PROJECT DESCRIPTION:

25 X HANWHA Q CELLS 320W MODULES ROOF MOUNTED SOLAR PHOTOVOLTAIC MODULES SYSTEM SIZE: 8.00 kW DC STC

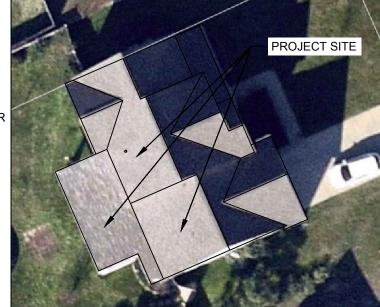
ARRAY AREA: ROOF #1-219.6 SQ FT. ARRAY AREA:ROOF #2- 146.4 SQ FT. ARRAY AREA: ROOF #3-91.5 SQ FT.

EQUIPMENT SUMMARY

HANWHA Q CELLS 320W MODULES

GENERAC PV LINK S2502 POWER OPTIMIZERS

GENERAC PWRCELL X7602 INVERTER


APPLICABLE CODES & STANDARDS BUILDING: NCBC 2018 **ELECTRICAL: NEC 2017**

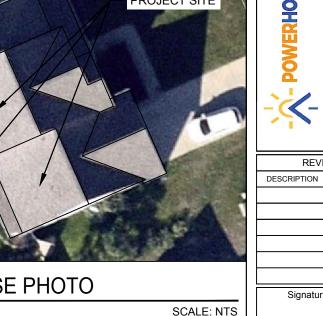
DESIGN SPECIFICATION OCCUPANCY: II

CONSTRUCTION: SINGLE-FAMILY ZONING: RESIDENTIAL

GROUND SNOW LOAD: SEE STRUCTURAL LETTER WIND EXPOSURE: SEE STRUCTURAL LETTER

WIND SPEED: SEE STRUCTURAL LETTER

HOUSE PHOTO


PV-1

VICINITY MAP PV-1

SHEET INDEX

PV-1 PLOT PLAN & VICINITY MAP PV-2 **ROOF PLAN & MODULES** STRING LAYOUT PV-2A PV-3 ATTACHMENT DETAIL PV-4 ELECTRICAL LINE DIAGRAM PV-5 WIRING CALCULATIONS PV-6 to 12 EQUIPMENT SPECIFICATIONS

Signature with Seal

REVISIONS

DATE

DATE:08/31/2020

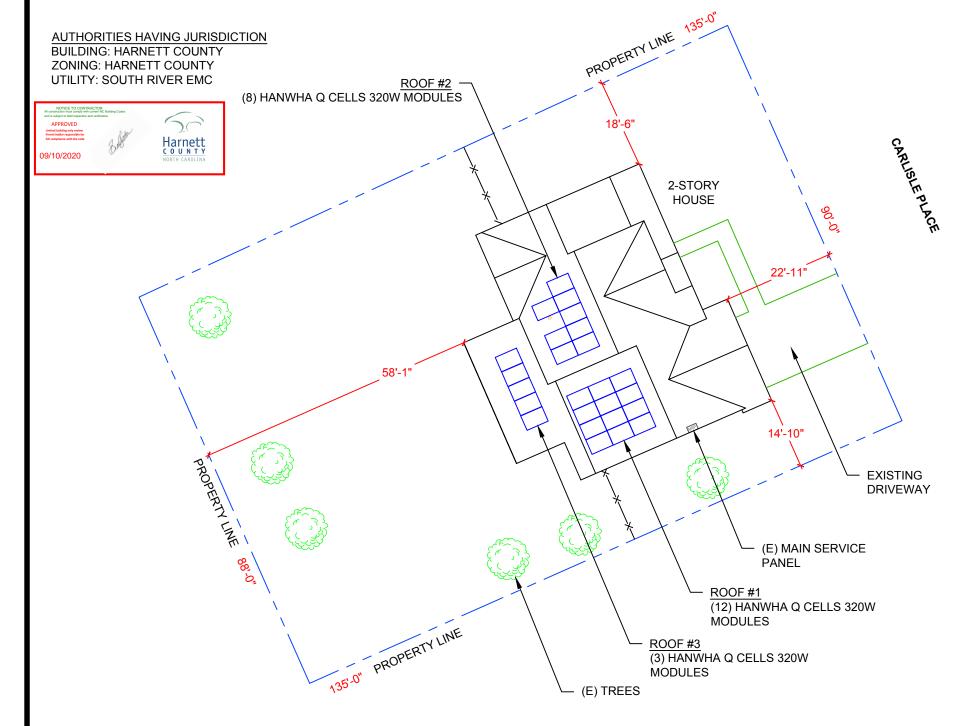
35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH ESIDENCE $\overline{\alpha}$

SCALE: NTS

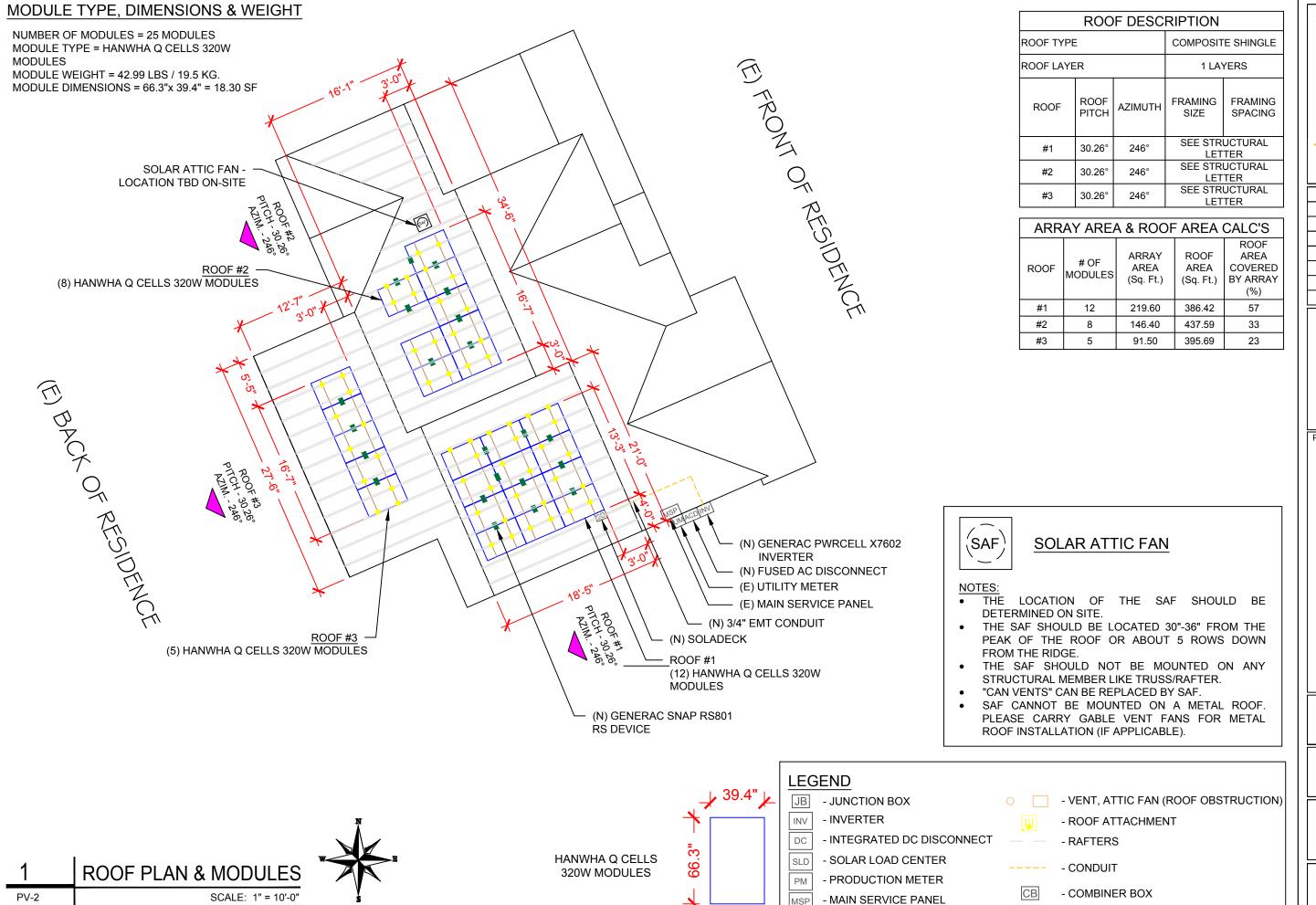
DESIGNED BY


PHS

SHEET NAME PLOT PLAN & **VICINITY MAP**

> SHEET SIZE **ANSIB**

11" X 17" SHEET NUMBER


PV-1

PV-1

SCALE: 1"=20'-0"

DWERHOME.

OWER HOME SOLAR, LLC
POWER YOUR FUTURE"
919 N. MAIN ST.
OODRESYILLE, NC 28115

REVISIONS

DESCRIPTION DATE REV

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

ROOF PLAN & MODULES

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

(E) FRONT OF RESIDENCE (N) PV LINK OPTIMIZER - 4 (E) BACK OF RESIDENCE (N) PV LINK OPTIMIZER - 1 (N) PV LINK OPTIMIZER - 2 (N) PV LINK OPTIMIZER - 3

BILL OF MATERIALS		
EQUIPMENT	QTY	DESCRIPTION
SOLAR PV MODULE	25	HANWHA Q CELLS 320W MODULES
OPTIMIZER	4	GENERAC PV LINK S2502 POWER OPTIMIZERS
GENERAC SNAP RS	25	GENERAC SNAPRS MODEL RS801
INVERTER	01	GENERAC PWRCELL X7602 INVERTER
AC DISCONNECT	1	60A FUSED, (2) 40A FUSES, 240V, NEMA 3R, UL LISTED
SOLAR DECK	3	SOLAR DECKS
RAILS	13	QRAIL LIGHT 14 FT. BLACK
SPLICE KIT	4	QSPLICE INTERNAL LIGHT
WEEB BMC	4	WEEB BMC MILL
MODULE CLAMPS	36	UNIVERSAL MID CLAMP
GROUNDING LUG	7	WEEB LUG W/ T-BOLT
END CLAMPS	28	UNIVERSAL END CLAMPS
ATTACHMENT	56	L-MOUNT ATTACHMENT (QUICKMOUNT)
SQUARE-BOLT	56	T-BOLT W/ NUT M8 X 20MM

- POWERHOME.

REVISIONS			
DESCRIPTION	DATE	REV	

DATE:08/31/2020

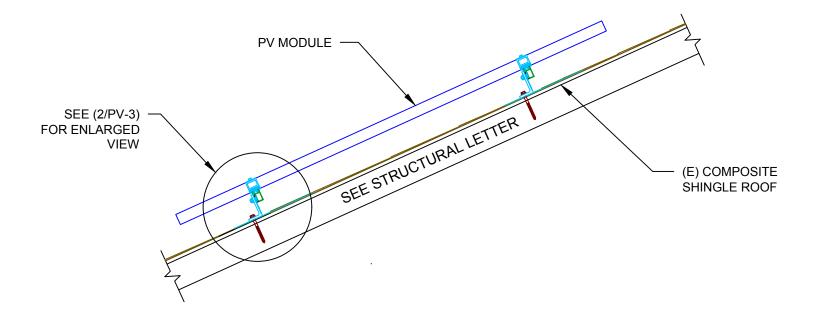
35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

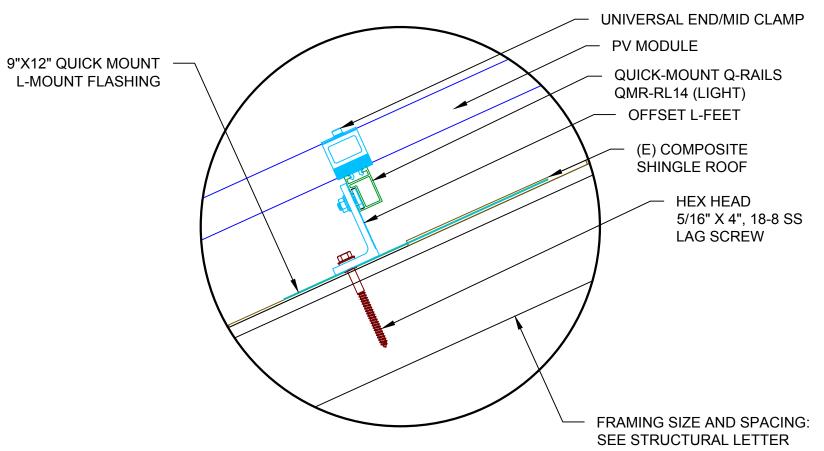
JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS


SHEET NAME **STRING** LAYOUT

SHEET SIZE


ANSI B 11" X 17"

SHEET NUMBER PV-2A

ROOF PLAN WITH STRING LAYOUT SCALE: 1" = 10'-0" PV-2A

1 ATTACHMENT DETAIL
PV-3 SCALE: 1" = 1'-0"

POWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
919 N. MAIN ST.
MOORESVILLE, NC 28115
Phone: 704-800-6591 (OFFICE)
Fmall: inf@nowerhome com

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

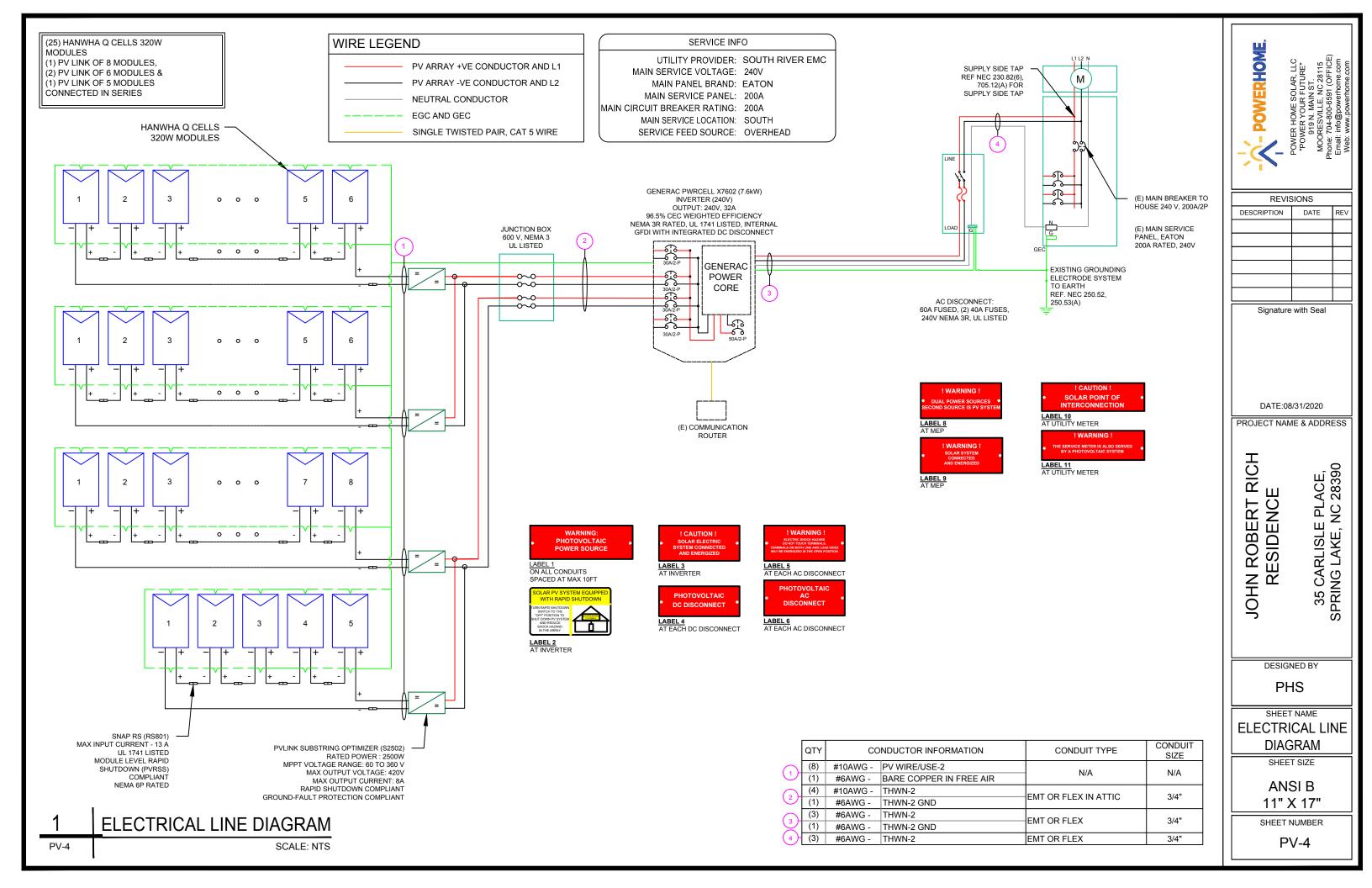
DESIGNED BY

PHS

SHEET NAME
ATTACHMENT
DETAIL

SHEET SIZE

ANSI B 11" X 17"


SHEET NUMBER

PV-3

___ATTACHMENT DETAIL (enlarged view)

PV-3

SCALE: NTS

SOLAR MODULE SPECIFICATIONS		
MANUFACTURER / MODEL #	HANWHA Q CELLS 320W MODULES	
VMP	33.32V	
IMP	9.60A	
VOC	40.13V	
ISC	10.09A	
TEMP. COEFF. VOC	-0.301%/°C	
MODULE DIMENSION	66.3"L x 39.4"W x 1.50"D (In Inch)	

INVERTER SPECIFICATION	<u>ONS</u>
MANUFACTURER / MODEL #	GENERAC PWRCELL X7602
AC POWER OUTPUT (LOADS/GRID)	7600VA
AC POWER OUTPUT (BACKUP)	8000VA
NOMINAL OUTPUT VOLTAGE	240 VAC
MAX OUTPUT CURRENT @240V (LOADS/GRID)	32A
MAX OUTPUT CURRENT @240V (BACKUP)	50A
NOMINAL DC INPUT VOLTAGE	380Vdc
MAX DC INPUT VOLTAGE	420Vdc
CEC WEIGHTED EFFICIENCY	96.5%
MAX INPUT CURRENT (PV)	10000W
MAX INPUT CURRENT (PV)	20Adc
CONT. PEAK POWER (BATTERY)	8000W

SERIES SUB STRING OPTIMIZER SPECIFICATIONS		
MANUFACTURER / MODEL #	PV LINK S2502	
RATED POWER	2500W	
MPPT VOLTAGE RANGE	60-360 Vmp	
MAXIMUM INPUT VOLTAGE	420Voc	
MAXIMUM OUTPUT	420 Adc	
NOMINAL OUTPUT	380 Vdc	
MAXIMUM OUTPUT CURRENT	8 A	
MAXIMUM SHORT CIRCUIT CURRENT	18 A	

AMBIENT TEMPERATURE SPECS		
RECORD LOW TEMP	-10°	
AMBIENT TEMP (HIGH TEMP 2%)	36°	
CONDUIT HEIGHT	0.5"	
ROOF TOP TEMP	58°	

DC CONDUCTOR AMPACITY CALCULATIONS: ARRAY TO SOLADECK:

EXPECTED WIRE TEMP (In Celsius)	58°
TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	0.71
NO. OF CURRENT CARRYING CONDUCTORS	8
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a)	0.7
CIRCUIT CONDUCTOR SIZE	10 AWG
CIRCUIT CONDUCTOR AMPACITY	40A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	10A
1.25 X Imax	104
DERATED AMPACITY OF CIRCUIT CONDUCTORS: 310.15 (B) (16)	
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a) X CIRCUIT CONDUCTOR AMPACITY X TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	19.88A
Result should be greater than (10A) otherwise less the entry for circuit conductor size and ampacity	

FROM SOLADECK TO INVERTER:

AMBIENT TEMPERATURE ADJUSTMENT FOR EXPOSED CONDUIT PER NEC 310.15(B)(2)(c)	+22°
EXPECTED WIRE TEMP (In Celsius)	36°+22° = 58°
TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	0.71
NO. OF CURRENT CARRYING CONDUCTORS	4
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a)	0.8
CIRCUIT CONDUCTOR SIZE	10AWG
CIRCUIT CONDUCTOR AMPACITY	40A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	20A
1.25 X Imax X # of PV LINKS PER INPUT] 20A
DERATED AMPACITY OF CIRCUIT CONDUCTORS: 310.15 (B) (16)	
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a) X CIRCUIT CONDUCTOR AMPACITY X TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	22.72A
Result should be greater than (20A) otherwise less the entry for circuit conductor size and	

ELECTRICAL NOTES

- 1.) ALL EQUIPMENT TO BE LISTED BY UL OR OTHER NRTL, AND LABELED FOR ITS APPLICATION.
- 2.) ALL CONDUCTORS SHALL BE COPPER, RATED FOR 600 V AND 90 DEGREE C WET ENVIRONMENT.
- 3.) WIRING, CONDUIT, AND RACEWAYS MOUNTED ON ROOFTOPS SHALL BE ROUTED DIRECTLY TO, AND LOCATED AS CLOSE AS POSSIBLE TO THE NEAREST RIDGE, HIP, OR VALLEY.
- 4.) WORKING CLEARANCES AROUND ALL NEW AND EXISTING ELECTRICAL EQUIPMENT SHALL COMPLY WITH NEC 110.26.
- 5.) DRAWINGS INDICATE THE GENERAL ARRANGEMENT OF SYSTEMS. CONTRACTOR SHALL FURNISH ALL NECESSARY OUTLETS, SUPPORTS, FITTINGS AND ACESSORIES TO FULFILL APPLICABLE CODES AND STANDARDS.
- 6.) WHERE SIZES OF JUNCTION BOXES, RACEWAYS, AND CONDUITS ARE NOT SPECIFIED, THE CONTRACTOR SHALL SIZE THEM ACCORDINGLY.
- 7.) ALL WIRE TERMINATIONS SHALL BE APPROPRIATELY LABELED AND READILY VISIBLE.
- 8.) MODULE GROUNDING CLIPS TO BE INSTALLED BETWEEN MODULE FRAME AND MODULE SUPPORT RAIL, PER THE GROUNDING CLIP MANUFACTURER'S INSTRUCTION.
- 9.) MODULE SUPPORT RAIL TO BE BONDED TO CONTINUOUS COPPER G.E.C. VIA WEEB LUG OR ILSCO GBL-4DBT LAY-IN LUG.
- 10.) THE POLARITY OF THE GROUNDED CONDUCTORS IS NEGATIVE

AC CONDUCTOR AMPACITY CALCULATIONS:

ampacity

No. OF INVERTER	1
EXPECTED WIRE TEMP (In Celsius)	36°
TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	0.91
NO. OF CURRENT CARRYING CONDUCTORS	3
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a)	1
CIRCUIT CONDUCTOR SIZE	6 AWG
CIRCUIT CONDUCTOR AMPACITY	75A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(B)	40A
1.25 X MAX INVERTER OUTPUT CURRENT (LOADS/GRID)	40A
DERATED AMPACITY OF CIRCUIT CONDUCTORS: 310.15 (B) (16)	
CONDUIT FILL CORRECTION PER NEC 310.15 (B) (3) (a) X CIRCUIT CONDUCTOR AMPACITY X TEMP CORRECTION PER TABLE 310.15 (B) (2) (a)	68.25A

Result should be greater than (40A) otherwise less the entry for circuit conductor size and

POWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
919 N. MAIN ST.
MOORESVILLE, NC 28115
Phone: 704-800-6591 (OFFICE)
Email: info@powenhome.com

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

35 CARLISLE PLACE, SPRING LAKE, NC 28390

DESIGNED BY

PHS

SHEET NAME
WIRING
CALCULATIONS

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

The new Q.PEAK DUO-G5 solar module from Q CELLS impresses thanks to innovative Q.ANTUM DUO Technology, which enables particularly high performance on a small surface. Q.ANTUM's world-record-holding cell concept has now been combined with state-of-the-art circuitry half cells and a six-busbar design, thus achieving outstanding performance under real conditions - both with low-intensity solar radiation as well as on hot, clear summer days.

Q ANTUM TECHNOLOGY: LOW LEVELIZED COST OF ELECTRICITY

Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 19.9%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behavior.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID and Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminum alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa) regarding IEC.

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance guarantee².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

method B (-1500 V, 168 h) See data sheet on rear for further

THE IDEAL SOLUTION FOR:

MECHANICAL SPECIFICATION 66.3 in \times 39.4 in \times 1.26 in (including frame) (1685 mm \times 1000 mm \times 32 mm) 41.2 lbs (18.7 kg) Front Cove 0.13 in (3.2 mm) thermally pre-stressed glass with anti-reflection technology Composite film Black anodized aluminum 6×20 monocrystalline Q.ANTUM solar half-cells 2.76 - 3.35 in $\times 1.97 - 2.76$ in $\times 0.51 - 0.83$ in (70-85 mm \times 50-70 mm \times 13-21 mm), decentralized, IP67 $4 \text{ mm}^2 \text{ Solar cable; (+)} \ge 43.3 \text{ in (1100 mm), (-)} \ge 43.3 \text{ in (1100 mm)}$ Multi-Contact MC4, IP68 ELECTRICAL CHARACTERISTICS

			315	320	325	330
NCE AT STANDARD TEST	CONDITIONS, STC	(POWER TOLER	ANCE +5 W / -0 W)			
	PMPP	[W]	315	320	325	330
rrent¹	I _{sc}	[A]	10.04	10.09	10.14	10.20
tage ¹	V _{oc}	[V]	39.87	40.13	40.40	40.66
	I _{MPP}	[A]	9.55	9.60	9,66	9.71
	V _{MPP}	[V]	32.98	33.32	33.65	33.98
	η	[%]	≥18.7	≥19.0	≥19.3	≥19.6
NCE AT NORMAL OPERATI	NG CONDITIONS, N	IMOT ²				
	P _{MPP}	[W]	235.3	239.0	242.8	246.5
rrent	I _{sc}	[A]	8.09	8.13	8.17	8.22
tage	V _{oc}	[V]	37.52	37.77	38.02	38.27
	I _{MPP}	[A]	7.52	7.56	7.60	7.64
	V _{MPP}	[V]	31.30	31.62	31.94	32.25
P _{MPP} ±3%; I _{SC:} V _{OC} ±5% at ST	C: 1000 W/m², 25 ± 2	°C, AM 1.5 G acc	ording to IEC 60904-3 · 280	0 W/m², NMOT, spectrum AM 1	.5 G	
CE WARRANTY				PERFORMANCE	AT LOW IRRADIANCE	
Q CELLS Industry standard for linear evarranties* Industry standard for tiered evarranties*	Thereafter max	c. 0.54% degrad	lation per year.	110 CT - 1		
	Trent LAGE LINCE AT NORMAL OPERATI Trent Lage PMPF ± 3%; Igo, Voc ± 5% at ST- CE WARRANTY COLLS Indiatry studend for linear warment tax*	PMEP ISC VOC IMPP VMEP INCE AT NORMAL OPERATING CONDITIONS, N PMEP ITEM ISC IMPP VMEP ITEM ISC IMPP VMEP VMEP	PMPP	NOTE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W / -OW) PMEP [W] 315 Trent¹ I ₅₀ IA] 10.04 tage¹ V ₀₀ [V] 39.87 I _{MPP} IA] 9.55 V _{MPP} [V] 32.98 n [%] ≥ 18.7 NOTE AT NORMAL OPERATING CONDITIONS, NMOT² PMEP [W] 235.3 Trent I ₅₀ IA] 8.09 Trent I ₅₀ IA] 8.09 V _{MPP} [V] 37.52 I _{MPP} IA] 7.52 V _{MPP} [V] 31.30 PMEP ± 3%; I ₅₀ , V ₀₀ ± 5% at STC; 1000 W/m², 25 ± 2°C, AM 1.5 G according to IEC 6090.4-3 · ²80 CEC WARRANTY At least 98% of nominal power during first year. The cost for group (0.64%) depresed to the property.	NOTICE AT STANDARD TEST CONDITIONS, STC (POWER TOLERANCE +5W / -OW) PMBP [W] 315 320	Note at Standard Test Conditions, stC' (Power Tolerance +5W / -0W) 10.04 10.09 10.14

At least 85% of nominal power up to 25 years. Full warranties in accordance with the warranty rms of the Q CELLS sales organization of your Typical module performance under low irradiance conditions in comparison to STC conditions (25°C, 1000 W/m²) TEMPERATURE COEFFICIENTS

PROPERTIES FOR SYSTEM	DESIGN			
Maximum System Voltage V _{sys}	[V]	1000 (IEC) / 1000 (UL)	Safety Class	31
Maximum Series Fuse Rating	[A DC]	20	Fire Rating	C (IEC) / TYPE 1 (UL)
Max. Design Load, push ²	[lbs/ft²]	75 (3600 Pa) / 55 (2667 Pa)	Permitted module temperature on continuous duty	-40°F up to +185°F (-40°C up to +85°C)
May Toot Load Puch / Pull2	[[he/ft2]	113 (5400 Pa) / 84 (4000 Pa)	2 cae installation manual	

+0.04 Temperature Coefficient of V.

-0.37 Normal Module Operating Temperature

[%/K]

[°F]

NMOT

-0.28

109 ±5.4 (43 ±3°C)

[8]	1000 (126) / 1000 (02)	Salety Glass	3.1
[A DC]	20	Fire Rating	C (IEC) / TYPE 1 (UL)
[lbs/ft²]	75 (3600 Pa) / 55 (2667 Pa)	Permitted module temperature on continuous duty	-40°F up to +185°F (-40°C up to +85°C)
[lbs/ft²]	113 (5400 Pa) / 84 (4000 Pa)	² see installation manual	
		2 Carl Maning Docum Excelled Hotal	
	[A DC] [lbs/ft²]	[A DC] 20 [Ibs/ft²] 75 (3600 Pa) / 55 (2667 Pa)	[A DC] 20 Fire Rating [Ibs/ft*] 75 (3600 Pa) / 55 (2667 Pa) Permitted module temperature on continuous duty

QUALIFICATIONS AND CERTIFICATES	PACKAGING INFOR	MATION
UL 1703; VDE Quality Tested; CE-compliant;	Number of Modules per	Pallet 32
IEC 61215:2016; IEC 61730:201, application of	Number of Pallets per 5	3' Trailer 30
	Number of Pallets per 4	O' High Cube Container 26
D'E C Cartial U.1703	Pallet Dimensions (L ×	W × H) 69.3 in × 45.3 in × 46.9 in (1760 mm × 1150 mm)
(20141)	Pallet Weight	1415lbs (642 kg)

NOTE: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Temperature Coefficient of Isc

Temperature Coefficient of PMPP

300 Spectrum Center Drive, Suite 1250, Irvine, CA 92618, USA | TEL +1 949 748 59 96 | EMAIL inquiry@us.q-cells.com | WEB www.q-cells.us

[%/K]

[%/K]

POWERHOME

REVISIONS			
DESCRIPTION	DATE	REV	
·			

Signature with Seal

DATE:08/31/2020

PLACE, NC 28390

PROJECT NAME & ADDRESS

RICH JOHN ROBERT **ESIDENC**

35 CARLISLE PL SPRING LAKE, NC

DESIGNED BY

PHS

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

PV-7

Engineered in Germany

PWRCELL

7.6kW 1Ø, 11.4kW 3Ø PWRcell Inverter with CTs Model: APKE00014, APKE00013 Certification Model Reference: X7602, X11402

Solar + storage is simple with the Generac PWRcell™ Inverter. This bi-directional, REbus™-powered inverter offers a simple, efficient design for integrating smart batteries with solar. Ideal for self-supply, backup power, zero-export and energy cost management, the PWRcell Inverter is the industry's most feature-rich line of inverters, available in single-phase and three-phase models.

FEATURES & BENEFITS

- Single inverter for grid-tied solar with smart battery integration
- Simplified system design: No autotransformer or battery inverter needed
- User-selectable modes for backup power, self-supply, time-of-use and zero-export
- Free system monitoring included via PWRview[™] Web Portal and Mobile App

AC OUTPUT/GRID-TIE	MODEL APKE00014	MODEL APKE00013
RATED AC POWER OUTPUT:	7600W	11400W
AC OUTPUT VOLTAGE:	120/240, 1Ø VAC	120/208, 3Ø VAC
AC FREQUENCY:	60 Hz	60 Hz
MAXIMUM CONTINUOUS OUTPUT CURRENT:	32 A, RMS	32 A, RMS
GROUND-FAULT ISOLATION DETECTION:	Included	Included
CHARGE BATTERY FROM AC:	Yes	Yes
THD (CURRENT):	< 2%	< 2%
TYPICAL NIGHTTIME BOWER CONSUMPTION:	~ 710	~ 7W

AC OUTPUT/BACKUP	MODEL APKE00014	MODEL APKE00013
RATED AC BACKUP POWER OUTPUT (ISLANDED):	8000W	8000W
MAXIMUM AC BACKUP POWER OUTPUT:	10000W	10000W
AC BACKUP OUTPUT VOLTAGE:	120/240, 1Ø VAC	120/240, 10 VAC
AC FREQUENCY:	60 Hz	60 Hz
AC CIRCUIT BREAKER:	50 A	50 A
THD (VOLTAGE):	< 2%	< 2%
AUTOMATIC SWITCHOVER TIME:	< 1 Seconds	< 1 Seconds
TYPICAL NIGHTTIME POWER CONSUMPTION:	30W	30W

DC INPUT	MODEL APKE00014	MODEL APKE00013
DC INPUT VOLTAGE RANGE:	360-420 VDC	360-420 VDC
NOMINAL DC BUS VOLTAGE:	380 VDC	380 VDC
MAX IMPORT CURRENT':	20 A	30 A
MAX INPUT CURRENT ² :	30 A	30 A
REVERSE-POLARITY PROTECTION:	Yes	Yes
GROUND-FAULT ISOLATION DETECTION:	Yes	Yes
TRANSFORMERLESS, UNGROUNDED:	Yes	Yes
TYPICAL NIGHTTIME POWER CONSUMPTION:	< 7W	< 7W

DC INPUT/ BATTERY	MODEL APKE00014	MODEL APKE00013
MAXIMUM CONTINUOUS POWER:	8000W	8000W
INTERNAL DC DISTRIBUTION BREAKERS:	4x 2p30A	4x 2p30A
DC FUSES ON PLUS AND MINUS:	40 A	40 A
2-POLE DISCONNECTION:	Yes	Yes
EFFICIENCY	MODEL APKE00014	MODEL APKE00013
PEAK EFFICIENCY:	97%	98%
CEC WEIGHTED EFFICIENCY:	96.50%	97.50%

Inverter limits DC current import to AC power rating. Total DC current from multiple DC inputs may safely exceed this value up to Max. Input Current. The inverter safely limits the amount utilized Per input, four DC inputs total

Specifications

FEATURES AND MODES	
ISLANDING ³ :	Yes
GRID SELL:	Yes
SELF CONSUMPTION:	Yes
PRIORITIZED CHARGING FROM RENEWABLES:	Yes
GRID SUPPORT - ZERO EXPORT:	Yes

ADDITIONAL FEATURES		
SUPPORTED COMMUNICATION INTERFACES:	REbus™, CANbus, RS485⁴, Ethernet	
SYSTEM MONITORING:	PWRview™ Web Portal and Mobile App	
BACKUP LOADS DISCONNECT ³ :	Yes	
MANUAL INVERTER BYPASS SWITCH:	Automatic	
WARRANTY:	10 Years	

STANDARDS COMPLIANCE		
SAFETY:	UL1741 SA, CSA 22.2	
GRID CONNECTION STANDARDS:	IEEE1547, Rule 21, Rule 14H, CSIP	
EMISSIONS:	FCC Part 15 Class B	

5	
6 x Combo 3/4" x 1" (19 x 25.4) 7 x Combo 1/2" x 3/4" (12.7 x 19)	
24.5" x 19.25" x 8" (622.3 x 488.9 x 203.2)	
62.7 (28.4)	
Forced convection	
< 40 dBA	
-4 to 122 °F (-20 to 50 °C) ⁵	
NEMA 3R	
	6 x Combo 3/4" x 1" (19 x 25.4) 7 x Combo 1/2" x 3/4" (12.7 x 19) 24.5" x 19.25" x 8" (622.3 x 488.9 x 203.2) 62.7 (28.4) Forced convection < 40 dBA -4 to 122 °F (-20 to 50 °C) ⁵

INSTALLATION GUIDELINES		
BATTERY TYPES SUPPORTED:	PWRcell" Battery	
MODULE STRING SIZE PER PV LINK OPTIMIZER:	Varies, refer to PV Link Installation Manual	
MAXIMUM RECOMMENDED DC POWER FROM PV:	15kW	

³3Ø inverters offer islanding for 1Ø loads ⁴Modbus

⁵Reduced power at extreme temperatures

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189

www.Generac.com | 888-GENERAC (436-3722)

A0000528185 REV C

©2020 Generac Power Systems. All rights reserved. Specifications are subject to change without notice.

- POWERHOME.

REVISIONS			
DESCRIPTION DATE REV			

Signature with Seal

DATE:08/31/2020

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

35 CARLISLE PLACE, SPRING LAKE, NC 28390

SHEET NAME
EQUIPMENT
SPECIFICATION

PHS

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

PV Link to overcome shading and challenging roof lines. **FEATURES & BENEFITS**

- Fast, simple installation
- Lower failure risk than module-level optimizers
- 2017/2020 NEC rapid shutdown compliant with SnapRS™
- Quick connections with MC4 connectors
- Exports up to 2500W
- Compatible with PWRcell™ Inverters
- Cost-effective solution for high-performance PV
- Ground-fault protection

SINGLE-STRING PV ARRAY WITH SnapRS DEVICES

Where PV module-level rapid shutdown is required (NEC 690.12), a SnapRS device (RS) is installed to negative (-) lead of each PV module.

Diagram is applicable for most 60 cell PV modules. Modules with higher cell count may require a different arrangement. Contact Generac for more details.

Specifications ...

PV Link* (APKE00010)	
RATED POWER*:	2500W
PEAK EFFICIENCY:	99%
MPPT VOLTAGE RANGE:	60-360 VMP
MAX INPUT VOLTAGE:	420 VOC; max when cold
MAX OUTPUT:	420 VOC
NOMINAL OUTPUT (REbus™):	380 VDC
MAX OUTPUT CURRENT (CONTINUOUS):	8 A
MAX OUTPUT CURRENT (FAULT):	10 A
MAX INPUT CURRENT (CONTINUOUS):	13 A @ 50°C, 10 A @ 70°C
MAX INPUT SHORT CIRCUIT CURRENT (ISC):	18 A
STANDBY POWER:	< 1 W
PROTECTIONS:	Ground-fault, Arc-fault (Arc-fault Type 1 AFCI, Integrated), PVRSE
MAX OPERATING TEMP: FAHRENHEIT (CELSIUS)	158 °F (70 °C)
SYSTEM MONITORING:	PWRview™ Web Portal and Mobile App
ENCLOSURE:	Type 3R
WEIGHT - LB (KG):	7.3 lb (3.3 kg)
DIMENSIONS, L x W x H - IN (MM):	15.4" x 2" x 9.6" (391.2 x 50.8 x 243.8)
COMPLIANCE:	UL 1741, CSA 22.2
WARRANTY:	25 Years

*PV Link can tolerate higher than rated power at its input if Max Input Voltage and Short Circuit Current specifications are not exceeded

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189

www.Generac.com | 888-GENERAC (436-3722)

A0000528162 REV C

©2020 Generac Power Systems. All rights reserved. Specifications are subject to change without notice.

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

Ш

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

SnapRS™

Inline Disconnect Switch Model: APKE00011 Certification Model Reference: RS801

Generac SnapRS are a simple way to satisfy rapid shutdown compliance for solar + storage systems. Generac SnapRS are 2017/2020 NEC 690.12 compliant, don't require any extra hardware to mount, and need no pairing or fussy digital communications.

FEATURES & BENEFITS

- · Fast, easy, and simple to install
- One SnapRS device per PV module
- Achieves PVRSS Compliance
- Low cost, high efficiency solution

SYSTEM DESIGN

Snap a Generac SnapRS disconnect device (RS) to the negative lead (-) of each module in the solar array for simple module-level rapid shutdown compliance. SnapRS devices isolate array voltage when a rapid shutdown is initiated at a PWRcell™ Inverter. When rapid shutdown is initiated, SnapRS units isolate each PV module in the array, reducing array voltage to <80V in seconds.



Diagram is applicable for most 60 cell PV modules. Modules with higher cell count may require a different arrangement. Contact Generac for more details.

Specifications »

SnapRS™ (APKE00011)		
PV MODULE MAX VOC:	75 V	
EFFICIENCY:	99.8%*	
MAX INPUT CURRENT:	13 A	
SHUTDOWN TIME:	< 10 Seconds	
ENCLOSURE RATING:	NEMA 6P	
OPERATING TEMPERATURE - FAHRENHEIT (CELSIUS):	-40 to 158 °F (-40 to 70 °C)	
CERTIFICATIONS:	UL1741	
PROTECTIONS:	PVRSE	
WEIGHT - LB (KG):	0.17 (0.08)	
DIMENSIONS, L x W x H - IN (MM):	7" × 1" × 1" (177.8 × 25.4 × 25.4)	
WARRANTY:	25 Years	

*When used with a 50V panel

Connect one SnapRS device to the negative lead of each PV module in the PV Link controlled array for complete PV Rapid shutdown performance

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189

www.Generac.com | 888-GENERAC (436-3722)

A0000528183 REV C

©2020 Generac Power Systems. All rights reserved. Specifications are subject to change without notice.

POWERHOME

ER HOME SOLAR, LLC

WER YOUR FITTINE"

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

QRail[™] — Fully Integrated Mounting and Racking System

The QRail Series is a strong and versatile solar array mounting system that provides unrivaled benefits to solar designers and installers. Combined with Quick Mount PV's industry-leading waterproof mounts, QRail offers a

complete racking solution for mounting solar modules on any roof.

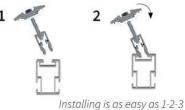
Easily design array configurations with the QDesign software application. Generate complete engineering reports and calculate a precise bill of materials for all the mounting, racking and accessories needed for a complete solar array.

Comprehensive, One-Source Solution

QRail, together with Quick Mount PV's waterproof mounting products, provides the benefit of a single-sourced, seamlessly integrated rooftop installation that works with all roof types — composition/asphalt shingles, flat or curved tile, metal shingle, shake, slate and low slope roofs. The QRail system also works with any roof attachment system for maximum flexibility.

Superior Strength and Versatility

QRail is engineered for optimal structural performance. The system is certified to UL 2703, fully code compliant and backed by a 25-year warranty. QRail is available in Light, Standard and Heavy versions to match all geographic locations. QRail is compatible with virtually all modules and works on a wide range of pitched roof surfaces. Modules can be mounted in portrait or landscape orientation in standard or shared-rail configurations.



QRails come in two lengths -168 inches (14 ft) and 208 inches (17.3 ft) Mill and Black Finish

Fast, Simple Installation: It Just Clicks

QClick Technology™

The universal mid and end clamps use QClick technology to simply "click" into the rail channel and remain upright, ready to accept the module. The pre-assembled clamps fit virtually all module frames and require no extra hardware, eliminating pre-loading and reducing installation time.

2 clamps for modules from 30-45mm or 38-50mm thick

QSplice™ Technology

QRail's innovative internal QSplice installs in seconds, requiring no tools or screws. Simply insert QSplice into the rail and slide the other rail on to create a fully structural, bonded splice. An external splice is also available.

Installs in seconds — no tools or hardware required

Fully Integrated Electrical Bonding

The ORail system provides an integrated electrical bonding path, ensuring that all exposed metal parts and the solar module frames are electrically connected. All electrical bonds are created when the components are installed and tightened down.

REVISIONS			
DATE	REV		

Signature with Seal

DATE:08/31/2020

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

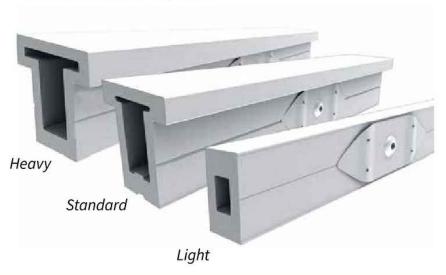
DESIGNED BY

PHS

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"


SHEET NUMBER

QRail™ Configurations

Item Code	Part Number	Description	Finish
QMR-RL14 A 60	800	QRail Light, 14 ft., 60 Pack	Mill
QMR-RL17.3 A 60	801	QRail Light, 17.3 ft, 60 Pack	Mill
QMR-RL14 B 60	805	QRail Light, 14 ft., 60 Pack	Black
QMR-RL17.3 B 60	806	QRail Light, 17.3 ft, 60 Pack	Black
QMR-RS14 A 60	810	QRail Standard, 14 ft., 60 Pack	Mill
QMR-RS17.3 A 60	811	QRail Standard, 17.3 ft, 60 Pack	Mill
QMR-RS14 B 60	815	QRail Standard, 14 ft., 60 Pack	Black
QMR-RS17.3 B 60	816	QRail Standard, 17.3 ft, 60 Pack	Black
QMR-RH14 A 60	820	QRail Heavy, 14 ft., 60 Pack	Mill
QMR-RH17.3 A 60	821	QRail Heavy, 17.3 ft, 60 Pack	Mill
QMR-RH14 B 60	825	QRail Heavy, 14 ft, 60 Pack	Black
QMR-RH17.3 B 60	826	QRail Heavy, 17.3 ft, 60 Pack	Black

OSplice™ Internal Structural Splice

Item Code	Part Number	Description	Finish
QMR-ISL A 15	830	QSplice Internal, Light, 15 Pack	Mill
QMR-ISS A 15	831	QSplice Internal, Standard, 15 Pack	Mill
QMR-ISH A 15	832	QSplice Internal, Heavy, 15 Pack	Mill

Item Code	Part Number	Description	Finish
QMR-ESS A 15	834	QSplice External, Standard, 15 Pack	Mill
QMR-ESH A 15	835	QSplice External, Heavy, 15 Pack	Mill

OWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
"919N, MAIN ST.

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

PV-11A

Universal End Clamp with QClick™ Technology

Item Code	Part Number	Description	Finish
QMR-UEC3045 A 20	860	Universal End Clamp, 30-45mm, 20 Pack	Mill
QMR-UEC3850 A 20	861	Universal End Clamp, 38-50mm, 20 Pack	Mill
QMR-UEC3045 B 20	865	Universal End Clamp, 30-45mm, 20 Pack	Black
QMR-UEC3850 B 20	866	Universal End Clamp, 38-50mm, 20 Pack	Black
QMR-UEC3045BP A 20	862	Universal End Clamp, 30-45mm, w/ Bonding, 20 Pack	Mill
QMR-UEC3850BP A 20	863	Universal End Clamp, 38-50mm, w/ Bonding, 20 Pack	Mill
QMR-UEC3045BP B 20	867	Universal End Clamp, 30-45mm, w/ Bonding, 20 Pack	Black
QMR-UEC3850BP B 20	868	Universal End Clamp, 38-50mm, w/ Bonding, 20 Pack	Black

Mid Clamp with QClick™ Technology

Item Code	Part Number	Description	Finish
QMR-UMC3045BP 1.2 A 20	872	Universal Mid Clamp,30-45mm, w/ Bonding,20 Pack	Mill
QMR-UMC3850BP 1.2 A 20	873	Universal Mid Clamp, 38-50mm, w/ Bonding, 20 Pack	Mill
QMR-UMC3045BP 1.2 B 20	877	Universal Mid Clamp, 30-45mm, w/ Bonding, 20 Pack	Black
QMR-UMC3850BP 1.2 B 20	878	Universal Mid Clamp, 38-50mm, w/ Bonding, 20 Pack	Black

Single-Slot L-Foot

Item Code	Part Number	Description	Finish
QMC-LF A 12	692	Single-slot L-foot, 12 Pack	Mill
QMC-LF B 12	693	Single-slot L-foot, 12 Pack	Black

Item Code	Part Number	Description	Finish
QMR-CPL B 50	885	End Cap Light, 50 Pack	Black
QMR-CPS B 50	886	End Cap Standard, 50 Pack	Black
QMR-CPH B 50	887	End Cap Heavy, 50 Pack	Black

sales@quickmountpv.com

Standard

Heavy

Light

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

(925) 478-8269 4

SHEET NUMBER

PV-11B

T-Bolt

Item Code	Part Number	Description	Finish
QMR-TB A 300	880	T-Bolt w/ Nut, 300 Pack	stainless steel

Wire Clip

Works with both PV and Trunk Cabling

Item Code	Part Number	Description	Finish
QMR-WC A 300	892	Trunk/PV Cable, 300 Pack	stainless steel

Grounding Lug

Item Code	Part Number	Description	Finish
QMR-GL A 50	890	WEEB Lug w/ T-Bolt, 50 Pack	n/a

WEEB BMC

Item Code	Part Number	Description	Finish
QMR-ECW A 50	891	WEEB BMC, 50 Pack	stainless steel

REVISIONS				
DESCRIPTION DATE REV				

Signature with Seal

DATE:08/31/2020

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PROJECT NAME & ADDRESS

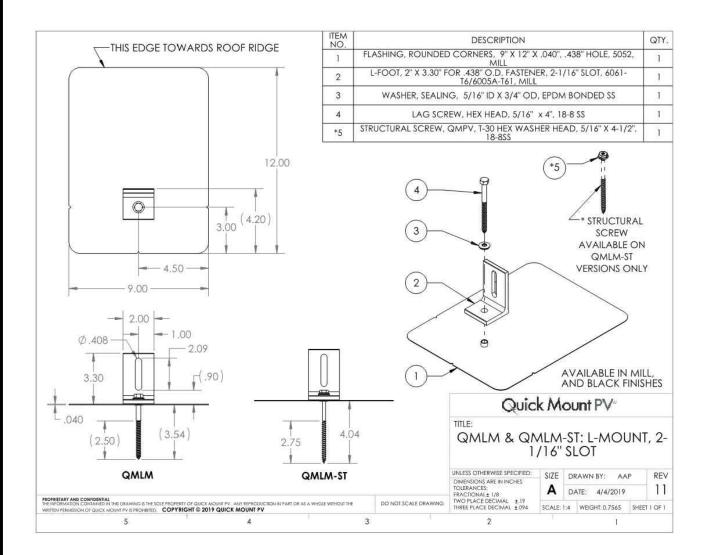
JOHN ROBERT RICH RESIDENCE

DESIGNED BY

PHS

SHEET NAME **EQUIPMENT** SPECIFICATION

SHEET SIZE ANSI B


11" X 17"

PV-11C

(925) 478-8269 6

L-Mount | QMLM / QMLM-ST

Elevated Water Seal Technology®

L-Mount Installation Instructions

Installation Tools Required: tape measure, roofing bar, chalk line, stud finder, caulking gun, sealant compatible with roofing materials, drill with 7/32" or 1/8" bit, drill or impact gun with 1/2" socket.

WARNING: Quick Mount PV products are NOT designed for and should NOT be used to anchor fall protection equipment.

Locate, choose, and mark centers of rafters to be Carefully lift composition roof shingle with roofing Insert flashing between 1st and 2nd course. Slide mounts will be placed.

nails as required and backfill holes with aproved

mounted. Select the courses of shingles where bar, just above placement of mount. Remove up so top edge of flashing is at least ¾" higher than the butt-edge of the 3rd course and lower sealant. See "Proper Flashing Placement" on next flashing edge is above the butt-edge of 1st course. Mark center for drilling.

1/8" bit (ST) for attaching with the structural screw. compatible with roofing materials. Drill pilot hole into roof and rafter, taking care to drill square to the roof. Do not use mount as a drill guide. Drill a 2" deep hole into rafter

If attaching with lag bolt use a 3/32" bit (Lag). Use a Clean off any sawdust, and fill hole with sealant

Place L-foot onto elevated flute and rotate L-foot to desired orientation

Prepare lag bolt or structural screw with sealing washer. Using a 1/2-inch socket on an impact gun, drive prepared lag bolt through L-foot until L-foot can no longer easily rotate. DO NOT over-torque. NOTE: Structural screw can be driven with T-30 hex head bit.

BI 7.2.3-44

You are now ready for the rack of your choice. Follow all the directions of the rack manufacturer as well as the module manufacturer. NOTE: Make sure top of L-Foot makes solid contact with racking.

All roofing manufacturers' written instructions must also be followed by anyone modifying a roof system. Consult the roof manufacturer's specs and instructions prior to working on the roof.

Apr-2019 Rev 6

POWERHOME

REVISIONS		
DESCRIPTION	DATE	REV

Signature with Seal

DATE:08/31/2020

PROJECT NAME & ADDRESS

JOHN ROBERT RICH RESIDENCE

DESIGNED BY

35 CARLISLE PLACE, SPRING LAKE, NC 28390

PHS

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSIB 11" X 17"

SHEET NUMBER

PV-12

BI 7.2.3-44 Apr-2019 Rev 6