

8/31/2022

POWUR, ,

Subject: Structural Certification for Installation of Residential Solar re job: JAIME HELEN TOLLERS, 116 S DAKOTA CT,, SPRING LAKE, NC 28390

Attn.: To Whom It May Concern

A field observation was performed to document the existing framing of the above mentioned address. From the field observation, the existing roof structure was observed as:

ROOF 1: Shingle roofing supported by 2x4 Truss @ 24 in. OC spacing. The roof is sloped at approximately 30 degrees and has a max beam span of 7 ft between supports.

Design Criteria:

Code:	2018 NC Building Code (ASCE 7-10)		
Ult Wind Speed:	120 mph	Ground Snow:	10 psf
Exposure Cat:	С	Min Roof Snow:	NA psf

After review of the field observation report and based on our structural capacity calculations in accordance with applicable building codes, the existing roof framing supporting the proposed solar panel layout has been determined to be:

ROOF 1: adequate to support the imposed loads. Therefore, no structural upgrades are required.

Current Renewables Engineering Inc. Professional Engineer projects@creng.solar

8/31/2022

8/31/2022

POWUR

Attn.: To Whom It May Concern

re job: JAIME HELEN TOLLERS 116 S DAKOTA CT, SPRING LAKE, NC 28390

The following calculations are for the structural engineering design of the photovoltaic panels and are valid only for the structural info referenced in the stamped plan set. The verification of such info is the responsibility of others.

After review, I certify that the roof structure has sufficient structural capacity for the applied PV loads.

All mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Design Criteria:

Code:	2018 ASCE	NC Building (7-10	Code
Live Load:	20	psf	
Ult Wind Speed:	120	mph	
Exposure Cat:	С		
Ground Snow:	10	psf	Min Roof Snow: NA

Current Renewables Engineering Inc. Professional Engineer projects@creng.solar

8/31/2022

Roof Properties:

	Roof 1	
Roof Type =	Shingle	
Roof Pitch (deg) =	30	
Mean Roof Height (ft) =	13	
Attachment Trib Width (ft) =	2.75	
Attachment Spacing (ft) =	4	
Framing Type =	Truss	
Framing Size =	2x4	
Framing OC Spacing (in.) =	24	
Section Thickness, b (in.) =	1.5	
Section Depth, d (in.) =	3.5	
Section Modulus, Sx (in.^3) =	3.1	
Moment of Inertia, Ix (in.^4) =	5.4	
Framing Span (ft) =	7	
Deflection Limit D+L (in.) =	1.4	
Deflection Limit S or W (in.) =	0.93	
Framing Upgrade =	Adequate	
Sister Size =	NA	
Wood Species =	DF #2	
Wood Fb (psi) =	900	
Wood Fv (psi) =	180	
Wood E (psi) =	1600000	
C _D (Wind) =	1.6	
C _D (Snow) =	1.15	
$C_M = C_t = C_L = C_i =$	1.0	
C _F =	1.5	
C _{fu} =	1.00	
C _r =	1.15	
F'b_wind (psi) =	2857	
F'b_snow (psi) =	2053	
F'v_wind (psi) =	288	
F'v_snow (psi) =	207	
M_allowable_wind (lb-ft) =	729	
M_allowable_snow (lb-ft) =	524	
V_allowable_wind (lbs) =	1008	
V_allowable_snow (lbs) =	725	
E' (psi) =	1600000	

Load Calculation:

Dead Load Calculations:		
Panels Dead Load (psf) =	3.0	
	Roof 1	
Roofing Weight (psf) =	3.0	
Decking Weight (psf) =	2.0	
Framing Weight (psf) =	0.6	
Misc. Additional Weight (psf) =	1.0	
Existing Dead Load (psf) =	6.6	
Total Dead Load (psf) =	9.6	
Snow Load Calculations:		
Ground Snow Load, pg (psf) =	10	
Min Flat Snow, pf_min (psf) =	NA	
Min Sloped Snow, ps_min (psf) =	NA	
Snow Importance Factor, Ic =	1.0	
Exposure Factor, Ce =	0.9	
	Roof 1	
Thermal Factor, Ct =	1.1	
Flat Roof Snow, pf (psf) =	6.93	
Slope Factore, Cs =	1.00	
Sloped Roof Snow, ps (psf) =	7	
Wind Load Calculations:		
Ultimate Wind Speed (mph) =	120	
Directionality Factor, kd =	0.85	
Topographic Factor, kzt =	1.0	
	Roof 1	
Velocity Press Exp Factor, kz =	0.85	
Velocity Pressure, qz (psf) =	26.6	
External Pressure Up, GCp_1 =	-0.95	
External Pressure Up, GCp_2 =	-1.15	
External Pressure Up, GCp_3 =	-1.15	
External Pressure Down, GCp =	0.85	
Design Pressure Up, p_1 (psf) =	-25.3	
Design Pressure Up, p_2 (psf) =	-30.6	
Design Pressure Up, p_3 (psf) =	-30.6	
Design Pressure Down, p (psf) =	22.6	

Hardware Checks:

Lag Screw Checks:

	Roof 1	
	266	
$(C_{M} = C_{t} = C_{eg} = 1.0) C_{D} =$	1.6	
Adjusted Widthrawal Value, W' (lb/in) =	426	
Lag Penetration, p (in.) =	2.5	
Allowable Widthrawal Force, W'p (lbs) =	1064	
Applied Uplift Force (lbs) =	-150	
Uplift DCR =	0.14	
Ref. Lateral Value, Z (lbs) =	270	
$(C_{M} = C_{t} = C_{\Delta} = C_{eg} = 1.0) C_{D} =$	1.15	
Adjusted Lateral Value, Z' (lbs) =	311	
Applied Laeral Force (lbs) =	55	
Angle of Resultant Force, α (deg) =	70	
djusted Interaction Lateral Value, Z'_{α} (lbs) =	828	
Lateral DCR =	0.07	

Roof Framing Checks:

Force Checks:

	Roof 1	
LC1: D+S		
Applied Moment (lb-ft) =	135	
Applied Shear (lbs) =	116	
Allowable Moment (lb-ft) =	524	
Allowable Shear (lbs) =	725	
Moment DCR =	0.26	
Shear DCR =	0.16	
LC2: D+0.6W		
Applied Moment (lb-ft) =	189	
Applied Shear (lbs) =	162	
Allowable Moment (lb-ft) =	729	
Allowable Shear (lbs) =	1008	
Moment DCR =	0.26	
Shear DCR =	0.16	
LC3: D+0.75(S+0.6W)		
Applied Moment (lb-ft) =	204	
Applied Shear (lbs) =	175	
Allowable Moment (lb-ft) =	729	
Allowable Shear (lbs) =	1008	
Moment DCR =	0.28	

Shear DCR =	0.17
LC4: 0.6D+0.6W	
Applied Moment (lb-ft) =	77
Applied Shear (lbs) =	66
Allowable Moment (lb-ft) =	729
Allowable Shear (lbs) =	1008
Moment DCR =	0.11
Shear DCR =	0.07

Deflection Checks (Service Level):

		Roof 1	
LC1: D+L	-		
	Deflection (in.) =	0.04	
	Deflection Limit (in.) =	1.61	
	Deflection DCR =	0.02	
LC2: S			
	Deflection (in.) =	0.02	
	Deflection Limit (in.) =	1.07	
	Deflection DCR =	0.02	
LC3: W (Down)			
	Deflection (in.) =	0.02	
	Deflection Limit (in.) =	1.07	
	Deflection DCR =	0.02	
LC4: W (Up)			
	Deflection (in.) =	-0.03	
	Deflection Limit (in.) =	1.07	
	Deflection DCR =	0.02	

Seismic Check:

Existing Weight:

Wall Weight (psf) =	17
Tributary Wall Area (ft ²) =	1000
Total Wall Weight (lbs) =	17000
Roof Weight (psf) =	7
Roof Area (ft ²) =	2400
Total Roof Weight (lbs) =	15844
Total Existing Weight (lbs) =	32844

Additional PV Weight:

Total Additional PV Weight (lbs) = 1089

1960 Chicago Ave, Suite D15, Riverside, CA 92507 www.currentrenewableseng.com 951.254.5655 INTEGRITY PROFESSIONALISM CUSTOMER EXPERIENCE

Job Code: JAIME HELEN TOLLERS 6 of 6

Weight Increase:

(Existing W + Additional W)/(Existing W) = 103%

The increase in weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required.

Limits of Scope of Work and Liability:

Existing structure is assumed to have been designed and constructed following appropriate codes at time of erection, and assumed to have appropriate permits. The calculations produced are only for the roof framing supporting the proposed PV installation referenced in the stamped planset and were completed according to generally recognized structural analysis standards and procedures, professional engineering and design experience, opinions and judgements. Existing deficiencies which are unknown or were not observable during time of inspection are not included in this scope of work. All PV modules, racking, and mounting equipment shall be designed and installed per manufacturer's approved installation specifications. The Engineer of Record and the engineering consulting firm assume no responsibility for misuse or improper installation. This analysis is not stamped for water leakage. Framing was determined based on information in provided plans and/or photos, along with engineering judgement. Prior to commencement of work, the contractor shall verify the framing sizes, spacings, and spans noted in the stamped plans, calculations, and cert letter (where applicable) and notify the Engineer of Record of any discrepancies prior to starting construction. Contractor shall also verify that there is no damaged framing that was not addressed in stamped plans, calculations, and cert letter (where applicable) and notify the Engineer of Record of any concerns prior to starting construction.