
NOE AGUILAR - 12.600kW DC, 10.000kW AC

SITE PLAN

A1	AERIAL MAP
S-001	SCALE NTS

GENERAL INFORMA	NOITA
ELECTRIC CODE	NEC 2017
FIRE CODE	NCFC 2018
RESIDENTIAL CODE	NCRC 2018
BUILDING CODE	NCBC 2018
WIND SPEED	118 MPH
SNOW LOAD	10 PSF

	INDEX
INDEX NO.	DESCRIPTION
S-001 G-001 S-002 S-003 E-001 E-002	SITE PLAN GENERAL NOTES MOUNTING DETAILS STRUCTURAL DETAILS SINGLE LINE DIAGRAM WARING PLACARDS SPEC SHEET(S)

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:
(36) Q CELLS Q.PEAK DUO-G6+ 350
INVERTER:
(1)SOLAREDGE SE10000H-US
OPTIMIZER DETAILS
(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

SITE PLAN

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED	PAPER SI	ZE: 17"x11"
DATE: 9/17/21	REV:A	S-001

IN ARRAY	81	(N) PV INVERTER(EXTERIOR)
0.		
Single Si		(N) AC DISCONNECT (EXTERIOR)
27'-3"		
		(E) MAIN SERVICE PANEL (EXTERIOR)
PROPERTY LINE		(E) UTILITY METER (EXTERIOR)
		_22'-10"
ARRAY-1 20 x 350W PV MODULES MOUNTED ON THE ROOF ARRAY-1 BO BO WHITE LX		
MHIT		28:-10
The state of the s	Val	
	DRIVEWAY	
		81'-11"
A SITE PLAN		
S-001 1/16" = 1'		

GENERAL NOTES

GENERAL NOTES

- 1. MODULES ARE LISTED UNDER UL 1703 AND CONFORM TO THE STANDARDS.
- 2. INVERTERS ARE LISTED UNDER UL 1741 AND CONFORM TO THE STANDARDS.
- DRAWINGS ARE DIAGRAMMATIC, INDICATING GENERAL ARRANGEMENT OF THE PV SYSTEM AND THE ACTUAL SITE CONDITION MIGHT VARY.
- 4. WORKING CLEARANCES AROUND THE NEW PV ELECTRICAL EQUIPMENT WILL BE MAINTAINED IN ACCORDANCE WITH NEC 110.26(A)(1).
- ALL GROUND WIRING CONNECTED TO THE MAIN SERVICE GROUNDING IN MAIN SERVICE PANEL/ SERVICE EQUIPMENT.
- 6. ALL CONDUCTORS SHALL BE 600V, 75°C STANDARD COPPER UNLESS OTHERWISE NOTED.
- 7. WHEN REQUIRED, A LADDER SHALL BE IN PLACE FOR INSPECTION IN COMPLIANCE WITH OSHA REGULATIONS.
- 8. THE SYSTEM WILL NOT BE INTERCONNECTED BY THE CONTRACTOR UNTIL APPROVAL FROM THE LOCAL JURISDICTION AND/OR THE UTILITY.
- 9. ROOF ACCESS POINT SHALL BE LOCATED IN AREAS THAT DO NOT REQUIRE THE PLACEMENT OF GROUND LADDERS OVER OPENINGS SUCH AS WINDOWS OR DOORS, AND LOCATED AT STRONG POINTS OF BUILDING CONSTRUCTION WHERE THE ACCESS POINT DOES NOT CONFLICT WITH OVERHEAD OBSTRUCTIONS SUCH AS TREES, WIRES OR SIGNS.
- 10. PV ARRAY COMBINER/JUNCTION BOX PROVIDES TRANSITION FROM ARRAY WIRING TO CONDUIT WIRING

EQUIPMENT LOCATION:

- 11. ALL EQUIPMENT SHALL MEET MINIMUM SETBACKS AS REQUIRED BY NEC 110.26(A)(1).
- 12. WIRING SYSTEMS INSTALLED IN DIRECT SUNLIGHT MUST BE RATED FOR EXPECTED OPERATING TEMPERATURE AS SPECIFIED BY NEC 690.31(A),(C) AND NEC TABLES 310.15(B)(2)(A) AND 310.15(B)(3)(C).
- 13. JUNCTION AND PULL BOXES PERMITTED INSTALLED UNDER PV MODULES ACCORDING TO NEC 690.34.
- 14. ADDITIONAL AC DISCONNECT(S) SHALL BE PROVIDED WHERE THE INVERTER IS NOT WITHIN SIGHT OF THE AC SERVICING DISCONNECT.
- 15. ALL EQUIPMENT SHALL BE INSTALLED ACCESSIBLE TO QUALIFIED PERSONNEL ACCORDING TO NEC APPLICABLE
- 16. ALL COMPONENTS ARE LISTED FOR THEIR PURPOSE AND RATED FOR OUTDOOR USAGE WHEN APPROPRIATE.

STRUCTURAL NOTES:

- 17. RACKING SYSTEM & PV ARRAY WILL BE INSTALLED ACCORDING TO CODE-COMPLIANT INSTALLATION MANUAL. TOP CLAMPS REQUIRE A DESIGNATED SPACE BETWEEN MODULES, AND RAILS MUST ALSO EXTEND A MINIMUM DISTANCE BEYOND EITHER EDGE OF THE ARRAY/SUBARRAY, ACCORDING TO RAIL MANUFACTURER'S INSTRUCTIONS.
- 18. JUNCTION BOX WILL BE INSTALLED PER MANUFACTURER'S SPECIFICATIONS. IF ROOF-PENETRATING TYPE, IT SHALL BE FLASHED & SEALED PER LOCAL REQUIREMENTS.
- 19. ROOFTOP PENETRATIONS FOR PV RACEWAY WILL BE COMPLETED AND SEALED WITH APPROVED CHEMICAL SEALANT PER CODE BY A LICENSED CONTRACTOR.
- 20. ALL PV RELATED ROOF ATTACHMENTS TO BE SPACED NO GREATER THAN THE SPAN DISTANCE SPECIFIED BY THE RACKING MANUFACTURER.
- 21. WHEN POSSIBLE, ALL PV RELATED RACKING ATTACHMENTS WILL BE STAGGERED AMONGST THE ROOF FRAMING MEMBERS.

WIRING & CONDUIT NOTES:

- 22. ALL CONDUIT AND WIRE WILL BE LISTED AND APPROVED FOR THEIR PURPOSE. CONDUIT AND WIRE SPECIFICATIONS ARE BASED ON MINIMUM CODE REQUIREMENTS AND ARE NOT MEANT TO LIMIT UP-SIZING.
- 23. CONDUCTORS SIZED ACCORDING TO NEC 690.8, NEC 690.7.
- 24. DC WIRING LIMITED TO MODULE FOOTPRINT. MICRO INVERTER WIRING SYSTEMS SHALL BE LOCATED AND SECURED UNDER THE ARRAY WITH SUITABLE WIRING CLIPS.
- 25. AC CONDUCTORS COLORED OR MARKED AS FOLLOWS: PHASE A OR L1- BLACK PHASE B OR L2- RED, OR OTHER CONVENTION IF THREE PHASE PHASE C OR L3- BLUE, YELLOW, ORANGE**, OR OTHER CONVENTION NEUTRAL-WHITE OR GREY IN 4-WIRE DELTA CONNECTED SYSTEMS THE PHASE WITH HIGHER VOLTAGE TO BE MARKED ORANGE [NEC 110.15].

INTERCONNECTION NOTES:

- 26. LOAD-SIDE INTERCONNECTION SHALL BE IN ACCORDANCE WITH [NEC 690.64(B)]
- 27. THE SUM OF THE UTILITY OCPD AND INVERTER CONTINUOUS INPUT MAY NOT EXCEED 120% OF BUSBAR RATING [NEC 705.12(D)(2)(3)].
- 28. WHEN SUM OF THE PV SOURCES EQUALS >100% OF BUSBAR RATING, PV DEDICATED BACKFFED BREAKERS MUST BE LOCATED OPPOSITE END OF THE BUS FROM THE UTILITY SOURCE OCPD [NEC 705.12(D)(2)(3)].
- 29. AT MULTIPLE PV OUTPUT COMBINER PANEL, TOTAL RATING OF ALL OVER CURRENT DEVICES SHALL NOT EXCEED AMPACITY OF BUSBAR. HOWEVER, THE COMBINED OVER CURRENT DEVICE MAY BE EXCLUDED ACCORDING TO NEC 705.12(D)(2)(3)(C).
- 30. FEEDER TAP INTER CONNECTION (LOAD SIDE) ACCORDING TO NEC 705.12(D)(2)(1)SUPPLY SIDE TAP INTERCONNECTION ACCORDING TO NEC 705.12(A) WITH SERVICE ENTRANCE CONDUCTORS IN ACCORDANCE WITH NEC 230.42 BACK FEEDING BREAKER FOR UTILITY-INTERACTIVE INVERTER OUTPUT IS EXEMPT FROM ADDITIONAL FASTENING [NEC 705.12(D)(5)].

GROUNDING NOTES:

- 31. GROUNDING SYSTEM COMPONENTS SHALL BE LISTED FOR THEIR PURPOSE, AND GROUNDING DEVISES EXPOSED TO THE ELEMENTS SHALL BE RATED FOR SUCH USE.
- 32. PV EQUIPMENT SHALL BE GROUNDED ACCORDING TO NEC 690.43 AND MINIMUM NEC 250.122.
- 33. METAL PARTS OF MODULE FRAMES, MODULE RACKING, AND ENCLOSURES CONSIDERED GROUNDED IN ACCORD WITH 250.134 AND 250.136(A).
- 4. EQUIPMENT GROUNDING CONDUCTORS SHALL BE SIZED ACCORDING TO NEC 690.45 AND MICRO INVERTER MANUFACTURER'S INSTRUCTIONS.
- 35. EACH MODULE WILL BE GROUNDED USING WEEB GROUNDING CLIPS AS SHOWN IN MANUFACTURER DOCUMENTATION AND APPROVED BY THE AHJ. IF WEEBS ARE NOT USED, MODULE GROUNDING LUGS MUST BE INSTALLED AT THE SPECIFIED GROUNDING LUG HOLES PER THE MANUFACTURERS' INSTALLATION REQUIREMENTS.
- 36. THE GROUNDING CONNECTION TO A MODULE SHALL BE ARRANGED SUCH THAT THE REMOVAL OF A MODULE DOES NOT INTERRUPT A GROUNDING CONDUCTOR TO ANOTHER MODULE.
- 37. GROUNDING AND BONDING CONDUCTORS, IF INSULATED, SHALL BE COLORED GREEN OR MARKED GREEN IF #4 AWG OR LARGER [NEC 250.119]
- 38. THE GROUNDING ELECTRODE SYSTEM COMPLIES WITH NEC 690.47 AND NEC 250.50 THROUGH 250.106. IF EXISTING SYSTEM IS INACCESSIBLE, OR INADEQUATE, A GROUNDING ELECTRODE SYSTEM PROVIDED ACCORDING TO NEC 250,NEC 690.47 AND AHJ.
- 39. GROUND-FAULT DETECTION SHALL COMPLY WITH NEC 690.5 IN GENERAL AND NEC 690.5(A)(1) SPECIFICALLY.
- 40. DISCONNECTION AND OVER-CURRENT PROTECTION NOTES:
- 41. DISCONNECTING SWITCHES SHALL BE WIRED SUCH THAT WHEN THE SWITCH IS OPENED THE CONDUCTORS REMAINING ENERGIZED ARE CONNECTED TO THE TERMINALS MARKED "LINE SIDE" (TYPICALLY THE UPPER TERMINALS).
- 42. DISCONNECTS TO BE ACCESSIBLE TO QUÁLIFIED UTILITY PERSONNEL, BE LOCKABLE, AND BE A VISIBLE-BREAK SWITCH
- 43. RAPID SHUTDOWN OF ENERGIZED CONDUCTORS BEYOND 10 FT OF PV ARRAY OR 5 FT INSIDE A BUILDING WITHIN 10 SECONDS. CONTROLLED CONDUCTORS ≤30V AND ≤240VA [NEC 690.12]. LOCATION OF LABEL ACCORDING TO AHJ.
- 44. ALL OCPD RATINGS AND TYPES SPECIFIED ACCORDING TO NEC 690.8.690.9 AND 240.
- 45. MICRO INVERTER BRANCHES CONNECTED TO A SINGLE BREAKER OR GROUPED FUSES IN ACCORDANCE WITH NEC 110.3(B). 2.6.7 IF REQUIRED BY AHJ, SYSTEM WILL INCLUDE ARC-FAULT CIRCUIT PROTECTION ACCORDING TO NEC 690.11 AND UL1699B.

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:

(36) Q CELLS Q.PEAK DUO-G6+ 350

INVERTER:

(1)SOLAREDGE SE10000H-US

(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

GENERAL NOTES

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED PAPER SIZE: 17"x11"

DATE: 9/17/21 REV:A G-001

<u>M</u>	ODULES DATA							SITE INFOR	MATION					
Q CELLS Q.PEAK DUO-G6+ 350		SR.NO	AZIMUTH	PITCH	NO. OF MODULES	ARRAY AREA (SQ. FT.)	ROOF TYPE	ATTACHMENT	ROOF EXPOSURE	FRAME TYPE	FRAME SIZE	FRAME SPACING	MAX RAIL SPAN	OVER HANG
MODULE DIMS	68.5"x40.6"x1.3"				MODULES	(SQ. F1.)					SIZE	SPACING	SPAN	HANG
LAG SCREWS	5/16" X 3.5":2.5"MIN EMBEDMENT	MP-01	255°	14°	20	1027.18	COMPOSITION SHINGLE	SNAPNRACK ULTRA RAIL COMP KIT	ATTIC	RAFTERS	2X6	24"	6'-0"	2'-0"
	FIRE SETBACK	MP-02	75°	10°	16	1210.13	COMPOSITION SHINGLE	SNAPNRACK ULTRA RAIL COMP KIT	ATTIC	RAFTERS	2X6	24"	6'-0"	2'-0"

Sustainable Energy & Lighting Solutions
Your future is brighter with us

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:
(36) Q CELLS Q.PEAK DUO-G6+ 350
INVERTER:
(1)SOLAREDGE SE10000H-US
OPTIMIZER DETAILS

(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

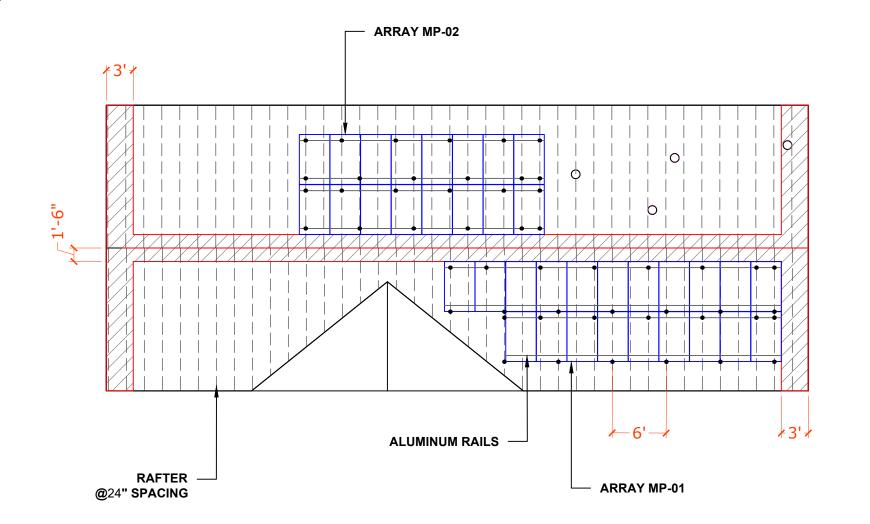
PROJECT NUMBER: ----

MOUNTING DETAILS

DESIGNER / CHECKED BY: J.B. / J.B.

 SCALING: AS NOTED
 PAPER SIZE: 17"x11"

 DATE: 9/17/21
 REV:A
 \$\$-002\$


MINIMUM FIRE ACCESS PATHWAYS PER NCFC 2018

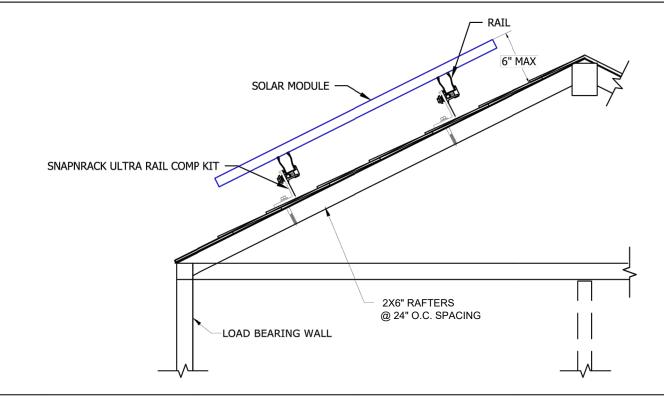
RIDGE TO ARRAY: 1'-6" EAVE TO ARRAY: 3'-0"

HIP/VALLEY W/ ADJACENT ARRAY: 1'-6"

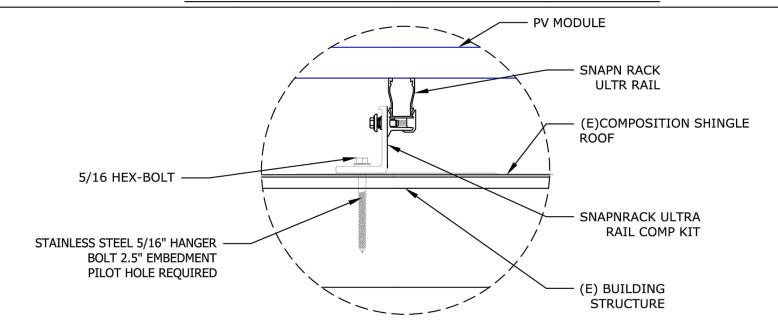
EACH SIDE HIP/VALLEY W/O ADJACENT ARRAY: 0'-0"

NOTE: INSTALLER TO VERIFY RAFTER SIZE, SPACING AND SLOPED SPANS, AND NOTIFY ANY DISCREPANCIES BEFORE PROCEEDING.

GROUNDING DETAILS MODULE TO MODULE & MODULE TO RAIL SS BONDING PIN MID CLAMP **ASSEMBLY MODULE** FRAME CHANNEL NUT SNAPNRACK GROUNDING MID-CLAMP SCALE: NTS **SNAPNRACK GROUNDING** 5/16"-18 SS BOLT SS SPLIT LOCK WASHER 6-12 AWG BARE -(TORQUE TO 16FT-LBS) COPPER WIRE SNAPNRACK **GROUNDING LUG** BOUNDING CHANNEL NUT ALL HARDWARE IS INCLUDED FROM MANUFACTURER A MINIMUM OF ONE GROUND LUG IS TO BE INSTALLED ON EVERY CONTINUOUS ROW OF MODULES GROUNDING LUG MAY BE INSTALLED IN EITHER RAIL CHANNEL GROUNDING LUG MAY BE INSTALLED SO GROUND WIRE IS PARALLEL OR PERPENDICULAR TO RAIL

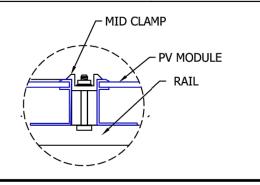

ENSURE SPLIT LOCK WASHER IS INSTALLED ON TOP OF COPPER WIRE.
 SCALE:NTS

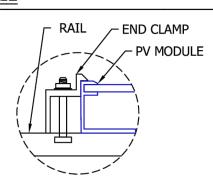
RAIL TO RAIL



NTS REMOVAL OF ONE PIECE OF EQUIPMENT SHALL NOT DISCONNECT THE BONDING CONNECTION BETWEEN ANY OTHER PIECES. SCALE:NTS

ROOF FRAMING DETAIL




ATTACHMENT DETAIL-SNAPNRACK ULTRA RAIL COMP KIT

SCALE: NTS

MID-CLAMP & END CLAMP DETAIL

Sustainable Energy & Lighting Solutions Your future is brighter with usl SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:
(36) Q CELLS Q.PEAK DUO-G6+ 350
INVERTER:
(1)SOLAREDGE SE10000H-US
OPTIMIZER DETAILS
(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

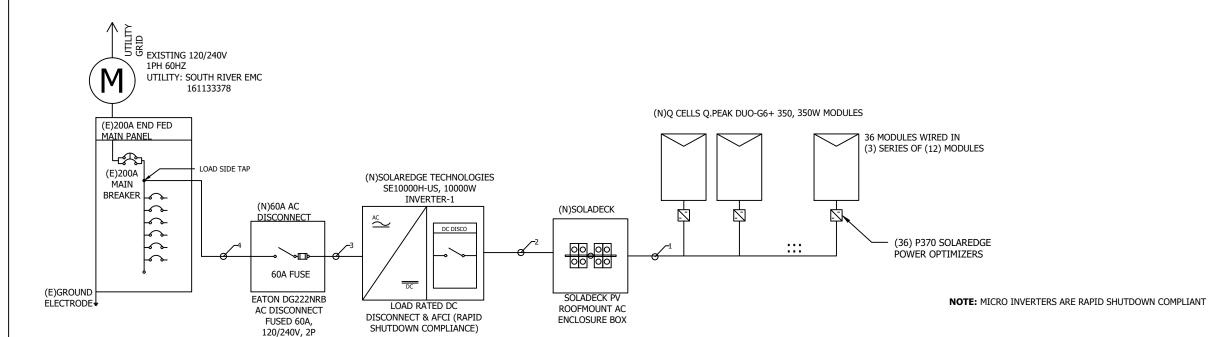
NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

NAME & ADDRESS:

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC


PROJECT NUMBER: ----

STRUCTURAL DETAILS

DESIGNER / CHECKED BY: J.B. / J.B.

 SCALING: AS NOTED
 PAPER SIZE: 17"x11"

 DATE: 9/17/21
 REV:A
 \$-003

MODULE -1 S	PECIFICATION	INVERTER-1 S	PECIFICATIONS	SYSTEM CHARACTERISTICS			
MODEL	Q CELLS Q.PEAK DUO-G6+ 350	MODEL	SOLAREDGE SE10000H-US	DC SYSTEM SIZE	12600 W		
MODULE POWER @ STC 350W		POWER RATING	10000W	INVERTER STRING VOLTAGE	400V		
OPEN CIRCUIT VOLTAGE:Voc	40.73V	MAX OUPUT CURRENT	42A	MAN INVESTED OVETEN			
MAX POWER VOLTAGE:Vmp	34.07V	CEC WEIGHTED EFFICIENCY	0.99	MAX INVERTER SYSTEM VOLTAGE	480V		
SHOR CIRCUIT VOLTAGE:Isc 10.79A		MAX INPUT CURRENT 27A		MAX SHORT CIRCUIT CURRENT	45A		
MAX POWER CURRENT:Imp	IAX POWER CURRENT:Imp 10.27A		480V	OPERATING CURRENT	31.5A		

		CONDUIT SCHED	ULE		OPTIMIZER CHRACTER	RISTICS
TAG ID	CONDUIT SIZE	CONDUCTOR	NEUTRAL	GROUND	MODEL	Р3
1	NONE	(6) 10 AWG PV WIRE	NONE	(1) 6 AWG BARE COPPER	MIN INPUT VOLTAGE	8 \
2	3/4" EMT OR EQUIV	(6) 10 AWG THHN/THWN-2	NONE	(1) 10 AWG THHN/THWN-2	MAX INPUT VOLTAGE	60
3	3/4" EMT OR EQUIV	(2) 6 AWG THHN/THWN-2	(1) 6 AWG THHN/THWN-2	(1) 10 AWG THHN/THWN-2	MAX INPUT CURRENT	11
4	3/4" EMT OR EQUIV	(2) 6 AWG THHN/THWN-2	(1) 6 AWG THHN/THWN-2	(1) 10 AWG THHN/THWN-2	MAX OUTPUT CURRENT	15

	3,1 2.11 31(2,01)						· -		(1) 07		,	.,,,,,	(1) 10 / (1000			15 7150				
												EL	ECTRI	CAL CA	ALCUL	ATION						
	DC WIRE CALCULATIONS:- MATERIAL:COPPER & TEMPERATURE RATING:90℃																					
TAG ID			REQI	JIRED	CONDUCT	ΓOR AI	МР А СІТ	Y		(CORRE	CTED A	МРАСІТ	TY CAL	CULAT	ON	TERM	IINAL RATING (CHECK	DERATED CONDUCTOR AMPACITY CHECK		
1	1	х	15.00	Х	1	Х	1.25	=	18.75A	40	х	0.71	Х	1	=	28.40A	18.75A	<	30A	18.75A	<	28.40A
2	1	х	15.00	х	1	Х	1.25	=	18.75A	40	х	0.76	х	0.8	=	24.32A	18.75A	<	30A	18.75A	<	24.32A
									AC W	ire cai	LCULAT	IONS:-	MATE	RIAL:CO	OPPER 8	& ТЕМРЕГ	RATURE RATIN	G:90°C				
TAG ID	REQUIRED CONDUCTOR AMPACTLY									(CORRECTED AMPACITY CALC			CULAT	ON	TERM	IINAL RATING (CHECK	DERATED CO	NDUCTOR AMPA	ACITY CHECK	
3	42	х	1	=	42.00	Х	1.25	=	52.5A	75	Х	0.91	Х	1	=	68.25A	52.5	<	65A	52.5	<	68.25A
4	42	Х	1	=	42.00	Х	1.25	=	52.5A	75	Х	0.91	х	1	=	68.25A	52.5	<	65A	52.5	<	68.25A

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:
(36) Q CELLS Q.PEAK DUO-G6+ 350
INVERTER:

(36) P370 SOLAR EDGE POWER OPTIMIZER

(1)SOLAREDGE SE10000H-US OPTIMIZER DETAILS

ENGINEER OF RECORD

OCPD CALCULATIONS:

MAIN PANEL RATING: 200A,
LOAD SIDE TAP:100% ALLOWABLE BACK FEED IS 200A
INVERTER OVERCURRENT PROTECTION=
INVERTER O/P I X CONTINUOUS LOAD(1.25)X
#OF INVERTERS =42X1.25X1=52.50A =< PV
BREAKER = 60A

ELECTRICAL NOTES:

P370

8 VDC

60 VDC

11 ADC

15 ADC

- 1. MAXIMUM DC/AC VOLTAGE DROP SHALL BE NO MORE THAN 2%.
- 2. BREAKER/FUSE SIZES CONFORMS TO NEC 240.6 CODE SECTION.
- 3. AC GROUNDING ELECTRODE CONDUCTOR SIZED PER NEC 250.66.
- 4. AMBIENT TEMPERATURE CORRECTION FACTOR IS BASED ON NEC 690.31(A).
- 5. AMBIENT TEMPERATURE ADJUSTMENT FACTOR IS BASED ON NEC 310.15(B)(2)(C) AND 310.15(B)(2)(B) 6. AC SYSTEM VOLTAGE CORRECTION IS PER NEC 690.7(A)
- 7. CONDUCTORS ARE SIZED PER WIRE AMPACITY TABLE NEC 310.15(B)(16).
- 8. CONDUCTORS EXPOSED TO SUNLIGHT SHALL BE
 LISTED AS SUNLIGHT RESISTANT PER NEC 310.10(D).

 9. CONDUCTORS EXPOSED TO WET LOCATIONS SHALL
- BE SUITABLE FOR USE IN WET LOCATIONS PER NEC 310.10(C).

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

SINGLE LINE DIAGRAM

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED	PAPER S	SIZE: 17"x11"				
DATE: 9/17/21	REV:A	E-001				

WARNING PLACARDS

WARNING

ELECTRIC SHOCK HAZARD

THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED

LABEL LOCATION

DC DISCONNECT,INVERTER
[PER CODE: NEC 690.41)]

[To be used when inverter is ungrounded]

WARNING

ELECTRIC SHOCK HAZARD

DO NOT TOUCH TERMINALS
TERMINALS ON BOTH LINE AND LOAD SIDES MAY
BE ENERGIZED IN THE OPEN POSITION

DC VOLTAGE IS ALWAYS PRESENT WHEN SOLAR MODULES ARE EXPOSED TO SUNLIGHT

LABEL LOCATION

AC DISCONNECT, POINT OF INTERCONNECTION [PER CODE: NEC 690.13(B)]

WARNING

ELECTRIC SHOCK HAZARD

DO NOT TOUCH TERMINALS
TERMINALS ON BOTH LINE AND LOAD SIDES MAY BE
ENERGIZED IN THE OPEN POSITION

LABEL LOCATION

AC DISCONNECT, POINT OF INTERCONNECTION [PER CODE: NEC 690.13(B)]

WARNING-Electric Shock Hazard No User Serviceable Parts inside Contact authorized service provide for assistance

LABEL LOCATION

INVERTER, JUNCTION BOXES(ROOF), AC DISCONNECT [PER CODE: NEC 690.13]

WARNING:PHOTOVOLTAIC POWER SOURCE

LABEL LOCATION
CONDUIT, COMBINER BOX
[PER CODE: NEC690.31(G)(3)]

WARNING

DUAL POWER SOURCE SECOND SOURCE IS PHOTOVOLTAIC SYSTEM

LABEL LOCATION

POINT OF INTERCONNECTION [PER CODE: NEC705.12(D)(4)]

PHOTOVOLTAIC SYSTEM DC DISCONNECT

MAXIMUM VOLATAGE 480 VDC
MAXIMUM CIRCUIT CURRENT 45 ADC
MAX RATED OUTPUT CURRENT OF THE 15 ADC
CHARGE CONTROLLER OR DC TO DC
CONCERTER (IF INSTALLED)

<u>Label Location</u>

DC DISCONNECT SWITCH, INVERTER REF. CODE: NEC 690.14(C)(2), NEC 690.53

PHOTOVOLTAIC SYSTEM AC DISCONNECT SWITCH

RATED AC OPERATING CURRENT 42.00 AMPS AC AC NOMINAL OPERATING VOLTAGE 240 VAC

Label Location

AC DISCONNECT, POINT OF INTERCONNECTION
[PER CODE: NEC 690.54]

WARNING

INVERTER OUTPUT CONNECTION DO NOT RELOCATE THIS OVER-CURRENT DEVICE

LABEL LOCATION

POINT OF INTERCONNECTION

(PER CODE: NEC 705.12(2)(b)

[Not Required if Panel board is rated not less than sum of ampere ratings

CAUTION: SOLAR CIRCUIT

LABEL LOCATION

MARKINGS PLACED ON ALL INTERIOR AND EXTERIOR DC CONDUIT, RACEWAYS, ENCLOSURES AND CABLE ASSEMBLES AT LEAST EVERY 10 FT, AT TURNS AND ABOVE/BELOW PENETRATIONS AND ALL COMBINER/JUNCTION BOXES. (PER CODE: IFC605.11.1.4)

SOLAR DISCONNECT

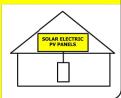
LABEL LOCATION

DISCONNECT, POINT OF INTERCONNECTION
[PER CODE: NEC690.13(B)]

CAUTION: SOLAR ELECTRIC SYSTEM CONNECTED

LABEL LOCATION

WEATHER RESISTANT MATERIAL, DURABLE ADHESDIVE, UL969 AS STANDARD TO WEATHER RATING (UL LISTING OF MARKINGS NOT REQUIRED), MIN ¾" LETTER HEIGHT ARIAL OR SIMILAR FONT NON-BOLD, PLACED WITHIN THE MAIN SERVICE DISCONNECT, PLACED ON THE OUTSIDE OF THE COVER WHEN DISCONNECT IS OPERATED WITH THE SERVICE PANEL CLOSED. (PWER CODE: NEC690.15 .690.13(B))

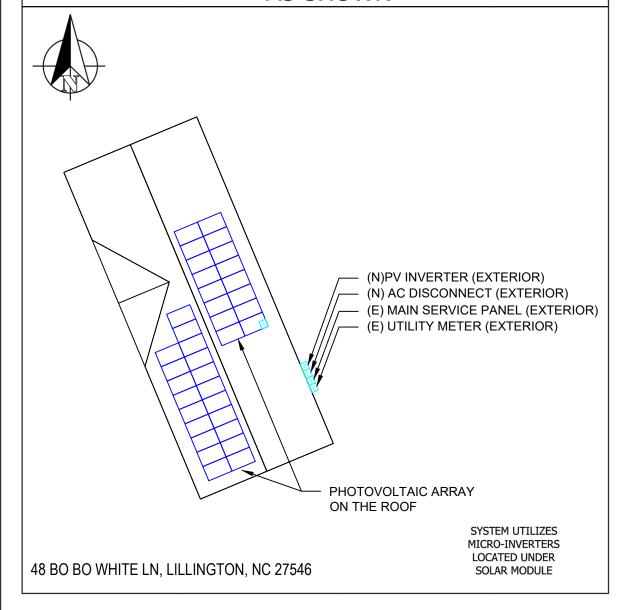

RAPID SHUTDOWN SWITCH FOR SOLAR SYSTEM

LABEL LOCATION
INVERTER, POINT OF
INTERCONNECTION

[PER CODE: NEC 690.56(C)(3)]

SOLAR PV SYSTEM EQUIPPED WITH RAPID SHUTDOWN

TURN RAPID SHUTDOWN
SWITCH TO THE
"OFF" POSITION TO
SHUT DOWN PV SYSTEM
AND REDUCE
SHOCK HAZARD
IN THE ARRAY


<u>LABEL LOCATION</u> POINT OF INTERCONNECTION (PER CODE: NEC690.56(C)) ALL PLACARDS SHALL BE OF WEATHER PROOF CONSTRUCTION, BACKGROUND ON ALL PLACARDS SHALL BE RED WITH WHITE LETTERING U.O.N.

PLACARD SHALL BE MOUNTED DIRECTLY ON THE EXISTING UTILITY ELECTRICAL SERVICE.FASTENERS APPROVED BY THE LOCAL JURISDICTION

NOTE:ALL SIGNAGE CANNOT BE HAND WRITTEN NEC 110.21

WARNING !

POWER TO THIS BUILDING IS ALSO
SUPPLIED FROM THE FOLLOWING
SOURCES WITH DISCONNECTS LOCATED
AS SHOWN

Sustainable Energy & Lighting Solutions Your future is brighter with us!

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW AC SYSTEM SIZE: 10.000 kW ANNUAL SOLAR OUPUT: 15864kWh/an MODULES: (36) Q CELLS Q.PEAK DUO-G6+ 350

(36) P370 SOLAR EDGE POWER OPTIMIZER

INVERTER: (1)SOLAREDGE SE10000H-US

OPTIMIZER DETAILS

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

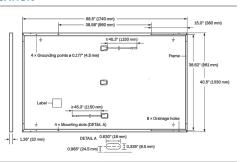
AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

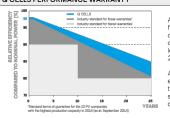
WARNING PLACARDS

DESIGNER / CHECKED BY: J.B. / J.B.


SCALING: AS NOTED PAPER SIZE: 17"x11"

DATE: 9/17/21 REV:A **E-003**

MECHANICAL SPECIFICATION


Format	$68.5 \times 40.6 \times 1.26$ in (including frame) (1740 \times 1030 \times 32 mm)
Weight	43.9 lbs (19.9 kg)
Front Cover	0.13in (3.2mm) thermally pre-stressed glass with anti-reflection technology
Back Cover	Composite film
Frame	Black anodized aluminum
Cell	6 × 20 monocrystalline Q.ANTUM solar half cells
Junction Box	2.09 - 3.98×1.26 - 2.36×0.59 - 0.71 in (53- 101×32 - 60×15 - 18 mm), Protection class IP67, with bypass diodes
Cable	4mm² Solar cable; (+) ≥45.3 in (1150 mm), (-) ≥45.3 in (1150 mm)
Connector	Stäubli MC4; IP68

ELECTRICAL CHARACTERISTICS

			340	345	350	355
MUM PERFORMANCE AT STANDARD	TEST CONDITIO	NS, STC ¹ (PO	WER TOLERANCE +5W/-0	W)		
Power at MPP ¹	P _{MPP}	[W]	340	345	350	355
Short Circuit Current ¹	I _{sc}	[A]	10.68	10.73	10.79	10.84
Open Circuit Voltage ¹	Voc	[V]	40.24	40.49	40.73	40.98
Current at MPP	I _{MPP}	[A]	10.16	10.22	10.27	10.33
Voltage at MPP	V_{MPP}	[V]	33.45	33.76	34.07	34.38
Efficiency ¹	η	[%]	≥19.0	≥19.3	≥19.5	≥19.8
MUM PERFORMANCE AT NORMAL O	PERATING COND	DITIONS, NM	DT ²			
Power at MPP	P _{MPP}	[W]	254.5	258.2	261.9	265.7
Short Circuit Current	I _{sc}	[A]	8.60	8.65	8.69	8.74
Open Circuit Voltage	Voc	[V]	37.94	38.17	38.41	38.65
Current at MPP	I _{MPP}	[A]	8.00	8.04	8.09	8.13
Voltage at MPP	V _{MPP}	[V]	31.81	32.10	32.40	32.69
	Power at MPPs Short Circuit Currents Open Circuit Voltages Current at MPP Voltage at MPP Efficiencys MUM PERFORMANCE AT NORMAL OP Power at MPP Short Circuit Current Open Circuit Voltage Current at MPP Voltage at MPP	Power at MPP ¹ P _{MPP} Short Circuit Current ¹ I _{SC} Open Circuit Voltage ¹ V _{OC} Current at MPP I _{MPP} Voltage at MPP V _{MPP} Efficiency ¹ η MUM PERFORMANCE AT NORMAL OPERATING COND Power at MPP P _{MPP} Short Circuit Current I _{SC} Open Circuit Voltage V _{OC} Current at MPP I _{MPP} Voltage at MPP V _{MPP}	Power at MPP ^{1.}	Power at MPP¹ P _{MPP} [W] 340 Short Circuit Current¹ I _{SC} [A] 10.68 Open Circuit Voltage¹ V _{OC} [V] 40.24 Current at MPP I _{MPP} [A] 10.16 Voltage at MPP V _{MPP} [V] 33.45 Efficiency¹ η [%] ≥19.0 MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT* Power at MPP P _{MPP} [W] 254.5 Short Circuit Current I _{SC} [A] 8.60 Open Circuit Voltage V _{OC} [V] 37.94 Current at MPP I _{MPP} [A] 8.00 Voltage at MPP V _{MPP} [V] 31.81	Short Circuit Current Isc [A] 10.68 10.73	Power at MPP¹ P _{MPP} [W] 340 345 350 Short Circuit Current¹ I _{SC} [A] 10.68 10.73 10.79 Open Circuit Voltage¹ V _{OC} [V] 40.24 40.49 40.73 Current at MPP I _{MEP} [A] 10.16 10.22 10.27 Voltage at MPP V _{MPP} [V] 33.45 33.76 34.07 Efficienoy¹ η [%] ≥19.0 ≥19.3 ≥19.5 MUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Power at MPP P _{MPP} [W] 254.5 258.2 261.9 Short Circuit Current I _{SC} [A] 8.60 8.65 8.69 Open Circuit Voltage V _{OC} [V] 37.94 38.17 38.41 Current at MPP I _{MPP} [A] 8.00 8.04 8.09

Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organization of your respective country.

Typical module performance under low irradiance conditions in comparison to STC conditions (25°C, 1000 W/m²)

TEMPERATURE COEFFICIENTS								
Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27	
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Nominal Module Operating Temperature	NMOT	[°F]	109±5.4 (43±3°C)	

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage V _{sys}	[V]	1000 (IEC)/1000 (UL)	PV module classification	Class II
Maximum Series Fuse Rating	[A DC]	20	Fire Rating based on ANSI/UL 61730	TYPE 2
Max. Design Load, Push / Pull ³			Permitted Module Temperature	-40°F up to +185°F
Max. Test Load, Push / Pull3	[lbs/ft ²]	113 (5400 Pa) / 84 (4000 Pa)	on Continuous Duty	(-40°C up to +85°C)
³ See Installation Manual		.	•	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

. 1703, CE-compliant,
DE Quality Tested
C 61215:2016,
C 61730:2016,
S. Patent No. 9,893,215
olar cells)

					lb]	O-O	40'HC	
S	Horizontal	70.1 in	42.5 in	47.6 in	1485 lbs	28	26	32
	packaging	1780 mm	1080 mm	1208 mm	674 kg	pallets	pallets	modules
	Vertical	71.5 in	45.3 in	48.0 in	1505lbs	28	24	32
	packaging	1815 mm	1150 mm	1220 mm	683kg	pallets	pallets	modules

Idea: Installation instructions must be followed. See the Installation and operating manual or contact our technical service department for further information on approved installation and use of this product. Q CELLS supplies a roodules in two different stacking methods, depending on the location of manufacture (modules are packed horizontally or vertically). You can find more detailed information in the document "Packaging and Transport Informational Packaging and Transport Information Packaging and Transport Informational Packaging Information Packaging I

Hanwha Q CELLS America Inc.

400 Spectrum Center Drive, Suite 1400, Irvine, CA 92618, USA | TEL +1 949 748 59 96 | EMAIL inquiry@us.q-cells.com | WEB www.q-cells.us

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW
AC SYSTEM SIZE: 10.000 kW
ANNUAL SOLAR OUPUT: 15864kWh/an
MODULES:
(36) Q CELLS Q.PEAK DUO-G6+ 350
INVERTER:
(1)SOLAREDGE SE10000H-US
OPTIMIZER DETAILS

(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

MODULE SPECSHEET

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED	PAPER SI	PAPER SIZE: 17"x11"				
DATE: 9/17/21	REV:A	SS-001				

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking 99% weighted efficiency
- Quick and easy inverter commissioning directly from a smartphone using the SolarEdge SetApp
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014, NEC 2017 and NEC 2020 per article 690.11 and 690.12

- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Small, lightweight, and easy to install both outdoors or indoors
- Built-in module-level monitoring
- Optional: Faster installations with built-in consumption metering (1% accuracy) and production revenue grade metering (0.5% accuracy, ANSI C12.20)

solaredge solaredge.com

/ Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

MODEL NUMBER	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US		
APPLICABLE TO INVERTERS WITH PART NUMBER		SEXXXXH-XXXXXBXX4							
OUTPUT	2								
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA	
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	WA	
AC Output Voltage Min: NomMax. (211–240 - 264)	e⁄.	₹	¥.	~	₹.	₹	Ø.	Vac	
AC Output Voltage Min.:Nom::Max. (183 = 208 = 229)	PO.	₹	955	4		CM5	*	Vac	
AC Frequency (Nominal)				59.3 - 60 - 60.5 (1)				Hz	
Maximum Continuous Output Current @240V	12.5	76	21	25	32	42	47,5	-A	
Maximum Continuous Output Current @2080	es	16	961	24	28	CHI.	48,5	A	
Power Factor			1	Adjustable - 0.85 to	0.85		<u> </u>		
GFDI Threshold				7				A	
Utility Monitoring, Islanding Protection; Country Configurable Thresholds				Yes					
INPUT									
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	N/F	
Maximum DC Power @208V	20	5100	20	7750	(a)	42	15500	W	
Transformer-less, Ungrounded				Yes	-	-	:		
Maximum Input Voltage	- 1			480		2		Vdc	
Nominal DC Input Voltage		(3	80			400		Vdc	
Maximum Input Current @240V	8.5	10.5	13.5	16.5	20	27	30.5	Adc	
Maximum loput Current @208V ⁽²⁾	81	9	**	13:5	19	.ee	27	Adc	
Max. Input Short Circuit Current				45				Adc	
Reverse Polarity Protection				Yes					
Ground-Fault Isolation Detection		600ka Sensitivity							
Maximum Inverter Efficiency	99			je	9.2			1%	
CEC Weighted Efficiency		99: 99:00 240V 98.5 0:208V						19%	
Nighttime Power Consumption				< 2.5				W	

⁽¹⁾ For other regional settings please contact SolarEdge support

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW AC SYSTEM SIZE: 10.000 kW ANNUAL SOLAR OUPUT: 15864kWh/an MODULES:

(36) Q CELLS Q.PEAK DUO-G6+ 350 INVERTER:

(1)SOLAREDGE SE10000H-US OPTIMIZER DETAILS

(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR

48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008 APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

INVERTER SPECSHEET

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED	PAPER SIZE: 17"x11"				
DATE: 9/17/21	REV:A	SS-002			

⁽²⁾ A higher current source may be used; the inverter will limit its input current to the values stated

Power Optimizer

For North America

P370 / P400 / P401 / P485 / P505

PV power optimization at the module-level

- Specifically designed to work with SolarEdge
- / Up to 25% more energy

solaredge.com

- Superior efficiency (99.5%)
- / Mitigates all types of module mismatch losses, from manufacturing tolerance to partial shading
- Flexible system design for maximum space

- Fast installation with a single bolt
- Next generation maintenance with modulelevel monitoring
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)
- Module-level voltage shutdown for installer and firefighter safety

/ Power Optimizer For North America

P370 / P400 / P401 / P485 / P505

Optimizer model (typical module compatibility)	P370 (for higher-power 60 and 72-cell modules)	P400 (for 72 & 96- cell modules)	P401 (for high power 60 and 72 cell modules)	P485 (for high-voltage modules)	P505 (for higher current modules)	
INPUT						
Rated Input DC Power ⁽¹⁾	370		400	485	505	W
Absolute Maximum Input Voltage (Voc at lowest temperature)	60	80	60	125 [©]	83(2)	Vdc
MPPT Operating Range	8 - 60	8 - 80	8-60	12.5 - 105	12.5 - 83	Vdc
Maximum Short Circuit Current (Isc)	11	10.1	11,75	11	14	Adc
Maximum Efficiency			99.5			%
Weighted Efficiency			98.8			%
Overvoltage Category						
OUTPUT DURING OPERATIO	N (POWER OPTIMIZE	R CONNECTED	TO OPERATING SOI	LAREDGE INVERT	ER)	
Maximum Output Current			15			Adc
Maximum Output Voltage		60		8	15	Vdc
OUTPUT DURING STANDBY (F	POWER OPTIMIZER D	ISCONNECTED	FROM SOLAREDGE IN	NVERTER OR SOLA	REDGE INVERTER	OFF)
Safety Output Voltage per Power Optimizer			1 ± 0.1			Vdc
STANDARD COMPLIANCE						
Photovoltaic Rapid Shutdown System	ľ	NEC 2014, 2017 & 202	10	NEC 2014, 2017 & 2020	NEC 2014, 2017 & 2020	
EMC		FCC Part	15 Class B, IEC61000-6-2, IEC6	1000-6-3		
Safety		IE	C62109-1 (class II safety), UL17	41		
Material			UL94 V-0 , UV Resistant			
RoHS			Yes			
INSTALLATION SPECIFICATION	ONS					
Maximum Allowed System Voltage			1000			Vdc
Compatible inverters		All SolarEdg	ge Single Phase and Three Pha	se inverters		
Dimensions (W x L x H)	129 x 153 x 27.5 / 5.1 x 6 x 1.1	129 x 153 x 33.5 / 5.1 x 6 x 1.3	129 x 153 x 29.5 /5.1 x 6 x 1.16	129 x 153 x 33.5 / 5.1 x 6 x 1.3	129 x 162 x 59 / 5.1 x 6.4 x 2.3	mm /in
Weight (including cables)	655 / 1.4	750 / 1.7	655 / 1.4	845 / 1.9	1064 / 2.3	gr/lb
Input Connector		MC4 ⁽³⁾		Single or dual MC4 ⁽⁹⁾⁽⁴⁾	MC4 ⁽³⁾	
Input Wire Length	0.16 / 0.52, 0.9 / 2.95(4)	0.16 / 0.52	0.16 / 0.52, 0.9 / 2.95(4)	0.16 / 0.52	0.16 / 0.52	m/ft
Output Wire Type / Connector	Double Insulated / MC4					
Output Wire Length	1.2 / 3.9 m/					
Operating Temperature Range ⁽⁵⁾			-40 to +85 / -40 to +185			°C / °F
Protection Rating			IP68 / NEMA6P			
Relative Humidity			0 - 100			%

- (1) Rated power of the module at STC will not exceed the optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed
- (2) NEC 2017 requires max input voltage be not more than 80V
- (4) For dual version for parallel connection of two modules use P485-4NMDMRM. In the case of an odd number of PV modules in one string, installing one P485 dual version power optimizer connected
- to one PV module. When connecting a single module seal the unused input connectors with the supplied pair of seals

 (5) For amblent temperature above +85°C / +185°F power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Technical Note for more details

PV System Design Using a Inverter ⁽⁶⁾⁽⁷⁾	a SolarEdge	Single Phase HD-Wave	Single phase	Three Phase for 208V grid	Three Phase for 277/480V grid	
Minimum String Length	P370, P400, P401	8		10	18	
(Power Optimizers) P485, P505		6		8	14	
Maximum String Length (Power Optimizers)		25		25	50	
Maximum Nominal Power per String		5700 ⁽ⁱⁱⁱ⁾ (6000 with SE7600-US - SE11400-US)	5250®	6000 [®]	12750(10)	W
Parallel Strings of Different Lengths	or Orientations	Yes				

- (6) For detailed string sizing information refer to: http://www.solaredge.com/sites/default/files/string_sizing_na.pdf
- (7) It is not allowed to mix P485/P505 with P370/P400/P401 in one string
- (8) If the inverters rated AC power < maximum nominal power per string, then the maximum power per string will be able to reach up to the inverters maximum input DC power. Refer to: https://www.solaredge. (9) For 208V grid: it is allowed to install up to 15,000W per string when the maximum power per string which each string is 1,000W (10) For 277/480V grid: it is allowed to install up to 15,000W per string when the maximum power difference between each string is 2,000W (10) For 277/480V grid: it is allowed to install up to 15,000W per string when the maximum power difference between each string is 2,000W

© SolarEdge Technologies Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 02/2021/V02/ENG NAM. Subject to change without notice.

SYSTEM INFORMATION

DC SYSTEM SIZE: 12.600 kW AC SYSTEM SIZE: 10.000 kW

ANNUAL SOLAR OUPUT: 15864kWh/an

MODULES:

(36) Q CELLS Q.PEAK DUO-G6+ 350 INVERTER:

(1)SOLAREDGE SE10000H-US OPTIMIZER DETAILS

(36) P370 SOLAR EDGE POWER OPTIMIZER

ENGINEER OF RECORD

CUSTOMER INFORMATION

NAME & ADDRESS: NOE AGUILAR 48 BO BO WHITE LN, LILLINGTON, NC 27546

GPS: 35.3425154, -78.9448008

APN: 130528 0035

AHJ: NC-HARNETT COUNTY

UTILITY: SOUTH RIVER EMC

PROJECT NUMBER: ----

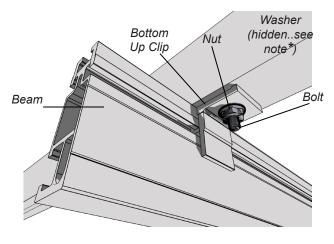
COMBINER SPECSHEET

DESIGNER / CHECKED BY: J.B. / J.B.

SCALING: AS NOTED PAPER SIZE: 17"x11"

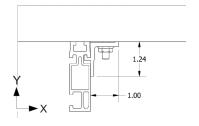
DATE: 9/17/21

SS-003


SolarMount Technical Datasheet

Pub 100602-1td V1.0 June 2010

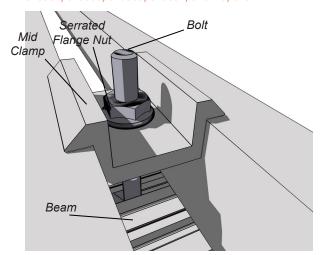
SolarMount Module Connection Hardware	. 1
Bottom Up Module Clip	1
Mid Clamp	
End Clamp	
SolarMount Beam Connection Hardware	
L-Foot	3
SolarMount Beams	


SolarMount Module Connection Hardware

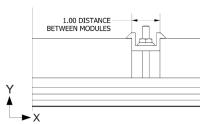
SolarMount Bottom Up Module Clip Part No. 321001, 321002

- **Bottom Up Clip material:** One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6
- Ultimate tensile: 38ksi, Yield: 35 ksi
- Finish: Clear Anodized
- Bottom Up Clip weight: ~0.031 lbs (14g)
- Allowable and design loads are valid when components are assembled with SolarMount series beams according to authorized UNIRAC documents
- Assemble with one ¼"-20 ASTM F593 bolt, one ¼"-20 ASTM F594 serrated flange nut, and one ¼" flat washer
- Use anti-seize and tighten to 10 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and thirdparty test results from an IAS accredited laboratory
- Module edge must be fully supported by the beam
- * NOTE ON WASHER: Install washer on bolt head side of assembly.

 DO NOT install washer under serrated flange nut


Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load lbs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Φ
Tension, Y+	1566 (6967)	686 (3052)	2.28	1038 (4615)	0.662
Transverse, X±	1128 (5019)	329 (1463)	3.43	497 (2213)	0.441
Sliding, Z±	66 (292)	27 (119)	2.44	41 (181)	0.619

Dimensions specified in inches unless noted



SolarMount Mid Clamp

Part No. 320008, 320009, 320019, 320020, 320021, 320084, 320085, 320086, 320087, 320120, 320122

- Mid clamp material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6
- Ultimate tensile: 38ksi, Yield: 35 ksi
- Finish: Clear or Dark Anodized
- Mid clamp weight: 0.050 lbs (23g)
- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents
- Values represent the allowable and design load capacity of a single mid clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated
- Assemble mid clamp with one Unirac ¼"-20 T-bolt and one ¼"-20 ASTM F594 serrated flange nut
- · Use anti-seize and tighten to 10 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and thirdparty test results from an IAS accredited laboratory

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load lbs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Ф
Tension, Y+	2020 (8987)	891 (3963)	2.27	1348 (5994)	0.667
Transverse, Z±	520 (2313)	229 (1017)	2.27	346 (1539)	0.665
Sliding, X±	1194 (5312)	490 (2179)	2.44	741 (3295)	0.620

Dimensions specified in inches unless noted

SolarMount End Clamp

Part No. 320002, 320003, 320004, 320005, 320006, 320012, 320013, 320014, 320015, 320016, 320017, 320079, 320080, 320081, 320082, 320083, 320117, 320118, 320123, 320124, 320173, 320185, 320220,

Serrated Flange Nut

Bean

Y

A

Bean

Y

A

Bean

Y

Bean

Bean

Y

Bean

Bean

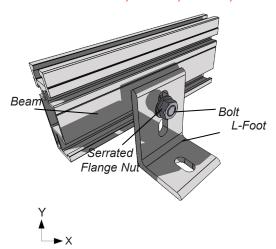
Y

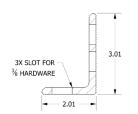
Bean

Bea

- End clamp material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6
- **Ultimate tensile:** 38ksi, Yield: 35 ksi
- Finish: Clear or Dark Anodized
- End clamp weight: varies based on height: ~0.058 lbs (26g)
- Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents
- Values represent the allowable and design load capacity of a single end clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated
- Assemble with one Unirac ¼"-20 T-bolt and one ¼"-20 ASTM F594 serrated flange nut
- Use anti-seize and tighten to 10 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and thirdparty test results from an IAS accredited laboratory
- Modules must be installed at least 1.5 in from either end of a beam

Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load Ibs (N)	Safety Factor, FS	Design Loads Ibs (N)	Resistance Factor, Φ
Tension, Y+	1321 (5876)	529 (2352)	2.50	800 (3557)	0.605
Transverse, Z±	63 (279)	14 (61)	4.58	21 (92)	0.330
Sliding, X±	142 (630)	52 (231)	2.72	79 (349)	0.555


HEIGHT VARIES WITH MODULE THICKNESS	
Dimensions specifi	ed in inches unless noted

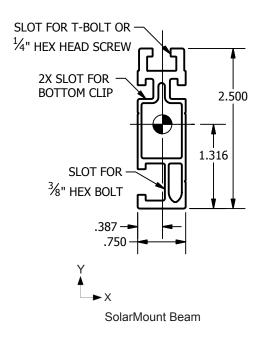

MINIMUM -

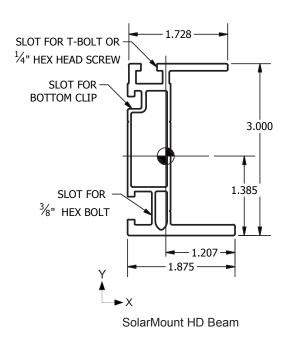
SolarMount Beam Connection Hardware

SolarMount L-Foot Part No. 310065, 310066, 310067, 310068

Dimensions specified in inches unless noted

- L-Foot material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6
- Ultimate tensile: 38ksi, Yield: 35 ksi
- Finish: Clear or Dark Anodized
- L-Foot weight: varies based on height: ~0.215 lbs (98g)
- Allowable and design loads are valid when components are assembled with SolarMount series beams according to authorized UNIRAC documents
- For the beam to L-Foot connection:
 - Assemble with one ASTM F593 %"-16 hex head screw and one ASTM F594 %"serrated flange nut
 - Use anti-seize and tighten to 30 ft-lbs of torque
- Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third-party test results from an IAS accredited laboratory


NOTE: Loads are given for the L-Foot to beam connection only; be sure to check load limits for standoff, lag screw, or other attachment method


Applied Load Direction	Average Ultimate Ibs (N)	Allowable Load lbs (N)	Safety Factor, FS	Design Load Ibs (N)	Resistance Factor, Φ
Sliding, Z±	1766 (7856)	755 (3356)	2.34	1141 (5077)	0.646
Tension, Y+	1859 (8269)	707 (3144)	2.63	1069 (4755)	0.575
Compression, Y-	3258 (14492)	1325 (5893)	2.46	2004 (8913)	0.615
Traverse, X±	486 (2162)	213 (949)	2.28	323 (1436)	0.664

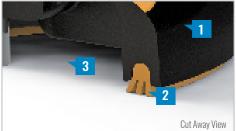
SolarMount Beams

Properties	Units	SolarMount	SolarMount HD
Beam Height	in	2.5	3.0
Approximate Weight (per linear ft)	plf	0.811	1.271
Total Cross Sectional Area	in²	0.676	1.059
Section Modulus (X-Axis)	in ³	0.353	0.898
Section Modulus (Y-Axis)	in ³	0.113	0.221
Moment of Inertia (X-Axis)	in⁴	0.464	1.450
Moment of Inertia (Y-Axis)	in⁴	0.044	0.267
Radius of Gyration (X-Axis)	in	0.289	1.170
Radius of Gyration (Y-Axis)	in	0.254	0.502

Dimensions specified in inches unless noted

FLASH LOC

FLASHLOC is the ultimate attachment for composition shingle and rolled comp roofs. The all-in-one mount installs fast — no kneeling on hot roofs to install flashing, no prying or cutting shingles, no pulling nails. Simply drive the lag bolt and inject sealant into the base. **FLASH**LOC's patented TRIPLE SEAL technology preserves the roof and protects the penetration with a permanent pressure seal. Kitted with lag bolts, sealant, and hardware for maximum convenience. Don't just divert water, **LOC it out!**



JUNE2021_FLASHLOCCOMP_V2

PROTECT THE ROOF

Install a high-strength waterproof attachment without lifting, prying or damaging shingles.

LOC OUT WATER

With an outer shield 1 contour-conforming gasket 2 and pressurized sealant chamber 3 the Triple Seal technology delivers a 100% waterproof connection.

HIGH-SPEED INSTALL

Simply drive lag bolt and inject sealant into the port 4 to create a permanent pressure seal.

FASTER INSTALLATION. 25-YEAR WARRANTY.

FLASH LOC

INSTALLATION GUIDE

PRE-INSTALL

Snap chalk lines for attachment rows. On shingle roofs, snap lines 1-3/4" below upslope edge of shingle course. Locate rafters and mark attachment locations.

At each location, drill a 7/32" pilot hole. Clean roof surface of dirt, debris, snow, and ice. Next. BACKFILL ALL PILOT HOLES WITH SEALANT.

NOTE: Space mounts per racking system install specifications.

STEP 1: SECURE

Place **FLASH**LOC over pilot hole with lag on down-slope side. Align indicator marks on sides of mount with chalk line. Pass included lag bolt and sealing washer through **FLASH**LOC into pilot hole. Drive lag bolt until mount is held firmly in place.

NOTE: The EPDM in the sealing washer will expand beyond the edge of the metal washer when proper torque is applied.

STEP 2: SEAL

Insert tip of UNIRAC provided sealant into port. Inject until sealant exits both vents. Follow sealant manufacturer's instructions. Follow sealant manufacturer's cold weather application guidelines, if applicable.

Continue array installation, attaching rails to mounts with provided T-bolts.

NOTE: When **FLASH**LOC is installed over gap between shingle tabs or vertical joints, fill gap/joint with sealant between mount and upslope edge of shingle course.

USE ONLY UNIRAC APPROVED SEALANTS: Chemlink Duralink 50, Chemlink M-1, Geocel 4500, or Geocel S-4