load pm (ASCE 7-16 Table 7.3.4, Page 53)
	p _m	=	10	When Pg <=20 psf, then use Pf = Pg x Is
	\mathbf{p}_{f}	=	10	psf. Resultant Snow pressure to be used with Roof slope factor below
	ps	=	C _s p _f	Sloped Roof Snow Load ps (ASCE 7-16 Table 7.4, Page 54)
	13		311	Roof Type Warm Roofs
Roof	slop	e fa	octor Cs fo	or Warm Roofs, where $Ct = 1.0$
11001	0.00	0 10		Roof surface condition = Slippery Roof
	C,	=	1.00	Roof Slope Factor, Cs (ASCE 7-16 Table 7-2a, Page 36)
	3			

Total Snow Load

p_s = **10.00 psf** Roof snow load