

August 11, 2022

- To: Blue Raven Solar 1403 North Research Way, Building J Orem, UT. 84097
- Subject: Certification Letter Ray Residence 305 Moores Chapel Rd Lillington, NC. 27546

To Whom It May Concern,

A jobsite observation of the condition of the existing framing system was performed by an audit team of Blue Raven Solar. All review is based on these observations and the design criteria listed below and only deemed valid if provided information is true and accurate.

On the above referenced project, the roof structural framing has been reviewed for additional loading due to the installation of the solar PV addition to the roof. The structural review only applies to the section of the roof that is directly supporting the solar PV system and its supporting elements. The observed roof framing is described below. If field conditions differ, contractor to notify engineer prior to starting construction.

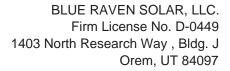
The roof structure of (MP1) consists of metal roofing on roof plywood that is supported by pre-manufactured trusses that are spaced at @ 16"o.c.. The top chords, sloped at 20 degrees, are 2x4 sections, the bottom chords are 2x4 sections and the web members are 2x4 sections. The truss members are connected by steel gusset plates. The max unsupported projected horizontal top chord span is approximately 10'-0''.

The existing roof framing system of (MP1) is judged to be adequate to withstand the loading imposed by the installation of the solar panels. No reinforcement is necessary.

The spacing of the solar standoffs should be kept at 32" o.c. for landscape and 32" o.c. for portrait orientation, with a staggered pattern to ensure proper distribution of loads.

The scope of this report is strictly limited to an evaluation of the fastener attachment, underlying framing and supporting structure only. The attachment's to the existing structure are required to be in a staggered pattern to ensure proper distribution of loading. All panels, racking and hardware shall be installed per manufacturer specifications and within specified design limitations. All waterproofing shall be provided by the manufacturer.

Note: Seismic check is not required since Ss<.4g and Seismic Design Category (SDC) < B


Design Criteria:

- Applicable Codes = 2018 North Carolina State Building Code (NCSBC), ASCE 7-10
- Roof Dead Load = 5 psf (MP1)
- Roof Live Load = 20 psf
- Wind Speed = 115 mph (Vult), Exposure C, Risk Category II
- Ground Snow Load = 15 psf Roof Snow Load = 10.5 psf
- Attachment: S-5! Proteabracket w/ (4) 6mmx25mm self-piercing screw directly into metal roofing, at spacing shown above.

Please contact me with any further questions or concerns regarding this project.

Sincerely,

Gravity Loading

Roof Snow Load Calculations		
p _g = Ground Snow Load =	15 psf	-
$p_f = 0.7 C_e C_t I p_g$		(ASCE7 - Eq 7-1)
C_e = Exposure Factor =	1	(ASCE7 - Table 7-2)
C _t = Thermal Factor =	1	(ASCE7 - Table 7-3)
I = Importance Factor =	1	
p _f = Flat Roof Snow Load =	10.5 psf	
$p_s = C_s p_f$		(ASCE7 - Eq 7-2)
Cs = Slope Factor =	1	
p _s = Sloped Roof Snow Load =	10.5 psf	

PV Dead Load = 3 psf (Per Blue Raven Solar)	
DL Adjusted to 20 Degree Slope	3.19 psf
PV System Weight	
Weight of PV System (Per Blue Raven Solar)	3.0 psf
X Standoff Spacing =	2.67 ft
Y Standoff Spacing =	3.04 ft
Standoff Tributary Area =	8.11 sft
Point Loads of Standoffs	24 lb
	C 1 11

Note: PV standoffs are staggered to ensure proper distribution of loading

Roof Live Load = 20 psf

Note: Roof live load is removed in area's covered by PV array.

Roof Dead Load (MP1)		
Metal Roofing	1.00	-
Roof Plywood	2.00	
2x4 Top Chords @ 16"o.c.	1.10	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.90	
Total Roof DL (MP1)	5.0 psf	
DL Adjusted to 20 Degree Slope	5.3 psf	

BLUE RAVEN SOLAR, LLC. Firm License No. D-0449 1403 North Research Way , Bldg. J Orem, UT 84097

Wind Calculations Per ASCE 7-10 Components and Cladding

Input Variables	6
Wind Speed	115 mph
Exposure Category	С
Roof Shape	Hip/Gable
Roof Slope	20 degrees
Mean Roof Height	20 ft
Effective Wind Area	21.3 ft

Design Wind Pressure Calculations	
Wind Pressure P = qh*G*Cn	
qh = 0.00256 * Kz * Kzt * Kd * V^2	(Eq. 30.3-1)
Kz (Exposure Coefficient) = 0.9	(Table 30.3-1)
Kzt (topographic factor) = 1	(Fig. 26.8-1)
Kd (Wind Directionality Factor) = 0.85	(Table 26.6-1)
V (Design Wind Speed) = 115 mph	(Fig. 26.5-1A)
Risk Category = II	(Table 1.5-1)
qh = 25.90	
0.6 * qh = 15.54	

Star	ndoff Uplift Ca	Iculations-Portr	ait		
	Zone 1	Zone 2	Zone 3	Positive	-
GCp =	-0.85	-1.52	-2.42	0.43	(Fig. 30.4-1)
Uplift Pressure =	-13.20 psf	-23.67 psf	-37.59 psf	11.1 psf	
X Standoff Spacing =	2.67	2.67	1.78		
Y Standoff Spacing =	3.04	3.041666667	3.04166667		
Tributary Area =	8.11	8.11	5.41		
Dead Load on Attachment=	24.33	24.33	16.22		
Footing Uplift (0.6D+0.6W)=	-92 lb	-177 lb	-194 lb		

Stand	loff Uplift Calc	ulations-Lands	саре		
	Zone 1	Zone 2	Zone 3	Positive	
GCp =	-0.85	-1.52	-2.42	0.43	(Fig. 30.4-1)
Uplift Pressure =	-13.20 psf	-23.67 psf	-37.59 psf	10.0 psf	(Minimum)
X Standoff Spacing =	2.67	2.67	1.78		
Y Standoff Spacing =	1.75	1.75	1.75		
Tributary Area =	4.67	4.67	3.11		
Dead Load on Attachment=	14.00	14.00	9.33		
Footing Uplift (0.6D+0.6W) =	-53 lb	-102 lb	-111 lb		

Standoff Uplift Check

Maximum Design Uplift = -194 lb Standoff Uplift Capacity = 250 lb 250 lb capacity > 194 lb demand **Therefore**, **OK**

			(MP1)		PAS	S
Dead Load PV Load Live Load	5.3 psf 3.2 psf 20.0 psf				- 38 plf ords @ 16"o.c.	
Governing Load Total Load	Combo = DL + LL 28.5 psf		<u> </u>	Member S	ipan = 10' - 0"	→
		Men	nber Properties			
Member 2x4	Size	S (in^3) 3.06	l (in^4) 5.36	Lumber Sp/Gr DF#2	Member Spacing @ 16"o.c.	-
		Check	k Bending Stress	s		
Anoweu Denuling	$30005 = 1940.0 \mu$	/31				
Maximum	Stress = (Maximum	= (wL^2) / 8 = 475.2237 ft# = 5702.684 in#	96% Stressed	Therefore, OK		
Maximum Actual Bending S	Moment Stress = (Maximum Allo	= (wL^2) / 8 = 475.2237 ft# = 5702.684 in# n Moment) / S = 1862.2 psi wwed > Actual 9	eck Deflection	Therefore, OK		
Maximum Actual Bending S Allowed Deflection Deflection Criteria	Moment Stress = (Maximum Allo on (Total Load) = a Based on =	= (wL^2) / 8 = 475.2237 ft# = 5702.684 in# n Moment) / S = 1862.2 psi wed > Actual 9 Ch =		n *1)	(E = 1600000 psi Per ND: OK	S)
Maximum Actual Bending S Allowed Deflection Deflection Criteria Actual Deflection	Moment Stress = (Maximum Allo on (Total Load) = a Based on = I (Total Load) =	= (wL^2) / 8 = 475.2237 ft# = 5702.684 in# n Moment) / S = 1862.2 psi wed > Actual 9 Ch = =	eck Deflection L/180 0.666 in Continuous Spar (w*L^4) / (185*E 0.415 in L/290 > L/1 L/240	n *1)		S)
Maximum Actual Bending S	Moment Stress = (Maximum Allo on (Total Load) = a Based on = (Total Load) = on (Live Load) =	= (wL^2) / 8 = 475.2237 ft# = 5702.684 in# n Moment) / S = 1862.2 psi wed > Actual 9 Ch = =	eck Deflection L/180 0.666 in Continuous Spar (w*L^4) / (185*E 0.415 in L/290 > L/1	n *1) 180 Therefore (*1)	ок	S)

Allowed > Actual -- 20.2% Stressed -- Therefore, OK