

November 12, 2021

BES Project Number: 4641 Crystal Johnson

Power Home Solar, LLC 919 N Main St. Mooresville, NC 28115

> Project Location: Crystal Johnson: 465 Kinsman Ct., Fuquay-Varina, NC 27526 Solar Array Installation

To Whom It May Concern:

Per your request, BES has reviewed the existing structure at the above referenced location. The purpose of this review was to determine the adequacy of the existing structure to support the proposed installation of solar panels on the roof as shown on the attached panel layout plan.

Based upon our review, we certify that existing roof structure will adequately support with the following: Racking and attachment mounting connection: (1) 5/16" lag screw w/ min. 2.5" embedment into framing at max 48" o/c along rails (2) rails per row of panels, evenly spaced; panel length perpendicular to the rails not to exceed 67 in. Solar module mounting hardware design is by the manufacturer.

Limitations: Installation of the solar panels must be performed in accordance with manufacturer recommendations. All work performed must be in accordance with accepted industry-wide methods and applicable safety standards. The contractor must notify BES should any damage, deterioration or discrepancies between the as-built condition of the structure and the condition described in this letter be found. Connections to existing roof framing must be staggered, except at array ends, so as to not overload any existing structural member. The design of the solar panel racking (mounts, rails, etc.) is the responsibility of the manufacturer. Waterproofing around the roof penetrations is the responsibility of others. BES assumes no responsibility for improper installation of the solar array. Existing structure meets or exceeds standard building practices with current building code with assumed single layer asphalt shingles.

Sincerely,

Jermey Bowers M.E., P.E. *Principal Engineer*

Bowers Engineering Services 121 S. Main ST Auburn, IN (260) 333-0900

Structural Analysis

Location

465 Kinsman Ct Fuquay-Varina, NC 27526

Roof Mount Solar

11/12/2021

Project: 4641 Rev: -

BES		Date:	11/12/2021	Connections
121 South Main ST				
Auburn, IN				
Cust. Name:	Bowers Engineering Services	Subject: R	oof Mount	
Job Number:	4641	Originator	0	Checker:
	STRUCTURAL SU	<u> </u>		
CODE SPEC				
	WIND			
IBC 2015	C.	peed: 115 M	TRIT	

Exp.:

 \mathbf{C}

Risk Cat:

ASCE 7-10

Wind Load - uplift

		Max lb
Zone 1	-21.88 psf	-147 lb
Zone 2	-40.98 psf	-275.36 lb
Zone 3	-62.85 psf	-422.36 lb
Max trib	11.20 ft2	

Max loading at connection

Negitive -422.36 lb/fastener

Connection (Pull Out)

Lag screw 5/16 in

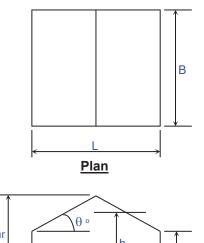
Cd 1.60 Table 2.3.2

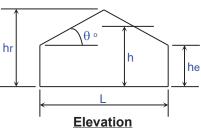
embedment 2.5 in

Nominal CapacityPrying 205.00 lbs G=0.42

Max capacity (lbs) 533.00 > 422.36 OK

Note:


^{*} Lag screws to be diameter 5/16x2.5inches long.


^{*} All fasteners need to be placed at roof rafters.

BES			/	WIND LOADING
121 South Main ST				Per ASCE 7-10
Auburn, IN				
Cust Name:	Bowers Engineering Services	Subject:	Roof Mount	
Job Number:	4641	Originator:	0	Checker:

Input Data:

Wind Speed, V =	115	mph (Wind Map, Figure 26.5-1A-C)	
Bldg. Classification =	II	(Table 1-1 Occupancy Category)	
Exposure Category =	С	(Sect. 26.7)	
Ridge Height, hr =	17.00	ft. (hr >= he)	
Eave Height, he =	10.00	ft. (he <= hr)	
Building Width =	28.00	ft. (Normal to Building Ridge)	
Building Length =	72.00	ft. (Parallel to Building Ridge)	
Roof Type =	Gable	(Gable or Monoslope)	
Topo. Factor, Kzt =	1.00	(Sect. 26.8 & Figure 26.8-1)	
Direct. Factor, Kd =	0.85	(Table 26.6)	
Enclosed? (Y/N)	Υ	(Sect. 28.6-1 & Figure 26.11-1)	
Hurricane Region?	N		
Component Name =	Decking	(Purlin, Joist, Decking, or Fastener)	
Effective Area, Ae =	11.1	ft.^2 (Area Tributary to C&C)	
Overhangs? (Y/N)	N	(if used, overhangs on all sides)	-
		•	

Resulting Parameters and Coefficients:

```
Roof Angle, \theta = 26.57 deg.
Mean Roof Ht., h = 13.50 ft. (h = (hr+he)/2, for roof angle >10 deg.)
```

Roof External Pressure Coefficients, GCp:

```
GCp Zone 1-3 Pos. = 0.49 (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
GCp Zone 1 Neg. = -0.90 (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
GCp Zone 2 Neg. = -1.68 (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
GCp Zone 3 Neg. = -2.57 (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
Positive & Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):
```

+GCpi Coef. = 0.00 (positive internal pressure)
-GCpi Coef. = 0.00 (negative internal pressure)

If $z \le 15$ then: $Kz = \frac{2.01*(15/zg)^{2}}{(2/\alpha)}$, If z > 15 then: $Kz = 2.01*(z/zg)^{2}$ (Table 30.3-1) $\alpha = \frac{9.50}{(2/\alpha)}$ (Table 26.9-1)

zg = 900 (Table 26.9-1) Kh = 0.85 (Kh = Kz evaluated at z = h)

 $\label{eq:Velocity Pressure: qz = 0.00256*Kz*Kzt*Kd*V^2 (Sect. 30.3.2, Eq. 30.3-1)} \\ qh = \underbrace{24.43}_{} psf \qquad qh = 0.00256*Kh*Kzt*Kd*V^2 (qz evaluated at z = h)$

Design Net External Wind Pressures (Sect. 30.4 & 30.6):

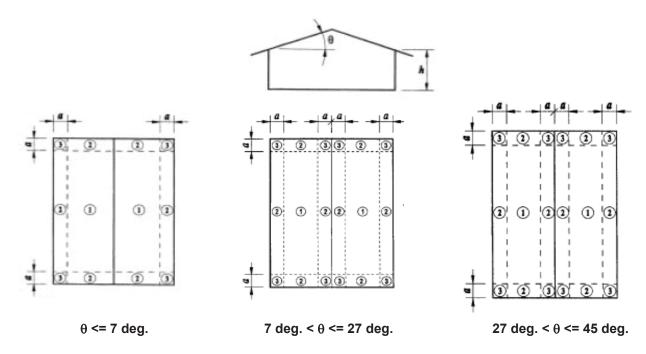
For h <= 60 ft.: p = qh*((GCp) - (+/-GCpi)) (psf) For h > 60 ft.: p = q*(GCp) - qi*(+/-GCpi) (psf)

where: q = qh for roof

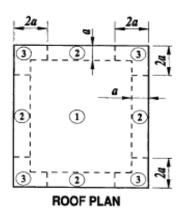
qi = qh for roof (conservatively assumed per Sect. 30.6)

Wind Load Tabulation for Roof Components & Cladding							
Component	Z	Kh	qh	p = Net Design Pressures (psf)			
	(ft.)		(psf)	Zone 1,2,3 (+)	Zone 1 (-)	Zone 2 (-)	Zone 3 (-)
Decking	0	0.85	24.43	11.99	-21.88	-40.98	-62.85
	15.00	0.85	24.43	11.99	-21.88	-40.98	-62.85
For $z = hr$:	17.00	0.85	24.43	11.99	-21.88	-40.98	-62.85
For $z = he$:	10.00	0.85	24.43	11.99	-21.88	-40.98	-62.85
For $z = h$:	13.50	0.85	24.43	11.99	-21.88	-40.98	-62.85

ft.


ft.

Notes: 1. (+) and (-) signs signify wind pressures acting toward & away from respective surfaces.


- 2. Width of Zone 2 (edge), 'a' =
- 3.00 3. Width of Zone 3 (corner), 'a' = 3.00
- 4. For monoslope roofs with $\theta \le 3$ degrees, use Fig. 30.4-2A for 'GCp' values with 'qh'.
- 5. For buildings with h > 60' and θ > 10 degrees, use Fig. 30.6-1 for 'GCpi' values with 'qh'.
- 6. For all buildings with overhangs, use Fig. 30.4-2B for 'GCp' values per Sect. 30.10.
- 7. If a parapet >= 3' in height is provided around perimeter of roof with $\theta \le 10$ degrees, Zone 3 shall be treated as Zone 2.
- 8. Per Code Section 30.2.2, the minimum wind load for C&C shall not be less than 16 psf.
- 9. References : a. ASCE 7-02, "Minimum Design Loads for Buildings and Other Structures".
 - b. "Guide to the Use of the Wind Load Provisions of ASCE 7-02" by: Kishor C. Mehta and James M. Delahay (2004).

PAGE 4of 5

Roof Components and Cladding:

Roof Zones for Buildings with h <= 60 ft. (for Gable Roofs <= 45° and Monoslope Roofs <= 3°)

Roof Zones for Buildings with h > 60 ft. (for Gable Roofs \leq 10° and Monoslope Roofs \leq 3°)

Frame Design General Info					
Cust. Name:	Cust. Name: Bowers Engineering Services			Roof Mount	
Job Number:	4641	Originator:		Checker:	
Date:	11/12/21				
Address	465 Kinsman Ct	Rev:	-		
City, State:	Fuquay-Varina, NC 27526	5			

Roof Rafter

		Roof Loads				
Rafter Size=	2x4	SYP #1		Dead Load=	8.00	psf
				Live Load=	20	psf
Trib. Area=	2	ft	S	now Load=	15	psf
Rafter length=	7.5	ft				
				<u>mbination</u>		
W=	68.50	plf	D+0.	75L+0.75S	34.3	psf
M=	481.64	lb-ft		DI	0.65+06	., .
Dead Load	Roof Materials			EI = Sx =	8.6E+06 3.0625	ib-in
Sheathing=	2	psf		$C_{M}=$	1.0	
Aspahlt Shingles=	3	psf		Cr=	1.2	
Insulation=	0.50	psf		$C_D =$	1.15	
Solar Panels=	2.50	psf		$C_F =$	1.3	
Assume Ligh	t-frame wood roof			$C_L =$	1.0	
	M 12			Fb=	1500	psi
f	$b = \frac{M * 12}{Sx}$					
			fb=	1887.24	psi	
F'b = Fb * Cd	*Cr*Cf*Cm*Cl		F'b=	2578.88	psi	OK
$5wl^4$	$\Delta L =$		0.33 in			
384 <i>EI</i>	$\Delta S =$		0.25 in			
30 1L1	$\Delta D + L =$		0.47 in			
					<u>l/120</u>	
	$\Delta_{ m allow \ in} =$	0.47	<		0.75	OK
					<u>l/180</u>	
	$\Delta_{ m allow \ in} =$	0.33	<		0.50	OK

a

2 o/c

OK

2x4

^{*}Assume rafters are fully braced*