

October 9, 2020

To: Blue Raven Solar 1403 N. Reasearch Way, Bldg. J Orem, UT. 84097

Subject: Certification Letter Turlington Residence 1150 S. Lincoln St. Coats, NC. 27521

To Whom It May Concern,

A jobsite observation of the condition of the existing framing system was performed by an audit team of Blue Raven Solar. All attached structural calculations are based on these observations and the design criteria listed below.

On the above referenced project, the roof structural framing has been reviewed for additional loading due to the installation of the solar PV addition to the roof. The structural review, including the plans and calculations only apply to the section of the roof that is directly supporting the solar PV system and its supporting elements. The observed roof framing is described below.

The roof structure of (MP1) consists of composition shingle on roof plywood that is supported by 2x6 rafters @ 16"o.c. with ceiling joists acting as rafter ties. The rafters have a max projected horizontal span of 12'-0", with a slope of 22 degrees. The rafters are connected at the ridge to a ridge board and are supported at the eave by a load bearing wall.

The existing roof framing system of (MP1) is judged to be adequate to withstand the loading imposed by the installation of the solar panels. No reinforcement is necessary.

The spacing of the solar standoffs should be kept at 64" o.c. for landscape and 48" o.c. for portrait orientation, with a staggered pattern to ensure proper distribution of loads.

The scope of this report is strictly limited to an evaluation of the fastener attachment, underlying framing and supporting structure only. The attachment's to the existing structure are required to be in a staggered pattern to ensure proper distribution of loading. All panels, racking and hardware shall be installed per manufacturer specifications and within specified design limitations. All waterproofing shall be provided by the manufacturer.

Design Criteria:

- Applicable Codes = 2018 North Carolina State Building Code (NCSBC), ASCE7-10, and NDS-12
- Roof Dead Load = 8 psf (MP1)
- Roof Live Load = 20 psf
- Wind Speed = 115 mph, Exposure C
- Ground Snow Load = 15 psf Roof Snow Load = 10.5 psf
- Attachments: (1) 5/16" dia lag screw with 2.5" min embedment depth, at spacing shown above.

Please contact me with any further questions or concerns regarding this project.

Sincerely,

John Calvert, P.E. Project Engineer Digitally signed by John Calvert Date: 2020.10.09 18:36:30 -06'00'

BLUE RAVEN SOLAR, LLC Firm License No. D-0396 1403 North Research Way Building J Orem , UT 84097

Gravity Loading

Roof Snow Load Calculations		
p _g = Ground Snow Load =	15 psf	-
$p_f = 0.7 \ C_e \ C_t \ I \ p_g$		(ASCE7 - Eq 7-1)
C_e = Exposure Factor =	1	(ASCE7 - Table 7
Ct = Thermal Factor =	1	(ASCE7 - Table 7-
I = Importance Factor =	1	
p _f = Flat Roof Snow Load =	10.5 psf	
$p_s = C_s p_f$		(ASCE7 - Eq 7-2)
Cs = Slope Factor =	1	
p _s = Sloped Roof Snow Load =	10.5 psf	

PV Dead Load = 3 psf (Per Blue Rav	ven Solar)
PV System Weight	
Weight of PV System (Per Blue Raven Solar)	3.0 psf
X Standoff Spacing =	4.00 ft
Y Standoff Spacing =	5.50 ft
Standoff Tributary Area =	22.00 sft
Point Loads of Standoffs	66 lb
2	

Note: PV standoffs are staggered to ensure proper distribution of loading

Roof Live Load = 20 psf

Note: Roof live load is removed in area's covered by PV array.

Roof Dead Load (MP1)		
Composition Shingle	4.00	-
Roof Plywood	2.00	
2x6 Rafters @ 16"o.c.	1.72	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.28	
Total Roof DL (MP1)	8.0 psf	
DL Adjusted to 22 Degree Slope	8.6 psf	

BLUE RAVEN SOLAR, LLC Firm License No. D-0396 1403 North Research Way Building J Orem , UT 84097

Wind Calculations

Per ASCE7-10 Components and Cladding

Input Variables	S
Wind Speed	115 mph
Exposure Category	С
Roof Shape	Gable/Hip
Roof Slope	22 degrees
Mean Roof Height	20 ft
Effective Wind Area	19.3 ft

Design Wind Pressure Calcula	tions
Wind Pressure P = qh*G*Cn	
qh = 0.00256 * Kz * Kzt * Kd * V^2	(Eq. 30.3-1)
Kz (Exposure Coefficient) = 0.9	(Table 30.3-1)
Kzt (topographic factor) = 1	(Fig. 26.8-1)
Kd (Wind Directionality Factor) = 0.85	(Table 26.6-1)
V (Design Wind Speed) = 115	mph (Fig. 26.5-1A)
Risk Category = II	(Table 1.5-1)
qh = 25.9	0
0.6 * qh = 15.5	4

Star	ndoff Uplift Ca	Iculations-Port	rait		
	Zone 1	Zone 2	Zone 3	Positive	_
GCp =	-0.86	-1.51	-2.37	0.42	(Fig. 30.4-1)
Uplift Pressure =	-13.40 psf	-23.47 psf	-36.86 psf	11.0 psf	
X Standoff Spacing =	4.00	4.00	2.67		
Y Standoff Spacing =	5.50	2.75	2.75		
Tributary Area =	22.00	11.00	7.33		
Footing Uplift =	-295 lb	-258 lb	-270 lb		

Stand	off Uplift Calc	ulations-Lands	саре		
	Zone 1	Zone 2	Zone 3	Positive	
GCp =	-0.86	-1.51	-2.37	0.42	(Fig. 30.4-1)
Uplift Pressure =	-13.40 psf	-23.47 psf	-36.86 psf	10.0 psf	(Minimum)
X Standoff Spacing =	5.33	5.33	3.56		
Y Standoff Spacing =	3.50	1.75	1.75		
Tributary Area =	18.67	9.33	6.22		
Footing Uplift =	-250 lb	-219 lb	-229 lb		

Standoff Uplift Check

Maximum Design Uplift = -295 lb Standoff Uplift Capacity = 450 lb 450 lb capacity > 295 lb demand **Therefore, OK**

Fastener Capacity Check Fastener = 1 - 5/16" dia Lag

Number of Fasteners = 1 Embedment Depth = 2.5 Pullout Capacity Per Inch = 250 lb Fastener Capacity = 625 lb w/ F.S. of 1.5 & DOL of 1.6= 667 lb 667.2 lb capacity > 295 lb demand Therefore, OK

Framing Check

Dead Load	8.6	nsf						W =	42 plf	
PV Load	3.0					_				
Live Load	20.0	osf						2x6 Rafter	rs @ 16	6"0.C.
	Combo DI					\leftarrow		Mombor Cr		
Governing Load (F <mark>otal Load</mark>	20mb0 = DL 31.6							Member Sp)9U = 1	12 - 0
				Mer	mber P	rope	rties			
Member S	Size	S (in^3)		I (in^₄			nber Sp/Gr	ſ	Member Spacing
2x6		7	.56		20.80	0		DF#2		@ 16"o.c.
				Chec	k Bend	ding S	Stress			
Fb (psi)	= f'b	х (Cd	Х	Cf	Х	Cr			(NDS Table 4.3
	900		.25	Х	1.3	Х	1.15			
llowed Bending	SII622 = 100	51.8 PSI								
1aximum M	loment	= (wL′ = 759. = 9108	.079							
	tress = (Max	= 759. = 9108 imum M = 12	.079 8.94 Ioment 204.5 p	in# :) / S osi	71.7% \$	Stres	sed	Therefore, OK		
	tress = (Max	= 759. = 9108 imum M = 12	.079 8.94 Ioment 204.5 p	in# :) / S osi ual 7	71.7% \$ neck D6			Therefore, OK		
Actual Bending Si	tress = (Max A	= 759 = 9108 imum M = 12	.079 8.94 Ioment 204.5 p	in# :) / S osi ual 7 Ch				Therefore, OK		600000 psi Per NE
Actual Bending Si	tress = (Max A n (Total Load	= 759. = 9108 imum M = 12 Illowed	.079 8.94 Ioment 204.5 p	in# 2) / S 2) si 2) al 7 Ch L/ = 0.	neck De /180 .8 in	eflect	ion	Therefore, OK		600000 psi Per NE
Actual Bending Si Actual Bending Si Allowed Deflection Deflection Criteria	tress = (Max A n (Total Load n Based on	= 759. = 910(imum M = 12 (llowed	.079 8.94 Ioment 204.5 p	in# i) / S osi ual 7 <u>Ch</u> L/ = 0. C	n <mark>eck De</mark> /180 .8 in ontinuc	eflect	<mark>ion</mark> pan	Therefore, OK		600000 psi Per NE
Actual Bending Si Actual Bending Si Allowed Deflection Deflection Criteria	tress = (Max A n (Total Load n Based on	= 759. = 910(imum M = 12 (llowed	.079 8.94 Ioment 204.5 p	in# i) / S josi Jal 7 Ch L/ = 0. C (v	neck De /180 .8 in ontinuc v*L^4) /	eflect ous S / (185	<mark>ion</mark> pan	Therefore, OK		600000 psi Per NE
Actual Bending Si Illowed Deflection Deflection Criteria	tress = (Max A n (Total Load n Based on	= 759. = 910(imum M = 12 (llowed	.079 8.94 Ioment 204.5 p	in#) / S) / S) / S) / () / = 0. (v = 0.	n <mark>eck De</mark> /180 .8 in ontinuc	eflect ous S / (185	<mark>ion</mark> pan	Therefore, OK	(E = 1	600000 psi Per NE
Actual Bending St Allowed Deflection Deflection Criteria Actual Deflection	tress = (Max A n (Total Load n Based on (Total Load)	= 759. = 9108 imum M = 12 Illowed	.079 8.94 Ioment 204.5 p	in# c) / S osi ual 7 Ch L/ = 0. C (v = 0. = L/	neck De /180 .8 in ontinuc v*L^4) / .246 in	eflect ous S / (185	ion pan *E*I)		(E = 1	600000 psi Per NE
Actual Bending St Allowed Deflection Deflection Criteria Actual Deflection	tress = (Max A n (Total Load n Based on (Total Load)	= 759. = 9108 imum M = 12 Illowed	.079 8.94 Ioment 204.5 p	in#) / S psi Lal 7 Ch L/ = 0. C (v = 0. = L/ L/	reck De /180 .8 in ontinuc v*L^4) / .246 in /586	eflect ous S / (185	ion pan *E*I)		(E = 1	600000 psi Per NE
Actual Bending Si Allowed Deflection Deflection Criteria Actual Deflection	tress = (Max A n (Total Load a Based on (Total Load) n (Live Load	= 759. = 9108 imum M = 12 (llowed d) = = = =	.079 8.94 Ioment 204.5 p	in#) / S psi Lal 7 Ch L/ = 0. C (v = 0. = L/ L/ 0.	neck De (180 .8 in ontinuc v*L^4) / .246 in /586 (240	eflect ous S / (185 >	ion pan *E*I) L/180		(E = 1	600000 psi Per NE
Actual Bending Si Allowed Deflection Deflection Criteria Actual Deflection	tress = (Max A n (Total Load a Based on (Total Load) n (Live Load	= 759. = 9108 imum M = 12 (llowed d) = = = =	.079 8.94 Ioment 204.5 p	in#) / S psi ual 7 Ch L/ = 0. C (v = 0. C (v = 0. (v = L/ L/ 0. (v 0. (v 0. (v 0. (v 0. (v 0. (v 0.) (v (neck Do (180 .8 in ontinuc v*L^4) / .246 in /586 /240 .6 in v*L^4) / .156 in	eflect ous S / (185 > / (185	ion pan *E*I) L/180 *E*I)	Therefore O	(E = 1 K	600000 psi Per NE
Actual Bending Si Allowed Deflection Deflection Criteria Actual Deflection	tress = (Max A n (Total Load a Based on (Total Load) n (Live Load	= 759. = 9108 imum M = 12 (llowed d) = = = =	.079 8.94 Ioment 204.5 p	in#) / S psi ual 7 Ch L/ = 0. C (v = 0. C (v = 0. (v = L/ L/ 0. (v 0. (v 0. (v 0. (v 0. (v 0. (v 0.) (v (neck Do /180 .8 in ontinuc v*L^4) / .246 in /586 /240 .6 in v*L^4) /	eflect ous S / (185 > / (185	ion pan *E*I) L/180		(E = 1 K	600000 psi Per NE
Actual Bending St Allowed Deflection Deflection Criteria Actual Deflection Actual Deflection	tress = (Max A n (Total Load a Based on (Total Load) n (Live Load	= 759. = 9108 imum M = 12 Illowed	.079 8.94 Ioment 204.5 p	in#) / S) / S) / S) /) /) / = 0. C (v = 0. C (v = 0. L/ 0. (v 0. L/ 0. L/ 0. L/	neck Do (180 .8 in ontinuc v*L^4) / .246 in /586 /240 .6 in v*L^4) / .156 in	eflect ous S / (185 > / (185 > Shea	ion pan *E*I) L/180 *E*I) L/240	Therefore O	(E = 1 K	600000 psi Per NE

Allowed > Actual -- 17.1% Stressed -- Therefore, OK