RE: Structural Certification for Installation of Residential Solar JAMES BROWN:155 BRAE DRIVE, LILLINGTON, NC 27546, USA

Attn: To Whom It May Concern

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. From the field observation report, the roof is made of Single Layer of Composition Shingle roofing over roof plywood supported by 2X4 Trusses at 24 inches. The slope of the roof was approximated to be 30 degrees. The maximum allowable chord span is 8 feet between supports.

After review of the field observation data and based on our structural capacity calculation, **the existing roof framing has been determined to be adequate to support the imposed loads without structural upgrades.** Contractor shall verify that existing framing is consistent with the described above before install. Should they find any discrepancies, a written approval from SEOR is mandatory before proceeding with install. Capacity calculations were done in accordance with applicable building codes.

Design Criteria

<u>Code</u>	2018 North Carolina Building Code/IBC 2015						
Risk category		II <u>Wind Load</u> (component and Clade					
Roof Dead Load	Dr	10 psf		V(ult)	118 mph		
PV Dead Load	DPV	3 psf		Exposure	В		
Roof Live Load	Lr	20 psf					
Ground Snow	S	15 psf					

If you have any questions on the above, please do not hesitate to call.

Sincerely,

Structural Letter for PV Installation

Date:	10/13/2022
Job Address:	155 BRAE DRIVE
	LILLINGTON, NC 27546, USA
Job Name:	JAMES BROWN
Job Number:	221013JB

Scope of Work

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Table of Content

Sheet

Cover
Attachment checks
Snow and Roof Framing Check
Seismic Check and Scope of work

Engineering Calculations Summary

0 0			
Code	2018 North Carolina	Building Code/IBC 2015	
Risk category		II	
Roof Dead Load	Dr	10 psf	
PV Dead Load	DPV	3 psf	
Roof Live Load	Lr	20 psf	
Ground Snow	S	15 psf	
Wind Load	(component and Clac	dding)	
	V (Ult)	118 mph	
	Exposure	В	

References

2 NDS for Wood Construction

Sincerely,

Wind Load (Cont.					
	Risk Category =			ASCE 7-10 Ta	ble 1.5-1	
V	Vind Speed (3s gust), V =	mph	ASCE 7-10 Fig	gure 26.5-1A		
	Roughness =	В				
	Exposure =	В	ASCE 7-10 Se		c 26.7.3	
	Topographic Factor, K _{ZT} =	1.0	0	ASCE 7-10 Se	c 26.8.2	
	Pitch =	30.0	Degrees			
	Adjustment Factor, $\lambda =$	1		ASCE 7-10 Fig	gure 30.5-1	
	a =	3.60	ft	ASCE 7-10 Fig	gure 30.5-1	
	of least horizontal dimension or entry of least horizontal dimension or of the second se	0.4h, whichever i	s smaller, but no	ot less than 4% o	fleast	
<u>Upli</u>	ft (0.6W)	Zone 1 (psf)	Zone 2 (psf)	Zone 3 (psf)		
	Pnet30=	-17.5	-21.1	-21.1	Figure 30.5-1	
	Pnet = 0.6 x λ x KZT x Pnet30)=	10.50	12.65	12.65	Equation 30.5-1	
Dow	Downpressure (0.6W)		Zone 2 (psf)	Zone 3 (psf)		
	Pnet30=	19.1	19.1	19.1	Figure 30.5-1	
	Pnet = 0.6 x λ x KZT x Pnet30)=	11.49	11.49 11.49		Equation 30.5-1	
Rafter Attac	hments: 0.6D+0.6W (CD=1	L.6)				
Con	nection Check					
	Attachement n	nax. spacing=	4	ft		
	5/16" Lag Screw Withd	rawal Value=	266	lbs/in	Table 12.2A - NDS	
	Lag Screw Penetrati	ion 2.5		in	DFL Assumed	
	•	ng Coefficient				
	Allowal	ble Capacity=	760			
Zone	Trib Width	Area (ft)	Uplift (lbs)	Down (lbs)		
1	4	11.0	95.7	159.4		
2	4	11.0	119.3	159.4		
3	4	11.0	119.3			
		Max=	119.3		760	
			CONNECTION	IS OK		

1. Pv seismic dead weight is negligible to result in significant seismic uplift, therefore the wind uplift governs

2. Embedment is measured from the top of the framing member to the tapered tip of a lag screw. Embedment in sheading or other material does not count.

Vertical Load Resisting	System Design						
Roof Framing T	russes						
Snow Load Fully Expose	d						
pg=	15 psf	ASCE 7-10 , Secti	on 7.2	p _f =	10	psf	
C _e =	0.9	ASCE 7-10 , Table	e 7-2	p _{fmin.} =	15.0	psf	
C _t =	1.1	ASCE 7-10 , Table	e 7-3	p _s =	15	psf	24.0 plf
I _s =	1.0	ASCE 7-10 , Table	e 1.5-1				
	Max Length, L =	• 8 ft	(Beam max	kimum Allow	vable F	lorizontal Span)	
Tribut	ary Width, W_T =	24 in					
	Dr =	• 10 psf	20 plf				
	PvDL =	a 3 psf	6 plf				
Load Case: DL+0.6W							
Pnet	:+ P _{pv} cos(θ)+P _{DL} =	49.0 plf					
	Max Mo	ment, M _u = 241	lb-ft Cor	nservatively			
	Pv max	Shear 159.4	lbs				
Max Shea	r, V _u =wL/2+Pv P	oint Load = 263	B lbs				
Load Case: DL+0.75(0.6	W+S)						
0.75(Pnet+Ps)	+ P _{pv} cos(θ)+P _{DL} =	60 plf					
	M _{down} =	297 lb-ft					
Mallowable =	Sx x Fb' (wind)=	634 lb-ft	>	297 lb-ft	ОК		
Load Case: DL+S							
	s+ P _{pv} cos(θ)+P _{DL} =	49 plf					
	M _{down} =						
Mallowable -	Sx x Fb' (wind)=		>	242 lb-ft	ОК		
	· JA A FU (WINU)-	450 ID-IL	-	242 IV-IL	UK		
Max Shear, V _u =wL/2	+Pv Point Load =	= 263 lbs					

Member Capacity

DF-L No.2										
2X4	Design Value	CL	C _F	Ci	C _r	K _F	ф	λ	Adjuste	d Value
F _b =	900 psi	1.0	1.5	1.0	1.15	2.54	0.85	0.8	1553	psi
$F_v =$	180 psi	N/A	N/A	1.0	N/A	2.88	0.75	0.8	180	psi
E =	1600000 psi	N/A	N/A	1.0	N/A	N/A	N/A	N/A	1600000	psi
E _{min} =	580000 psi	N/A	N/A	1.0	N/A	1.76	0.85	N/A	580000	psi
	De	epth, d =	3.5	in						
Width, b =		1.5	in							
Cross-Sectonal Area, A =		5.25	in ²							
Moment of Inertia, I _{xx} =		5.35938	in ⁴							
Section Modulus, S _{xx} =		3.0625	in ³							
Allowable Moment, $M_{all} = F_b'S_{xx} =$		396.2	lb-ft		DCR=M	_u /M _{all} =	0.48	< 1	Satisfacto	
Allowable Shear, $V_{all} = 2/3F_v A =$		630.0	lb		DCR=\	$/_{u}/V_{all} =$	0.42	< 1	Satisfacto	

Siesmic Loads Check

Roof Dead Load	10 psf
% or Roof with Pv	12.4%
Dpv and Racking	3 psf
Averarage Total Dead Load	10.4 psf
Increase in Dead Load	2.5% <mark>Ок</mark>

The increase in seismic Dead weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required.

Limits of Scope of Work and Liability

We have based our structural capacity determination on information in pictures and a drawing set titled PV plans -JAMES BROWN. The analysis was according to applicable building codes, professional engineering and design experience, opinions and judgments. The calculations produced for this structure's assessment are only for the proposed solar panel installation referenced in the stamped plan set and were made according to generally recognized structural analysis standards and procedures.