

Lucent Engineering, P.C.

814 E 1475 N Lehi, UT 84043 m: (309) 645-0999 admin@lucenteng.co

January 12, 2023

Encōr Solar, LLC 3049 Executive Pkwy, Ste 300 Lehi, UT 84043

RE: Engineering Services
Purvis Residence

181 Remington Hill Dr, Bunnlevel, NC

10 kW System Solo Job #3100976

To Whom It May Concern,

We have reviewed the following information regarding the solar panel installation for this project. Alterations to these documents or plans shall not be made without direct written consent of the Engineer of Record.

A. Assumptions from Field Observation provided by Encor Solar, LLC

The following structural design regarding the proposed alterations have been prepared from these assumptions. The verification of the field observations is the responsibility of the contractor. **Prior to** commencement of work, the contractor shall verify the framing sizes, spacings, and spans noted in the sealed plans, calculations, and/or certification letter and notify the Engineer of Record of any discrepancies.

Roof

Roof Finish: Asphalt Shingle

Roof Underlayment : OSB
Roof Profile : Hip Gable

Roof Structural System: Rafter w/ Various Support

Truss Top Chord/Setup: 2 x 6 / Rafter

Chord/Rafter Wood Grade: Southern Pine #2 or better

Truss/Rafter Spacing: 24" o.c.
Roof Slope: 34 deg
op Chord/Rafter Span: 13.24 ft

Max Top Chord/Rafter Span : 13.24 ft
Bearing Wall Type : Convl Lt-Frame Constr

Foundation : Permanent Concrete

Stories: Two

B. Building Design Criteria

Code: 2018 NCRC (ASCE 7-10) Risk Category: II

Roof Live Load: 20 psf (0 psf at panels) Occupancy Class: R-3

Ground Snow Load: 10 psf Roof Dead Load: 6.8 psf

Ult Wind Speed: 120 mph PV Dead Load: 3 psf

Exposure Category: C Total Dead Load: 9.8 psf

C. Summary of Existing Structure Results

Roof

After review of the field observations and based on our calculations and in accordance with the applicable building codes and current industry standards, the existing roof structure supporting the proposed alterations consisting of the solar array has been determined to be:

- Adaquate to support the additional imposed loads. No structural upgrades are required.

D. Solar Panel Support Bracket Anchorage

- 1. Solar panels shall be designed, mounted, and installed in accordance with the most recent "SnapNrack Manual", which can be found on the SnapNrack website (http://snapnrack.com/).
- 2. Manufacturer's Panel Bracket Connection to Roof Chord/Rafter Member:

Fastener: (1) 5/16" Lag Screw per Bracket

NDS Withdrawl Value: 307 lbs/inch

Min. Thread Length and Pentration Depth: 2.5"

- 3. Considering the existing roof's slope, size, spacing, condition, and calculated loads, the panel bracket supports shall be placed no greater than 72 in. o/c.
- 4. Panel supports connections shall be staggered to distribute load to adjacent trusses.

E. Overall Summary

Based on the information supplied to us at the time of this report, on the evaluation of the existing structure, and solar array panel bracket connection, it is our opinion that the roof system will adequately support the additional loads imposed by the solar array. This evaluation conforms to 2018 NCRC and current industry standards.

Should you have any questions regarding this letter or if you require further information, do not hesitate to contact me.

Nicholas J. Bowens, PE License No. 55156

Limits of Scope of Work and Liablity

The existing structure is assumed to have been designed and constructed following appropriate codes at the time of erection and assumed to have appropriated permits. The calculations performed are only for the roof framing supporting the solar array installation referenced in the stamped plans and were completed according to generally recognized structural analysis standards and procedures, professional engineering, and design experience opinions and judgements. Existing deficiencies which are unknown or were not observed during the time the site observation are not included in this scope of work. All solar panel modules, racking, and mounting equipment shall be designed and installed per the manufacturer's approved installation specifications. The Engineer of Record and the engineering consulting firm assume no responsibility for misuse or improper installation. This analysis is not stamped for water leakage. Framing was determined on information in provided plans and/or photos, along with engineering judgement. Prior to commencement of work, the contractor shall verify the framing sizes, spacings, and spans noted in the stamped plans, calculations, and/or certification letter and notify the Engineer of Record of any discrepancies prior to starting construction. If during solar panel installation, the roof framing members appear unstable or deflect nonuniformly, our office should be notified before proceeding with the installation. The contactor shall also verify that there are no damage/deficiencies (i.e., dry rot, water damage, termite damage, framing member/connection damage, etc.) to framing that was not addressed in the stamped plans, calculations, and/or certification letter and notify the Engineer of Record of any concerns prior to starting construction.

NEC Standard Load Calculation for Single Family Dwellings For Service Ratings of 120/240V, 225A Max

Michael Purvis							
181 Remington Hill Dr, Bunnlevel, NC 28323							
Genera	l Lighting/Pow						
Description of Load	QTY	Volt-Amps (Wattage)	Total Volt-Amps				
•		Per Load	(Wattage) Used				
Kitchen Apliance Branch Circuits	2	1500	3000				
Laundry Circuits	1	1500	1500				
		g Air Conditioner(s)					
Microwave	1	1500	1500				
Trash Compactor	0	0	0				
Dish Washer	0	0	0				
Disposal	1	700	700				
Oven	1	5760	5760				
Electric Range	0	0	0				
Induction Range	0	0	0				
Clothes Dryer	0	0	0				
Clothes Washer	1	500	500				
Tankless Water Heater	0	0	0				
Electric Water Heater	0	0	0				
Pool or Spa	0	0	0				
•	0	_	•				
Evaporator Cooler	1	0	0				
Electric Vehicle Supply Equipment (EVSE)	0	0	0				
Sub-Panel	1	19200	19200				
Other	1	3840	3840				
Other	1	11520	11520				
Calculations of All Appliance		-	ier(s)				
•	-	2242 ft ² X 3 = 6726					
		7520 W + 6726 = 54246 W					
	W - 10000 = 44	_					
	5 W X .40 = 1769						
	W + 10000 = 27						
Heating	g and Air Cond	itioning I					
Description of Load		Total Volt-Amps	(Wattage) Used				
AC & Cooling		4800					
Heating		76	80				
Heat Pump		0					
Space Heat, 4 Separate Units		0					
Space Heat, > 4 Units)				
Thermal Storage & Other)				
=	l Home Calcula						
	st HVAC Load: 70						
5		· 7680 W = 35378.4 W					
	4 W / 240 V = 14						
RATING OF EXISTING/PROPOSED ELECTRICAL			175 A				
TOTAL MINIMUM SIZE (AMPS) REQUIRED F	OR MAIN SERV	ICE DISCONNECT =	147.41 A				
	PASS						
PASS							

SHEET INDEX

PV01 COVER

PV02 SITE PLAN

PV03 ROOF PLAN

PV04 MOUNTING DETAIL

PV05 LINE DIAGRAM

PV06 ELECTRICAL CALCS

PV07 LABELS

PV08 PLACARD

PV09 SITE PHOTOS

SYSTEM SIZE

AC SYSTEM SIZE: 10 KW AC DC SYSTEM SIZE: 9.6 KW DC

SITE SPECIFICATIONS

OCCUPANCY: R-3 ZONING: RESIDENTIAL

APPLICABLE GOVERNING CODES

2020 NATIONAL ELECTRICAL CODE

2018 NORTH CAROLINA STATE BUILDING CODE: RESIDENTIAL 2018 NORTH CAROLINA STATE BUILDING CODE: BUILDING 2018 NORTH CAROLINA STATE BUILDING CODE: FIRE

AERIAL VIEW

STREET VIEW

ENCŌR

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

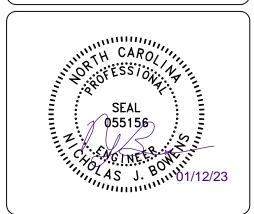
(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

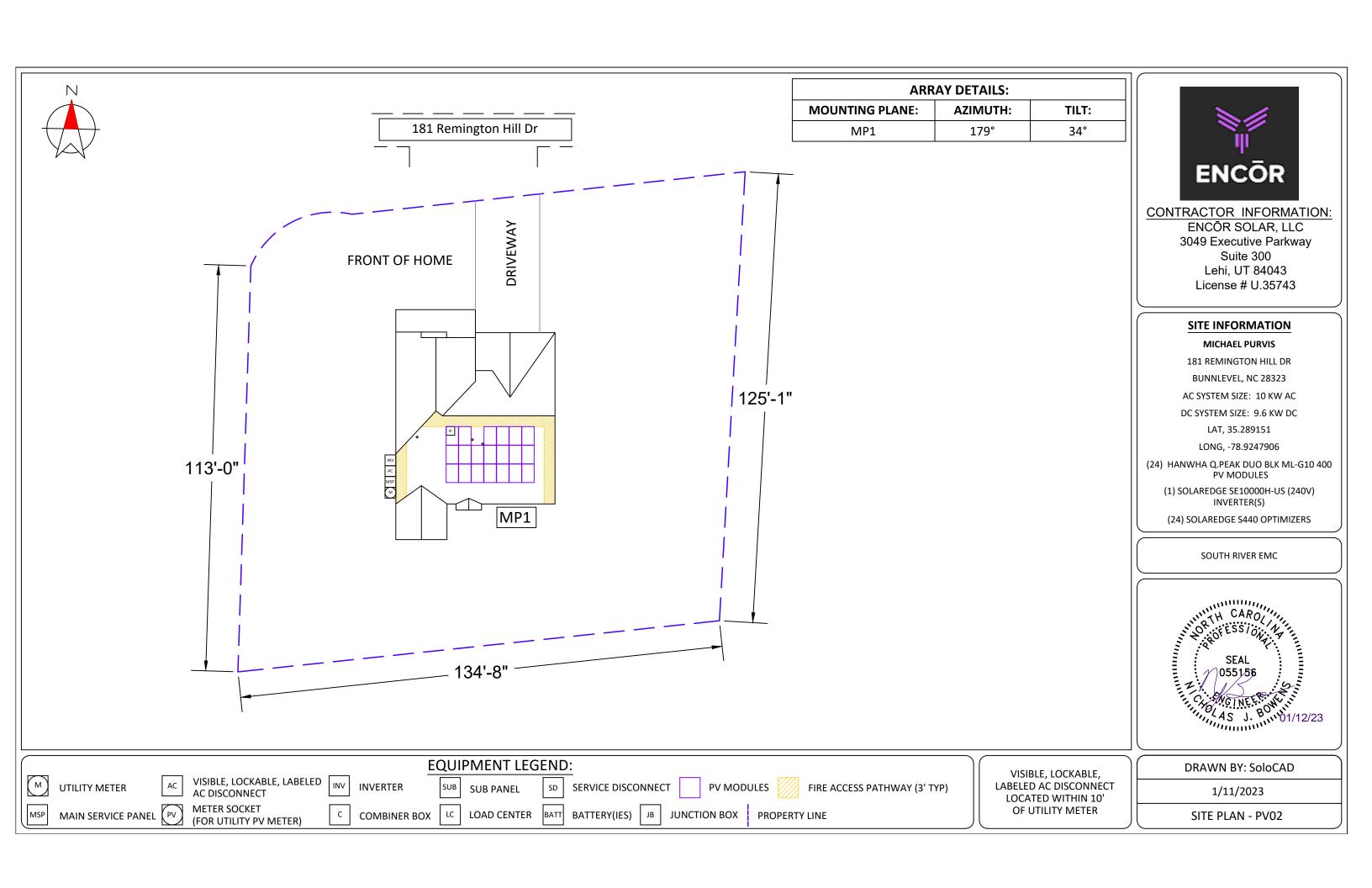
ELECTRICAL EQUIPMENT

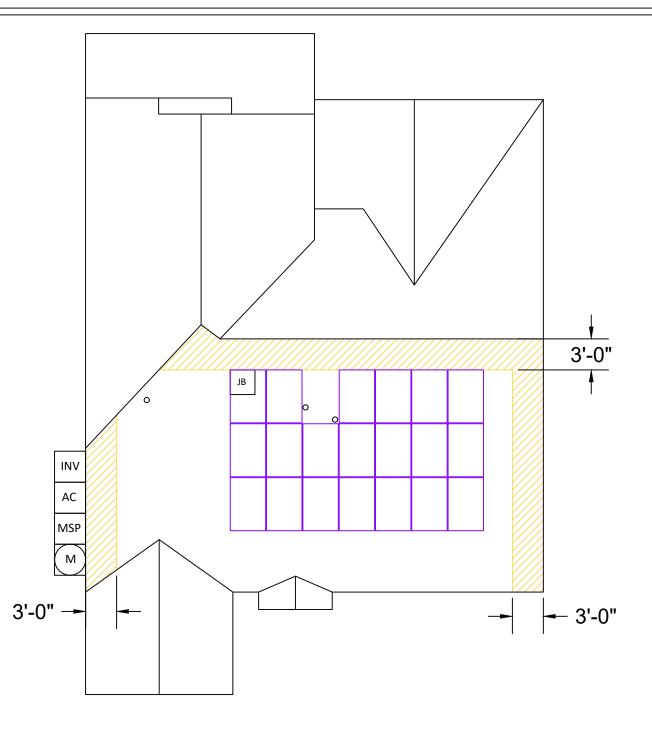

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES (1) SOLAREDGE SE10000H-US (240V) INVERTER(S) (24) SOLAREDGE S440 OPTIMIZERS

RACKING

ATTACHMENT: SPEEDSEAL FOOT

GENERAL NOTES


- 1. INSTALLATION OF SOLAR PHOTOVOLTAIC SYSTEM SHALL BE IN ACCORDANCE WITH NEC ARTICLE 690, AND ALL OTHER APPLICABLE NEC CODES WHERE NOTED OR EXISTING
- 2. PROPER ACCESS AND WORKING CLEARANCE AROUND EXISTING AND PROPOSED ELECTRICAL EQUIPMENT WILL COMPLY WITH NEC ARTICLE 110
- 3. ALL WIRES, INCLUDING THE GROUNDING ELECTRODE CONDUCTOR SHALL BE PROTECTED FROM PHYSICAL DAMAGE IN ACCORDANCE WITH NEC ARTICLE 250
- 4. THE PV MODULES ARE CONSIDERED NON-COMBUSTIBLE; THIS SYSTEM IS UTILITY INTERACTIVE PER UL 1741 AND DOES NOT INCLUDE STORAGE BATTERIES OR OTHER ALTERNATIVE STORAGE SOURCES
- 5. ALL DC WIRES SHALL BE SIZED ACCORDING TO [NEC 690.8]
- 6. DC CONDUCTORS SHALL BE WITHIN PROTECTED RACEWAYS IN ACCORDANCE WITH [NEC 690.31]
- 7. ALL SIGNAGE TO BE PLACED IN ACCORDANCE WITH LOCAL JURISDICTIONAL BUILDING CODE


DRAWN BY: SoloCAD

1/11/2023

COVER - PV01

EQUIPMENT INFORMATION:RAIL MANUFACTURER:SNAPNRACKRAIL PART NUMBER:ULTRA RAIL UR-40ATTACHMENTSSPEEDSEAL FOOTATTACHMENT QTY:34SPLICE QTY:4MIDCLAMP QTY:32		ROOF	INFO:	RRAY STRUCTURAL CRITERIA:		
		ROOF TYPE:	ASPHALT SHINGLE	PV MODULE COUNT:	24	
		ROOF FRAMING:	MANUFACTURED TRUSS	ARRAY AREA:	MODULE COUNT * 21.14 FT ² = 507.36	
		RAFTER/TOP CHORD SIZE:	2x6	ROOF AREA:	2404 FT²	
		RAFTER/TOP CHORD SPACING:	24"	PERCENT OF ROOF COVERED:	21%	
		ATTACHMENT SPACING:	72"	ARRAY WEIGHT:	MODULE COUNT * 49 LBS = 1176 LBS	
				POINT LOAD:	ARRAY LBS/ATTACHMENTS = 34.59	
ENDCLAMP QTY:	16			DISTRIBUTED LOAD: (lbs/ft²)	ARRAY WEIGHT/AREA = 2.32 LBS/FT ²	

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

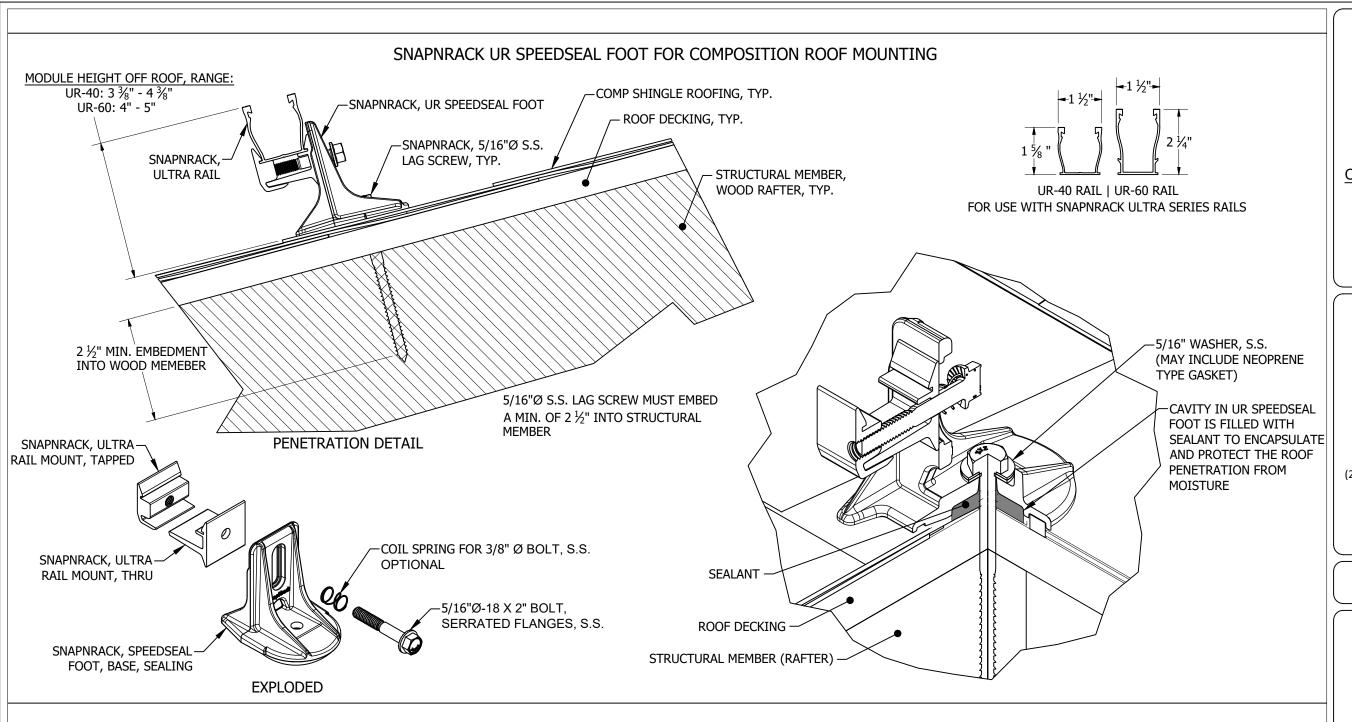
LAT, 35.289151


LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS


SOUTH RIVER EMC

DRAWN BY: SoloCAD

1/11/2023

ROOF PLAN - PV03

EQUIPMENT	INFORMATION:	ROO	F INFO:	PHOTOVOLTAIC ARRAY STRUCTURAL CRITERIA:		
RAIL MANUFACTURER: RAIL PART NUMBER: ULTRA RAIL UR-40 ATTACHMENTS SPEEDSEAL FOOT ATTACHMENT QTY: 34 SPLICE QTY: MIDCLAMP QTY: 32		ROOF TYPE:	ASPHALT SHINGLE	PV MODULE COUNT:	24	
		JMBER: ULTRA RAIL UR-40 ROOF FRAMING: MANUFACTUR		ARRAY AREA:	MODULE COUNT * 21.14 FT ² = 507.36	
		RAFTER/TOP CHORD SIZE:	2x6	ROOF AREA:	2404 FT ²	
		RAFTER/TOP CHORD SPACING:	24"	PERCENT OF ROOF COVERED:	21%	
		ATTACHMENT SPACING:	72"	ARRAY WEIGHT:	MODULE COUNT * 49 LBS = 1176 LBS	
				POINT LOAD:	ARRAY LBS/ATTACHMENTS = 34.59	
ENDCLAMP QTY:	16			DISTRIBUTED LOAD: (lbs/ft²)	ARRAY WEIGHT/AREA = 2.32 LBS/FT ²	

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

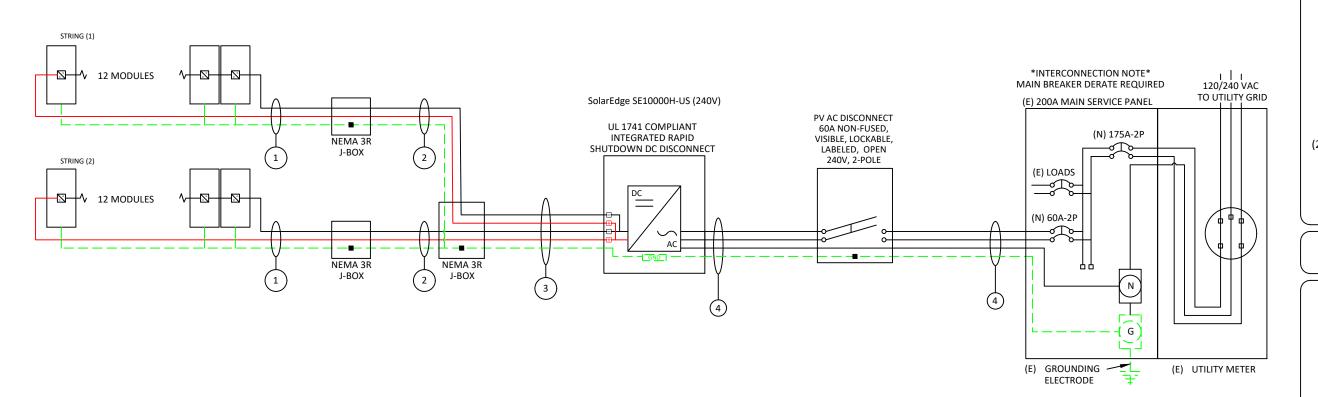
DRAWN BY: SoloCAD

1/11/2023

MOUNTING DETAIL - PV04

HANWHA Q.PEAK DUO BLK ML-G10	400 SPECS	SOLARED		
POWER MAX (PMAX):	400 W	MAX INP		
OPEN CIRCUIT VOLTAGE (VOC):	45.3 V	MAX INP		
MAX POWER-POINT CURRENT (IMP):	10.77 A	NOMINAL DO		
MAX POWER-POINT VOLTAGE (VMP):	37.13 V	MAXIMUM		
SHORT CIRCUIT CURRENT (ISC):	11.14 A	NOM. OUT		
SERIES FUSE RATING:	20 A	MAX OUT		
	POWER MAX (PMAX): OPEN CIRCUIT VOLTAGE (VOC): MAX POWER-POINT CURRENT (IMP): MAX POWER-POINT VOLTAGE (VMP): SHORT CIRCUIT CURRENT (ISC):	OPEN CIRCUIT VOLTAGE (VOC): 45.3 V MAX POWER-POINT CURRENT (IMP): 10.77 A MAX POWER-POINT VOLTAGE (VMP): 37.13 V SHORT CIRCUIT CURRENT (ISC): 11.14 A		

SOLAREDGE SE10000H-US (240V) SPECS						
MAX INPUT VOLTAGE:	480 V					
MAX INPUT CURRENT:	27 A					
NOMINAL DC INPUT VOLTAGE:	400 V					
MAXIMUM OUTPUT POWER:	10000 W					
NOM. OUTPUT VOLTAGE:	240 V					
MAX OUTPUT CURRENT: 42 A						
1-PHASE, 60 HZ, UL 1741 LISTED						


EQUIPMENT SCHEDULE						
TYPE	TYPE QTY DESCRIPTION					
MODULES:	(24)	HANWHA Q.PEAK DUO BLK ML-G10 400	400 W			
INVERTERS:	(1)	SOLAREDGE SE10000H-US (240V)	10000 W			
AC DISCONNECT(S): (1) DC OPTIMIZERS: (24)		PV AC DISCONNECT, 240V, 2-POLE	60 A			
		SOLAREDGE S440	15 Adc			

	CONDUIT & CONDUCTOR SCHEDULE											
TAG	TAG QTY WIRE GAUGE DESCRIPTION											
(2) 10 AWG PV-WIRE, USE-2 COPPER - (L1, L2)		PV-WIRE, USE-2 COPPER - (L1, L2)	N/A - FREE AIR									
1	(1)	6 AWG	BARE COPPER - (GROUND)	N/A - FREE AIR								
2	(2)	10 AWG	THHN/THWN-2 COPPER - (L1, L2)	3/4" EMT								
2	(1)	10 AWG	THWN-2 COPPER - (GROUND)	3/4 EIVII								
2	(4)	10 AWG	THHN/THWN-2 (L1, L2)	3/4" EMT								
3	(1)	10 AWG	THWN-2 COPPER -(GROUND)	3/4 EIVII								
4	(3)	4 AWG	THWN-2 COPPER - (L1, L2, NEUTRAL)	1" EMT								
4	(1)	10 AWG	THWN-2 COPPER - (GROUND)	I EIVII								
	TAG 1 2 3	1 (2) (1) 2 (2) (1) 3 (4) (1) 4	1 (2) 10 AWG (1) 6 AWG (2) 10 AWG (1) 10 AWG (1) 10 AWG (1) 10 AWG (1) 10 AWG (3) 4 AWG	TAG QTY WIRE GAUGE DESCRIPTION (2) 10 AWG PV-WIRE, USE-2 COPPER - (L1, L2) (1) 6 AWG BARE COPPER - (GROUND) (2) 10 AWG THHN/THWN-2 COPPER - (L1, L2) (1) 10 AWG THWN-2 COPPER - (GROUND) (4) 10 AWG THWN-2 (L1, L2) (1) 10 AWG THWN-2 COPPER - (GROUND) (3) 4 AWG THWN-2 COPPER - (L1, L2, NEUTRAL)								

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

VISIBLE, LOCKABLE, LABELED AC DISCONNECT LOCATED WITHIN 10' OF UTILITY METER DRAWN BY: SoloCAD

1/11/2023

LINE DIAGRAM - PV05

STRING CALCULATIONS								
SolarEdge SE10000H-US (240V)	STRING #1	STRING #2						
OPTIMIZER MAX OUTPUT CURRENT:	15A	15A						
OPTIMIZERS IN SERIES:	12	12						
NOMINAL STRING VOLTAGE:	400V	400V						
ARRAY OPERATING CURRENT:	12A	12A						
ARRAY DC POWER:	9600W							
TOTAL MAX AC CURRENT:	AL MAX AC CURRENT: 42A							

TOTAL MAX AC CURRENT:	42A			
NUMBER OF CURRENT CARRYING CON	IDUCTORS	PERCENT OF VALUES		
4-6		.80		
7-9		.70		
10-20		.50		

		_			
SYSTEM OCPD CALCULATIONS					
INVERTER MODEL(S):	SOLAREDGE SE10000H-US (240V)]			
# OF INVERTERS:	1]			
MAX OUTPUT CURRENT:	42A]			
(# OF INVERTERS) X (MAX OUTPUT CURRENT) X 125% <= OCPD RATING					
	(1 X 42A X 1.25) = 52.5A <= 60A, OK	1			

BUSBAR CALCULATIONS - 120% RULE					
MAIN BUSBAR RATING: 200A					
MAIN DISCONNECT RATING:	175A				
PV OCPD RATING:	60A				
(MAIN BUS RATING X 120%) - MAIN DISCONNECT RATING >= OCPD RATING					
	(200A X 1.2) - 175A = 65A, >= 60A, OK				

CONDUIT & CONDUCTOR SCHEDULE

					00110011 0 0011	DOCTORGOTIEDOLE						
	TAG	QTY	WIRE GAUGE DESCRIPTION	CONDUIT SIZE	CONDUCTOR RATING	CONDUCTOR TEMP. RATE	AMBIENT TEMP	TEMP. DERATE	# OF CONDUCTORS DERATE	CONDUCTOR RATING W/DERATES	CONDUIT FILL	
	1	(2)	10 AWG PV-WIRE, USE-2 COPPER - (L1, L2)	N/A - FREE AIR	40A	90°C	36°C	0.91	N/A - FREE AIR	36.4A	N/A - FREE AIR	
	1	(1)	6 AWG BARE COPPER - (GROUND)	N/A - FREE AIR	40A	90 C	30 C	0.91	N/A - FREE AIR	30.4A	N/A - FREE AIR	
	2	(2)	10 AWG THHN/THWN-2 COPPER - (L1, L2)	3/4" EMT	40A	90°C	36°C	0.91	1	36.4A	11.9%	
	2	(1)	10 AWG THWN-2 COPPER - (GROUND)	3/4 [[V]]	3/4 [[11]]	404	90 C	30 C	0.91	1	30.4A	11.5%
	2	(4)	10 AWG THHN/THWN-2 (L1, L2)	3/4" EMT	40A	90°C	90°C 36°C	0.91	0.8	29.12A	19.8%	
	3	(1)	10 AWG THWN-2 COPPER -(GROUND)	3/4 EIVII	40A	90 C	36 C	0.91	0.8	29.12A	19.8%	
		(3)	4 AWG THWN-2 COPPER - (L1, L2, NEUTRAL)	1" EMT	85A	75°C	36°C	C 0.88		74.04	31.1%	
	4	(1)	10 AWG THWN-2 COPPER - (GROUND)	T EIVII	OSA	/3 C	30 C	0.00	1	74.8A	51.170	

GROUNDING & GENERAL NOTES:

- 1. PV INVERTER IS UNGROUNDED, TRANSFORMER-LESS TYPE.
- 2. DC GEC AND AC EGC TO BE SPLICED TO EXISTING ELECTRODE
- 3. ANY EXISTING WIRING INVOLVED WITH PV SYSTEM CONNECTION THAT IS FOUND TO BE INADEQUATE PER CODE SHALL BE CORRECTED PRIOR TO FINAL INSPECTION.
- 4. JUNCTION BOX QUANTITIES, AND PLACEMENT SUBJECT TO CHANGE IN THE FIELD JUNCTION BOXES DEPICTED ON ELECTRICAL DIAGRAM REPRESENT WIRE TYPE TRANSITIONS.
- 5. AC DISCONNECT NOTED IN EQUIPMENT SCHEDULE OPTIONAL IF OTHER AC DISCONNECTING MEANS IS LOCATED WITHIN 10' OF SERVICE DISCONNECT.

INTERCONNECTION NOTES:

- 1. INTERCONNECTION SIZING, LIMITATIONS AND COMPLIANCE DETERMINED IN ACCORDANCE WITH [NEC 705.12].
- 2. GROUND FAULT PROTECTION IN ACCORDANCE WITH [NEC 215.9], [NEC 230.95] AND [NEC 690.41]
- 3. ALL EQUIPMENT TO BE RATED FOR BACKFEEDING.
- 4. PV BREAKER TO BE POSITIONED AT THE OPPOSITE END OF THE BUSBAR RELATIVE TO THE MAIN BREAKER.

DISCONNECT NOTES:

VISIBLE-BREAK SWITCH

1. DISCONNECTING SWITCHES SHALL BE WIRED SUCH THAT WHEN THE SWITCH IS OPENED THE CONDUCTORS REMAINING LIVE ARE CONNECTED TO THE TERMINALS MARKED "LINE SIDE" (TYPICALLY THE UPPER TERMINALS) 2. AC DISCONNECT MUST BE ACCESSIBLE TO QUALIFIED UTILITY PERSONNEL, BE LOCKABLE, AND BE A

ENCŌR

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323 AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

DRAWN BY: SoloCAD

1/11/2023

ELECTRICAL CALCS - PV06

MAIN PHOTOVOLTAIC SYSTEM DISCONNECT

PLACED ON THE MAIN DISCONNECTING MEANS FOR THE PV [NEC 690.13(B)]

WARNING

ELECTRIC SHOCK HAZARD TERMINALS ON THE LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION

LOAD TERMINALS MAY BE ENERGIZED IN THE OPEN POSITION. [NEC 690.13(B)]

WARNING

POWER SOURCE OUTPUT CONNECTION DO NOT RELOCATE THIS OVERCURRENT DEVICE

A CAUTION

MULTIPLE SOURCES OF POWER

THIS EQUIPMENT IS FED BY MULTIPLE SOURCES. TOTAL RATING OF ALL **OVERCURRENT DEVICES. EXCLUDING** MAIN SUPPLY OVERCURRENT **DEVICE, SHALL NOT EXCEED** AMPACITY OF BUSBAR.

THE INVERTER IF TIE IN CONSISTS OF LOAD SIDE CONNECTION TO BUSBAR [NEC 705.12(B)(3)(2)]

PLACED ON EQUIPMENT CONTAINING OVERCURRENT DEVICES IN CIRCUITS SUPPLYING POWER TO A BUSBAR OR CONDUCTOR SUPPLIED FROM MULTIPLE SOURCES [NEC 705.10]

DEVICES IN CIRCUITS SUPPLYING POWER TO A BUSBAR OR CONDUCTOR SUPPLIED FROM MULTIPLE SOURCES SHALL BE MARKED TO 705.12(B)(3)(3)]

FOR PV DISCONNECTING MEANS WHERE THE LINE AND

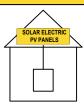
PLACED ADJACENT TO THE BACK-FED BREAKER FROM

EQUIPMENT CONTAINING OVERCURRENT INDICATE THE PRESENCE OF ALL SOURCES.[NEC

- 1. LABELS CALLED OUT ACCORDING TO ALL COMMON CONFIGURATIONS. ELECTRICIAN TO DETERMINE EXACT REQUIREMENTS IN THE FIELD PER CURRENT NEC AND LOCAL CODES AND MAKE APPROPRIATE ADJUSTMENTS.
- LABELING REQUIREMENTS BASED ON THE 2020 NATIONAL ELECTRIC CODE, OSHA STANDARD
- MATERIAL BASED ON THE REQUIREMENTS OF THE AUTHORITY HAVING JURISDICTION.
- LABELS TO BE OF SUFFICIENT DURABILITY TO WITHSTAND THE ENVIRONMENT INVOLVED INEC
- LABELS TO BE A MINIMUM LETTER HEIGHT OF 3/8", WHITE ON RED BACKGROUND; REFLECTIVE, AND PERMANENTLY AFFIXED [NEC 690.31(D)(2)]

PHOTOVOLTAIC AC DISCONNECT

42 RATED AC OUTPUT CURRENT: NOMINAL OPERATING AC VOLTAGE: 240


LABEL 6

MARKED AT AC DISCONNECTING MEANS. [NEC 690.54]

PHOTOVOLTAIC POWER SOURCE

SOLAR PV SYSTEM EQUIPPED WITH RAPID SHUTDOWN

TURN RAPID SHUTDOWN SWICH TO THE "OFF" POSITION TO SHUT DOWN PV SYSTEM AND REDUCE SHOCK HAZARD IN ARRAY

RAPID SHUTDOWN **SWITCH FOR SOLAR PV SYSTEM**

DO NOT UPSIZE **MAIN BREAKER**

BREAKER HAS BEEN DOWNSIZED FOR PV SOLAR SYSTEM CONNECTION

LABEL 7
AT DIRECT-CURRENT EXPOSED RACEWAYS, CABLE TRAYS, COVERS AND ENCLOSURES OF JUNCTION BOXES, AND OTHER WIRING METHODS; SPACED AT MAXIMUM 10FT SECTION OR WHERE SEPARATED BY ENCLOSURES, WALLS, PARTITIONS, CEILINGS, OR FLOORS. [NEC 690.31(D)(2)]

FOR PV SYSTEMS THAT SHUT DOWN THE ARRAY AND CONDUCTORS LEAVING THE ARRAY: SIGN TO BE LOCATED ON OR NO MORE THAN 3 FT AWAY FROM

SERVICE DISCONNECTING MEANS TO WHICH THE PV SYSTEMS ARE CONNECTED AND SHALL INDICATE THE LOCATION OF ALL IDENTIFIED RAPID SHUTDOWN SWITCHES IF NOT AT THE SAME LOCATION. [NEC 690.56(C)(1)]

SIGN LOCATED ON OR NO MORE THAN 3FT FROM INITIATION DEVICE [NEC 690.56(C)(2)].

SIGN LOCATED AT POINT OF INTERCONNECTION IF IT CONSISTS OF A MAIN BREAKER DERATE

ENCŌR

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR

BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

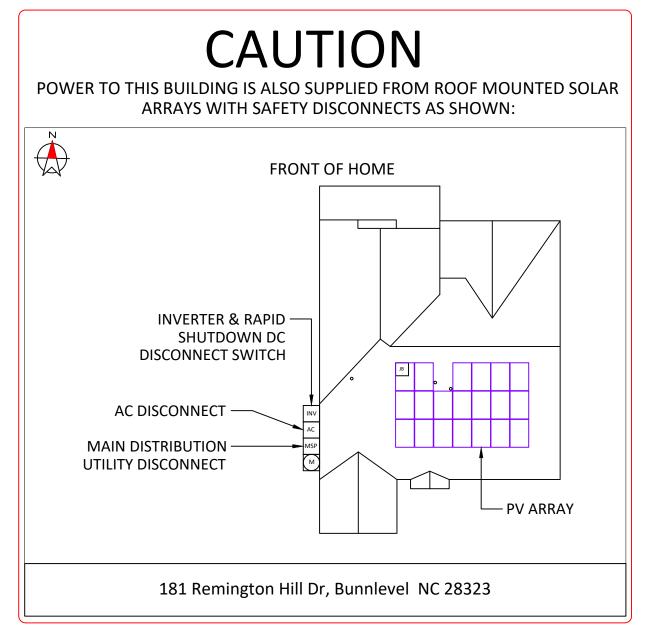
LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V) INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC


LABELING DIAGRAM: MAIN SERVICE PANEL (1) **PV COMBINER EXISTING SUB PANEL** 2 SUBPANEL - IF USED TO (ONLY IF WHERE POINT COMBINE PV OUTPUT OF INTERCONNECTION 3 CIRCUITS OR INVERTER AC DISCONNECT IS MADE) 4 (6) (1) JUNCTION BOX (1) 8 10 (4) (3) (3) (7)(7)(9) (5) (ONLY IF PV INTERCONNECTIO INTERCONNECTION SIDE BREAKER)

ELECTRICAL DIAGRAM SHOWN ABOVE IS FOR LABELING PURPOSES ONLY. NOT AN ACTUAL REPRESENATION OF EQUIPMENT AND CONNECTIONS TO BE INSTALLED. LABEL LOCATIONS PRESENTED MAY VERY DEPENDING ON TYPE OF INTERCONNECTION METHOD AND LOCATION PRESENTED ELECTRICAL DIAGRAM PAGE.

DRAWN BY: SoloCAD

1/11/2023

LABELS - PV07

DIRECTORY

PERMANENT PLAQUE OR DIRECTORY PROVIDING THE LOCATION OF THE SERVICE DISCONNECTING MEANS AND THE PHOTOVOLTAIC SYSTEM.

(ALL PLAQUES AND SIGNAGE WILL BE INSTALLED AS OUTLINED WITHIN: NEC 690.56(B)&(C), [NEC 705.10])

CONTRACTOR INFORMATION:

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V)
INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

DRAWN BY: SoloCAD

1/11/2023

PLACARD - PV08

SITE PHOTOS:

CONTRACTOR INFORMATION: ENCŌR SOLAR, LLC

ENCŌR SOLAR, LLC 3049 Executive Parkway Suite 300 Lehi, UT 84043 License # U.35743

SITE INFORMATION

MICHAEL PURVIS

181 REMINGTON HILL DR BUNNLEVEL, NC 28323

AC SYSTEM SIZE: 10 KW AC

DC SYSTEM SIZE: 9.6 KW DC

LAT, 35.289151

LONG, -78.9247906

(24) HANWHA Q.PEAK DUO BLK ML-G10 400 PV MODULES

(1) SOLAREDGE SE10000H-US (240V) INVERTER(S)

(24) SOLAREDGE S440 OPTIMIZERS

SOUTH RIVER EMC

DRAWN BY: SoloCAD

1/11/2023

SITE PHOTOS - PV09

ENDURING HIGH PERFORMANCE

BREAKING THE 20% EFFICIENCY BARRIER

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 20.9%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).

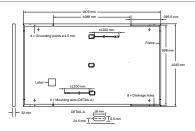
A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty2.

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

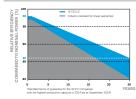
APT test conditions according to IEC/TS 62804-1:2015, method B (-1500 V, 168h)


THE IDEAL SOLUTION FOR:

QCELLS

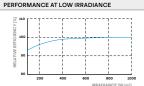
MECHANICAL SPECIFICATION

Format	1879 mm × 1045 mm × 32 mm (including frame)			
Neight	22.0kg			
Front Cover	 2mm thermally pre-stressed glass with anti-reflection technology 			
Back Cover	Composite film			
rame	Black anodised aluminium			
Cell	6 × 22 monocrystalline Q.ANTUM solar half cells			
Junction box 53-101 mm × 32-60 mm × 15-18 mm Protection class IP67, with bypass diodes				
Cable	le 4 mm² Solar cable; (+) ≥1200 mm, (-) ≥1200 mm			
Connector	Stäubli MC4, Hanwha Q CELLS HQC4; IP68			



ELECTRICAL CHARACTERISTICS

WER CLASS			385	390	395	400	405
IIMUM PERFORMANCE AT STANDARD	TEST CONDITIO	NS, STC1 (PC	WER TOLERANCE	+5 W / -0 W)			
Power at MPP ¹	P _{MPP}	[W]	385	390	395	400	405
Short Circuit Current ¹	Isc	[A]	11.04	11.07	11.10	11.14	11.17
Open Circuit Voltage ¹	Voc	[V]	45.19	45.23	45.27	45.30	45.34
Current at MPP	I _{MPP}	[A]	10.59	10.65	10.71	10.77	10.83
Voltage at MPP	V_{MPP}	[V]	36.36	36.62	36.88	37.13	37.39
Efficiency ¹	η	[%]	≥19.6	≥19.9	≥20.1	≥20.4	≥20.6
IIMUM PERFORMANCE AT NORMAL C	PERATING CONI	DITIONS, NM	OT ²				
Power at MPP	P _{MPP}	[W]	288.8	292.6	296.3	300.1	303.8
Short Circuit Current	I _{sc}	[A]	8.90	8.92	8.95	8.97	9.00
Open Circuit Voltage	Voc	[V]	42.62	42.65	42.69	42.72	42.76
Current at MPP	I _{MPP}	[A]	8.35	8.41	8.46	8.51	8.57
Voltage at MPP	V _{MPP}	[V]	34.59	34.81	35.03	35.25	35.46
	IMMUM PERFORMANCE AT STANDARD Power at MPP¹ Short Circuit Current¹ Open Circuit Voltage¹ Current at MPP Voltage at MPP Efficiency¹ IIMMUM PERFORMANCE AT NORMAL C Power at MPP Short Circuit Current Open Circuit Voltage Current at MPP	MUM PERFORMANCE AT STANDARD TEST CONDITIC Power at MPP¹ P _{UPP} Short Circuit Current¹ I _{SC} Open Circuit Voltage¹ V _{CC} Current at MPP I _{MPP} Voltage at MPP V _{MPP} Voltage at MPP Open Circuit Voltage at MPP I _{MPP} MIMUM PERFORMANCE AT NORMAL OPERATING CONI Power at MPP P _{MPP} Short Circuit Current I _{SC} Open Circuit Voltage V _{CC} Current at MPP I _{MPP} I _{MP}	NUMM PERFORMANCE AT STANDARD TEST CONDITIONS, STC- (PC Power at MPP	NUMM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE	NUMM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5W/-OW) Power at MPP¹	NUMM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W/−0 W)	NUMM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWERTOLERANCE +5W/-0W) Power at MPP¹


⁴Measurement tolerances P_{M60} ±3 %; I_{SC}; V_{OC} ±5% at STC: 1000W/m², 25±2 °C, AM 1.5 according to IEC 60904-3 • ²800W/m², NMOT, spectrum AM 1.5

Q CELLS PERFORMANCE WARRANTY

At least 98 % of nominal power dur-ing first year. Thereafter max. 0.5 % degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your

comparison to STC conditions (25°C, 1000 W/m2).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of PMOO	v	[%/K]	-0.34	Nominal Module Operating Temperature	NMOT	[°C]	43±3

		I KOI	LICTILOTOR	STOTEM DESIGN	
Maximum System Voltage	V _{sys}	[V]	1000	PV module classification	Class II
Maximum Reverse Current	I _R	[A]	20	Fire Rating based on ANSI/UL 61730	C/TYPE 2
Max. Design Load, Push / Pull		[Pa]	3600/2660	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

PROPERTIES FOR SYSTEM DESIGN

QUALIFICATIONS AND CERTIFICATES

IEC 61730:2016 with DIN EN 50380.

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and

Hanwha Q CELLS GmbH

Sonnenallee 17-21, 06766 Bitterfeld-Wolfen, Germany | TEL +49 (0)3494 66 99-23444 | FAX +49 (0)3494 66 99-23000 | EMAIL sales@q-cells.com | WEB www.q-cells.com

² See data sheet on rear for further information.

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

IVERTERS

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking 99% weighted efficiency
- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014, NEC 2017 and NEC 2020 per article 690.11 and 690.12

- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Small, lightweight, and easy to install both outdoors or indoors
- Built-in module-level monitoring
- Optional: Faster installations with built-in consumption metering (1% accuracy) and production revenue grade metering (0.5% accuracy, ANSI C12.20)

solaredge.com

Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

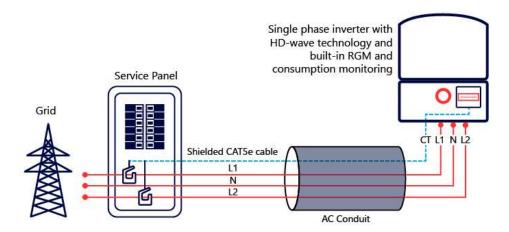
MODEL NUMBER	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
APPLICABLE TO INVERTERS WITH PART NUMBER		SEXXXXH-XXXXXBXX4						
OUTPUT								
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
AC Output Voltage MinNomMax. (211 - 240 - 264)	✓	✓	✓	✓	✓	✓	✓	Vac
AC Output Voltage MinNomMax. (183 - 208 - 229)	-	✓	=	✓	-	-	✓	Vac
AC Frequency (Nominal)				59.3 - 60 - 60.5 ⁽¹⁾				Hz
Maximum Continuous Output Current @240V	12.5	16	21	25	32	42	47.5	Α
Maximum Continuous Output Current @208V	-	16	-	24	-	-	48.5	Α
Power Factor			1,	Adjustable - 0.85 to	0.85			
GFDI Threshold		1						
Utility Monitoring, Islanding Protection, Country Configurable Thresholds				Yes				
INPUT								
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W
Maximum DC Power @208V	-	5100	-	7750	-	-	15500	W
Transformer-less, Ungrounded				Yes				
Maximum Input Voltage				480				Vdc
Nominal DC Input Voltage		3	380			400		Vdc
Maximum Input Current @240V ⁽²⁾	8.5	10.5	13.5	16.5	20	27	30.5	Adc
Maximum Input Current @208V ⁽²⁾	-	9	-	13.5	-	-	27	Adc
Max. Input Short Circuit Current				45				Adc
Reverse-Polarity Protection		Yes						
Ground-Fault Isolation Detection	600kΩ Sensitivity							
Maximum Inverter Efficiency	99			S	9.2			%
CEC Weighted Efficiency		99 @ 240V 98.5 @ 208V						
Nighttime Power Consumption				< 2.5				W

⁾ For other regional settings please contact SolarEdge support

⁽²⁾ A higher current source may be used; the inverter will limit its input current to the values stated

/ Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US


MODEL NUMBER	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
ADDITIONAL FEATURES			1	'	•	•		
Supported Communication Interfaces			RS485, Ethernet,	ZigBee (optional), C	ellular (optional)			
Revenue Grade Metering, ANSI C12.20		Ontine (B)						
Consumption metering		Optional ⁽³⁾						
Inverter Commissioning		With the SetApp mobile application using Built-in Wi-Fi Access Point for Local Connection						
Rapid Shutdown - NEC 2014, NEC 2017 and NEC 2020, 690.12		Automatic Rapid Shutdown upon AC Grid Disconnect						
STANDARD COMPLIANCE								
Safety		UL1741, U	L1741 SA, UL1699B,	CSA C22.2, Canadian	AFCI according to	T.I.L. M-07		
Grid Connection Standards			IEEE'	1547, Rule 21, Rule 14	(HI)			
Emissions				FCC Part 15 Class B				
INSTALLATION SPECIFICAT	TIONS							
AC Output Conduit Size / AWG Range		1"	Maximum / 14-6 AV	VG		1" Maximum	/14-4 AWG	
DC Input Conduit Size / # of Strings / AWG Range		1" Maxir	mum / 1-2 strings / 1-	4-6 AWG		1" Maximum / 1-3 s	trings / 14-6 AWG	
Dimensions with Safety Switch (HxWxD)		17.7 x	14.6 x 6.8 / 450 x 37	0 x 174		21.3 x 14.6 x 7.3 /	540 x 370 x 185	in / mn
Weight with Safety Switch	22	/ 10	25.1 / 11.4	26.2 ,	/ 11.9	38.8 /	17.6	lb / kg
Noise		< 25 < 50					dBA	
Cooling		Natural Convection						
Operating Temperature Range		-40 to +140 / -40 to +60 ⁽⁴⁾						°F/°C
Protection Rating		NEMA 4X (Inverter with Safety Switch)						

⁽³⁾ Inverter with Revenue Grade Meter P/N: SExxxxH-US000BNC4; Inverter with Revenue Grade Production and Consumption Meter P/N: SExxxxH-US000BNI4 . For consumption metering, current transformers should be ordered separately: SEACT0750-200NA-20 or SEACT0750-400NA-20. 20 units per box

(4) Full power up to at least 50°C / 122°F, for power de-rating information refer to: https://www.solaredge.com/sites/default/fles/se-temperature-derating-note-na.pdf

How to Enable Consumption Monitoring

By simply wiring current transformers through the inverter's existing AC conduits and connecting them to the service panel, homeowners will gain full insight into their household energy usage helping them to avoid high electricity bills

© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners, Date: 12/2020/V01/ENG NAM. Subject to change without notice.

Power Optimizer For North America

S440, S500

POWER OPTIMIZER

PV power optimization at the module level

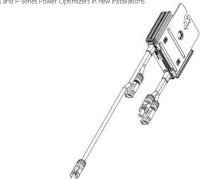
- Specifically designed to work with SolarEdge residential inverters
- Detects abnormal PV connector behavior, preventing potential safety issues*
- Module-level voltage shutdown for installer and firefighter safety
- Superior efficiency (99.5%)
- Mitigates all types of module mismatch loss, from manufacturing tolerance to partial shading

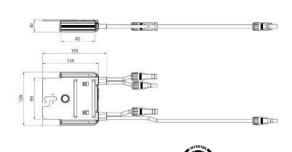
- ✓ Faster installations with simplified cable management and easy assembly using a single bolt
- Flexible system design for maximum space utilization
- Compatible with bifacial PV modules
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)

/ Power Optimizer For North America

S440, S500

	S440	S500	Unit	
INPUT				
Rated Input DC Power ⁽¹⁾	440	500	W	
Absolute Maximum Input Voltage (Voc)	60)	Vdc	
MPPT Operating Range	8 - 1	60	Vdc	
Maximum Short Circuit Current (Isc) of Connected PV Module	14.5	15	Adc	
Maximum Efficiency	99.	5	%	
Weighted Efficiency	98.	6	%	
Overvoltage Category	П			
OUTPUT DURING OPERATION				
Maximum Output Current	15		Adc	
Maximum Output Voltage	60)	Vdc	
OUTPUT DURING STANDBY (POWER OPTIMIZER DISC	ONNECTED FROM INVERTER OR	INVERTER OFF)		
Safety Output Voltage per Power Optimizer	Power Optimizer 1+/-0.1			
STANDARD COMPLIANCE			,	
Photovoltaic Rapid Shutdown System	NEC 2014, 2017 & 2020			
EMC	FCC Part 15 Class B, IEC61000-6-2, IEC61000-6-3			
Safety	IEC62109-1 (class I	l safety), UL1741		
Material	UL94 V-0, U	V Resistant		
RoHS	Ye	S		
Fire Safety	VDE-AR-E 2100-712:2013-05			
INSTALLATION SPECIFICATIONS				
Maximum Allowed System Voltage	100	0	Vdc	
Dimensions (W x L x H)	129 x 153 x 30 / 5	07 x 6.02 x 1.18	mm / i	
Weight (including cables)	655 /	1.5	gr/lb	
Input Connector	MC	4(2)		
Input Wire Length	0.1 / 0.32		m/ft	
Output Connector	MC4			
Output Wire Length	(+) 2.3, (-) 0.10 / (+) 7.54, (-) 0.32		m/fi	
Operating Temperature Range ⁽³⁾	-40 to	+85	°C	
Protection Rating	IP68 / Ty	ре6В		
Relative Humidity	0 - 1	00	%	


⁽¹⁾ Rated power of the module at STC will not exceed the power optimizer Rated Input DC Power. Modules with up to +5% power tolerance are allowed (2) For other connector types please contact SolarEdge


⁽³⁾ For ambient temperature above +70°C / +158°F power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Technical Note for more details

PV System Design Using a SolarEdge Inverter		Single Phase HD-Wave	Three Phase for 208V grid	Three Phase for 277/480V grid	
Minimum String Length (Power Optimizers)	S440, S500	8	14	18	
Maximum String Length (Powe	er Optimizers)	25		50(4)	
Maximum Nominal Power per String		5700 (6000 with SE7600-US-SE11400-U)	6000	12750	W
Maximum Allowed Connected Power per String (5) (Permitted only when the difference in connected power between		Refer to Footnote 5	One String 7200W	15,000W	
strings is 1,000W or less)		Refer to Foothote 5	Two strings or more 7800W	15,000 W	
Parallel Strings of Different Lengths or Orientations			Υ		

⁽⁴⁾ A string with more than 30 optimizers does not meet NEC rapid shutdown requirements; safety voltage will be above the 30V requirement
(5) If the inverters rated AC power < maximum nominal power per string, then the maximum power per string will be able to reach up to the inverters maximum input DC power. Refer to: https://www.solaredge.com/

sites/default/files/se-power-optimizer-single-string-design-application-note.pdf (6) It is not allowed to mix S-series and P-series Power Optimizers in new installation:

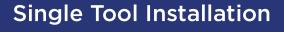
© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: February 8, 2022 DS-000018-NA. Subject to change without notice.

solaredge.com

^{*} Expected availability in 2022

UR-40 UR-60

Ultra Rail



The Ultimate Value in Rooftop Solar

Industry leading Wire Management Solutions

Mounts available for all roof types

All SnapNrack Module Clamps & Accessories are compatible with both rail profiles

Start Installing Ultra Rail Today

RESOURCES
DESIGN
WHERE TO BUY

snapnrack.com/resources snapnrack.com/configurator snapnrack.com/where-to-buy

SnapNrack Ultra Rail System

A sleek, straightforward rail solution for mounting solar modules on all roof types. Ultra Rail features two rail profiles; UR-40 is a lightweight rail profile that is suitable for most geographic regions and maintains all the great features of SnapNrack rail, while UR-60 is a heavier duty rail profile that provides a larger rail channel and increased span capabilities. Both are compatible with all existing mounts, module clamps, and accessories for ease of install.

The Entire System is a Snap to Install

- New Ultra Rail Mounts include snap-in brackets for attaching rail
- Compatible with all the SnapNrack Mid Clamps and End Clamps customers love
- Universal End Clamps and snap-in End Caps provide a clean look to the array edge

Unparalleled Wire Management

- Open rail channel provides room for running wires resulting in a long-lasting quality install
- Industry best wire management offering includes Junction Boxes, Universal Wire Clamps, MLPE Attachment Kits, and Conduit Clamps
- System is fully bonded and listed to UL 2703 Standard

Heavy Duty UR-60 Rail

- UR-60 rail profile provides increased span capabilities for high wind speeds and snow loads
- Taller, stronger rail profile includes profilespecific rail splice and end cap
- All existing mounts, module clamps, and accessories are retained for the same great install experience

Quality. Innovative. Superior.

SnapNrack Solar Mounting Solutions are engineered to optimize material use and labor resources and improve overall installation quality and safety.

877-732-2860

www.snapnrack.com

contact@snapnrack.com

© 2019 by SnapNrack Solar Mounting Solutions. All rights reserved

DESCRIPTION:

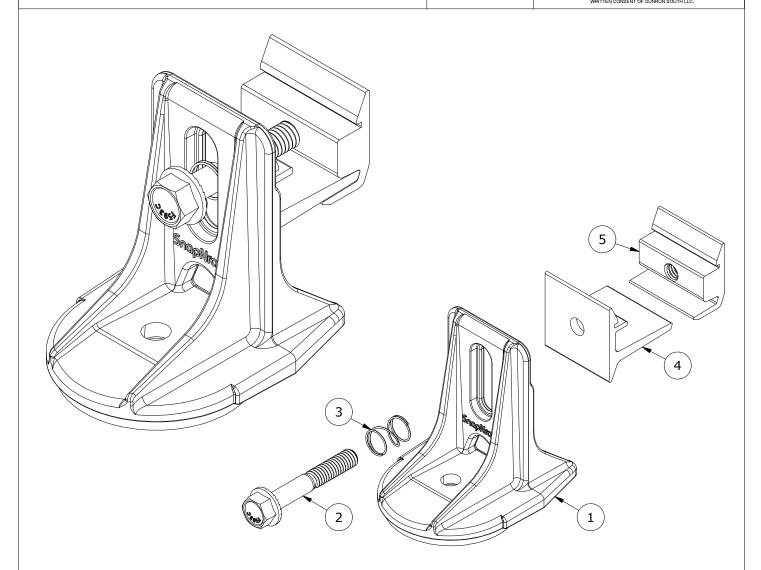
SNAPNRACK, ULTRA RAIL SPEEDSEAL™ FOOT

PART NUMBER(S):

242-02163, 242-02167

DRAWN BY:

mwatkins


REVISION:

Α

Solar Mounting Solutions

595 MARKET STREET, 29TH FLOOR ● SAN FRANCISCO, CA 94105 USA PHONE (415) 580-6900 ● FAX (415) 580-6902

THE INFORMATION IN THIS DRAWING IS CONFIDENTIAL AND PROPRIETARY. ANY REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PROHIBITED WITHOUT THE WRITTEN CONSENT OF SUNRUN SOUTH LLC.

	PARTS LIST						
ITEM	QTY	DESCRIPTION					
1	1	SNAPNRACK, SPEEDSEAL FOOT, BASE, SEALING, SILVER / BLACK					
2	1	BOLT, FLANGE, SERRATED, 5/16IN-18 X 2IN, SS					
3	1	SNAPNRACK, RL UNIVERSAL, MOUNT SPRING, SS					
4	1	SNAPNRACK, ULTRA RAIL MOUNT THRU PRC, CLEAR / BLACK					
5	1	SNAPNRACK, ULTRA RAIL MOUNT TAPPED PRC, CLEAR / BLACK					

MATERIALS:	DIE CAST A380 ALUMINUM, 6000 SERIES ALUMINUM, STAINLESS STEEL		
DESIGN LOAD (LBS):	802 UP, 1333 DOWN, 357 SIDE	OPTIONS:	
ULTIMATE LOAD (LBS):	2118 UP, 4006 DOWN, 1331 SIDE	CLEAR / BLACK	
TORQUE SPECIFICATION:	12 LB-FT		
CERTIFICATION:	UL 2703, FILE E359313; WIND-DRIVEN RAIN TEST FROM SUBJECT UL 2582		
WEIGHT (LBS):	0.45		

DESCRIPTION:

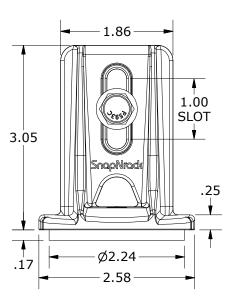
PART NUMBER(S):

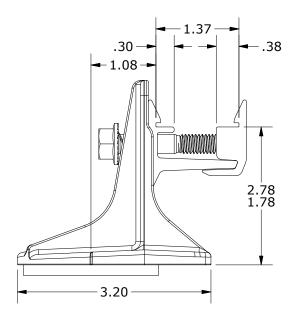
SNAPNRACK, ULTRA RAIL SPEEDSEAL™ FOOT

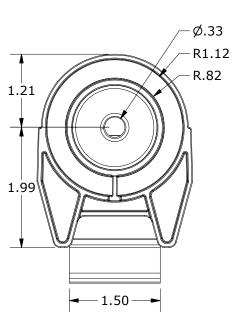
242-02163, 242-02167

Mwatkins

REVISION:


Α


DRAWN BY:



595 MARKET STREET, 29TH FLOOR ◆ SAN FRANCISCO, CA 94105 USA PHONE (415) 580-6900 ◆ FAX (415) 580-6902

THE INFORMATION IN THIS DRAWING IS CONFIDENTIAL AND PROPRIETARY. AN REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PROHIBITED WITHOUT TH

ALL DIMENSIONS IN INCHES

SnapNrack SpeedSeal™ Foot

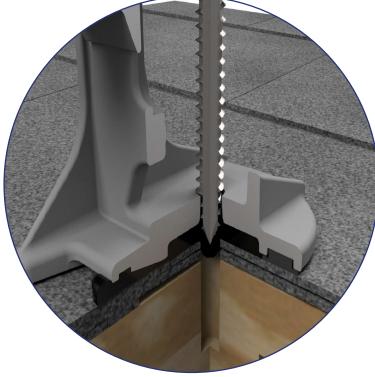
Patent Pending Lag Driven Sealant Solution for Ultra Rail

A New Generation of Roof Attachments

- Innovative design incorporates flashing reliability into a single roof attachment
- 100% waterproof solution
- Sealing cavity with compressible barrier secures sealant in place & fills voids

Maintain the Integrity of the Roof by Eliminating Disruption

- Zero prying of shingles
- Zero removal of nails leaving holes in the roof
- Roof remains installed the way manufacturer meant it to be


Lag Driven Sealant Waterproofing

Time Tested Roof Sealant provides lasting seal

- Sealant is compressed into cavity and lag hole as attachment is secured to rafter
- Active sealant solidifies bond if ever touched by liquid
- Technology passes UL 2582 Wind Driven Rain Test and ASTM E2140 Water Column Testing standards. Patent Pending.

Single Tool Installation

• SnapNrack was the first in the industry to develop a complete system that only requires a single tool. That tradition is continued as a $\frac{1}{2}$ " socket is still the only tool necessary to secure the mount as well as all other parts of the system.

Note: Sealant shown in white for illustration purposes only.

SnapNrack SpeedSeal™ Foot

Fastest Roof Attachment in Solar

- Lag straight to a structural member, no in-between components such as flashings or bases.
- Simply locate rafter, fill sealant cavity & secure to roof. *It's that simple!*

Integrated Flashings. No Questions.

- Sealant fills around lag screw keeping roof and structure sealed and intact
- No added holes from ripping up nails, staples and screws holding shingles on roof

Less Time. Less Parts. Less Tools.

- No more need for a pry bar to rip up shingles
- No more proprietary lag screws
- Single Tool installation with ½" socket

Total System Solution One Tool. One Warranty.

- SnapNrack Ultra Rail is a straightforward intuitive install experience on the roof without
- compromising quality, aesthetics & safety, all supported by a 25 year warranty.
- Built-in Wire Management & Aesthetically pleasing features designed for Ultra Rail result in a long-lasting quality install that installers and homeowners love.

Certifications

SnapNrack Ultra Rail System has been evaluated by Underwriters Laboratories (UL) and Listed to UL/ANSI Standard 2703 for Mechanical Loading and Fire. Additionally it is listed to UL 2582 for wind-driven rain and ASTM 2140.

877-732-2860 www.snapnrack.com

contact@snapnrack.com