RE: Structural Certification for Installation of Residential Solar JENNIFER IVEY:165 NATURES WAY, DUNN, NC 28334 Attn: To Whom It May Concern This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. From the field observation report, the roof is made of Asphalt Shingle roofing over roof plywood supported by 2X4 Trusses at 24 inches. The slope of the roof was approximated to be 30 degrees. The maximum allowable chord span is 8 feet between supports. After review of the field observation data and based on our structural capacity calculation, the existing roof framing has been determined to be adequate to support the imposed loads without structural upgrades. Contractor shall verify that existing framing is consistent with the described above before install. Should they find any discrepancies, a written approval from SEOR is mandatory before proceeding with install. Capacity calculations were done in accordance with applicable building codes. #### **Design Criteria** | Code | 2018 North Carolina Building Code/IBC 2015 | | | | | |-----------------------|--|--------|-----------|---------------|--------------| | Risk category | | II | Wind Load | (component ar | nd Cladding) | | Roof Dead Load | Dr | 10 psf | | V(ult) | 120 mph | | PV Dead Load | DPV | 3 psf | | Exposure | В | | Roof Live Load | Lr | 20 psf | | | | | Ground Snow | S | 10 psf | | | | If you have any questions on the above, please do not hesitate to call. Sincerely, Signed 1/15/2023 # **Structural Letter for PV Installation** Date: 1/15/2023 Job Address: 165 NATURES WAY **DUNN, NC 28334** Job Name: **JENNIFER IVEY** Job Number: 230115JI #### **Scope of Work** This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications. #### **Table of Content** Sheet - 1 Cover - 2 Attachment checks - 3 Snow and Roof Framing Check4 Seismic Check and Scope of work # **Engineering Calculations Summary** | <u>Code</u> | 2015 International Building Code (ASCE 7-10) | | | |--------------------|--|---------|--| | Risk category | | II | | | Roof Dead Load | Dr | 10 psf | | | PV Dead Load | DPV | 3 psf | | | Roof Live Load | Lr | 20 psf | | | Ground Snow | S | 10 psf | | | Wind Load | (component and Claddir | ng) | | | | V (Ult) | 120 mph | | | | Exposure | В | | | | | | | #### References 2 NDS for Wood Construction Sincerely, Signed 1/15/2023 #### Wind Load Cont. Risk Category = ASCE 7-10 Table 1.5-1 Ш Wind Speed (3s gust), V = 120 mph **ASCE 7-10 Figure 26.5-1A** Roughness = В ASCE 7-10 Sec 26.7.2 Exposure = В **ASCE 7-10 Sec 26.7.3** Topographic Factor, K_{ZT} = 1.00 ASCE 7-10 Sec 26.8.2 Pitch = $\frac{30.0 \text{ Degrees}}{\text{Adjustment Factor, } \lambda = \frac{1}{\text{a} = \frac{4.40 \text{ ft}}{\text{ASCE } 7-10 \text{ Figure } 30.5-1}}$ Where a: 10% of least horizontal dimension or 0.4h, whichever is smaller, but not less than 4% of least horizontal dimension or 3ft (0.9m) | <u>Uplift (0.6W)</u> | Zone 1 (psf) | Zone 2 (psf) | Zone 3 (psf) | | |---------------------------------|--------------|--------------|--------------|-----------------| | Pnet30= | -18.1 | -21.8 | -21.8 | Figure 30.5-1 | | Pnet = 0.6 x λ x KZT x Pnet30)= | 10.86 | 13.08 | 13.08 | Equation 30.5-1 | | Downpressure (0.6W) | Zone 1 (psf) | Zone 2 (psf) | Zone 3 (psf) | | | Pnet30= | 19.8 | 19.8 | 19.8 | Figure 30.5-1 | | Pnet = 0.6 x λ x KZT x Pnet30)= | 11.88 | 11.88 | 11.88 | Equation 30.5-1 | #### Rafter Attachments: 0.6D+0.6W (CD=1.6) #### **Connection Check** | | Connection Check | | | | | |------|-----------------------|----------------|--------------|------------|-------------------| | | Attachement n | nax. spacing= | 4 | ft | | | | 5/16" Lag Screw Withd | rawal Value= | 266 | lbs/in | Table 12.2A - NDS | | | Lag Screw Penetrati | on | 2.5 | in | DFL Assumed | | | Pryir | ng Coefficient | 1.4 | in | | | | Allowal | ble Capacity= | 760 | | | | Zone | Trib Width | Area (ft) | Uplift (lbs) | Down (lbs) | | | 1 | 4 | 11.0 | 99.7 | 163.7 | | | 2 | 4 | 11.0 | 124.1 | 163.7 | | | 3 | 4 | 11.0 | 124.1 | 163.7 | | | | | Max= | 124.1 | < | 760 | | | | | CONNECTION | IS OK | | - 1. Pv seismic dead weight is negligible to result in significant seismic uplift, therefore the wind uplift governs - 2. Embedment is measured from the top of the framing member to the tapered tip of a lag screw. Embedment in sheading or other material does not count. ### **Vertical Load Resisting System Design** #### Roof Framing Trusses Snow Load Fully Exposed pg= 10 psf ASCE 7-10 , Section 7.2 $p_f = 7$ psf $C_e = 0.9$ ASCE 7-10 , Table 7-2 $p_{fmin.} = 10.0$ psf $C_{\rm e} = 0.9$ ASCE 7-10, Table 7-2 $p_{\rm fmin.} = 10.0$ ps $p_{\rm s} = 10$ ps $p_{\rm s} = 10.0$ pf $p_{\rm s} = 10.0$ pf $I_s = 1.0$ ASCE 7-10, Table 1.5-1 Max Length, L = 8 ft (Beam maximum Allowable Horizontal Span) Tributary Width, $W_T = 24$ in **Dr** = **10** psf 20 plf PvDL = 3 psf 6 plf Load Case: DL+0.6W Pnet+ $P_{pv}cos(\theta)+P_{DL}=$ 49.8 plf Max Moment, M_u = 245 lb-ft Conservatively Pv max Shear 163.7 lbs Max Shear, $V_u=wL/2+Pv$ Point Load = 268 lbs Load Case: DL+0.75(0.6W+S) 0.75(Pnet+Ps)+ $P_{pv}cos(\theta)+P_{DL}=$ 55 plf M_{down} = 271 lb-ft Mallowable = $Sx \times Fb'$ (wind)= 634 lb-ft > 271 lb-ft **OK** Load Case: DL+S Ps+ P_{pv} cos(θ)+ P_{DL} = 41 plf M_{down} = 203 lb-ft Mallowable = $Sx \times Fb'$ (wind) = 456 lb-ft > 203 lb-ft **OK** Max Shear, $V_u=wL/2+Pv$ Point Load = 268 lbs ## **Member Capacity** | DF-L No.2 | | | | | | | | | | |--------------------|--------------|-------|-------|---------|-------|----------------|------|-----|----------------| | 2X4 | Design Value | C_L | C_F | C_{i} | C_r | K _F | ф | λ | Adjusted Value | | F _b = | 900 psi | 1.0 | 1.5 | 1.0 | 1.15 | 2.54 | 0.85 | 0.8 | 1553 psi | | F _v = | 180 psi | N/A | N/A | 1.0 | N/A | 2.88 | 0.75 | 0.8 | 180 psi | | E = | 1600000 psi | N/A | N/A | 1.0 | N/A | N/A | N/A | N/A | 1600000 psi | | E _{min} = | 580000 psi | N/A | N/A | 1.0 | N/A | 1.76 | 0.85 | N/A | 580000 psi | Depth, d = 3.5 in Width, b = 1.5 in Cross-Sectonal Area, A = 5.25 in^2 Moment of Inertia, $I_{xx} = 5.35938 \text{ in}^4$ Section Modulus, $S_{xx} = 3.0625 \text{ in}^3$ Allowable Moment, $M_{all} = F_b S_{xx} = 396.2 \text{ lb-ft}$ DCR= $M_u/M_{all} = 0.40 < 1$ Satisfactory Allowable Shear, $V_{all} = 2/3F_v A = 630.0 \text{ lb}$ DCR= $V_u/V_{all} = 0.42 < 1$ Satisfactory #### **Siesmic Loads Check** | Roof Dead Load | 10 psf | |---------------------------|----------------------| | % or Roof with Pv | 32.2% | | Dpv and Racking | 3 psf | | Averarage Total Dead Load | 11.0 psf | | Increase in Dead Load | 6.4% <mark>OK</mark> | The increase in seismic Dead weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required. # **Limits of Scope of Work and Liability** We have based our structural capacity determination on information in pictures and a drawing set titled PV plans - JENNIFER IVEY. The analysis was according to applicable building codes, professional engineering and design experience, opinions and judgments. The calculations produced for this structure's assessment are only for the proposed solar panel installation referenced in the stamped plan set and were made according to generally recognized structural analysis standards and procedures.