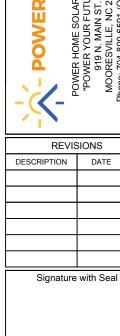


2 HOUSE PHOTO

PV-1 SCALE: NTS



3 VICINITY MAP

PV-1 SCALE: NTS

SHEET INDEX

PV-1 PLOT PLAN & VICINITY MAP
PV-2 ROOF PLAN & MODULES
PV-2A STRING LAYOUT
PV-3 ATTACHMENT DETAIL
PV-4 ELECTRICAL LINE DIAGRAM
PV-5 WIRING CALCULATIONS
PV-6 to 12 EQUIPMENT SPECIFICATIONS

PROJECT NAME & ADDRESS

DATE: 5/20/2020

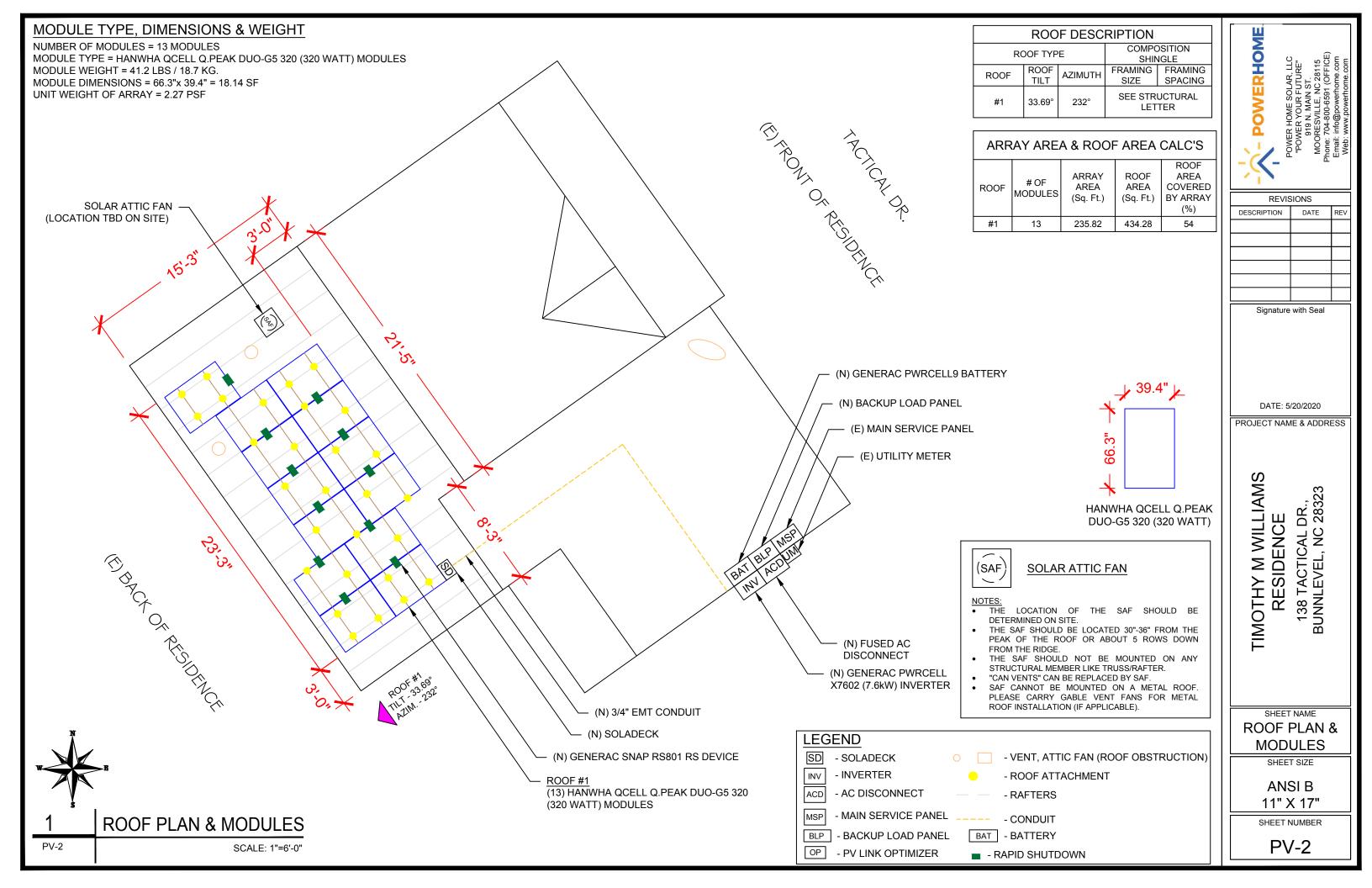
TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323

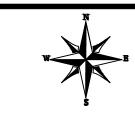
SHEET NAME
PLOT PLAN &
VICINITY MAP

ANSI B 11" X 17"

SHEET SIZE

SHEET NUMBER


PV-1


W

PLOT PLAN & VICINITY MAP

PV-1

SCALE: 1"=25'-0"

POWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
919 N. MAIN ST.
MOORESVILLE, NC 28115

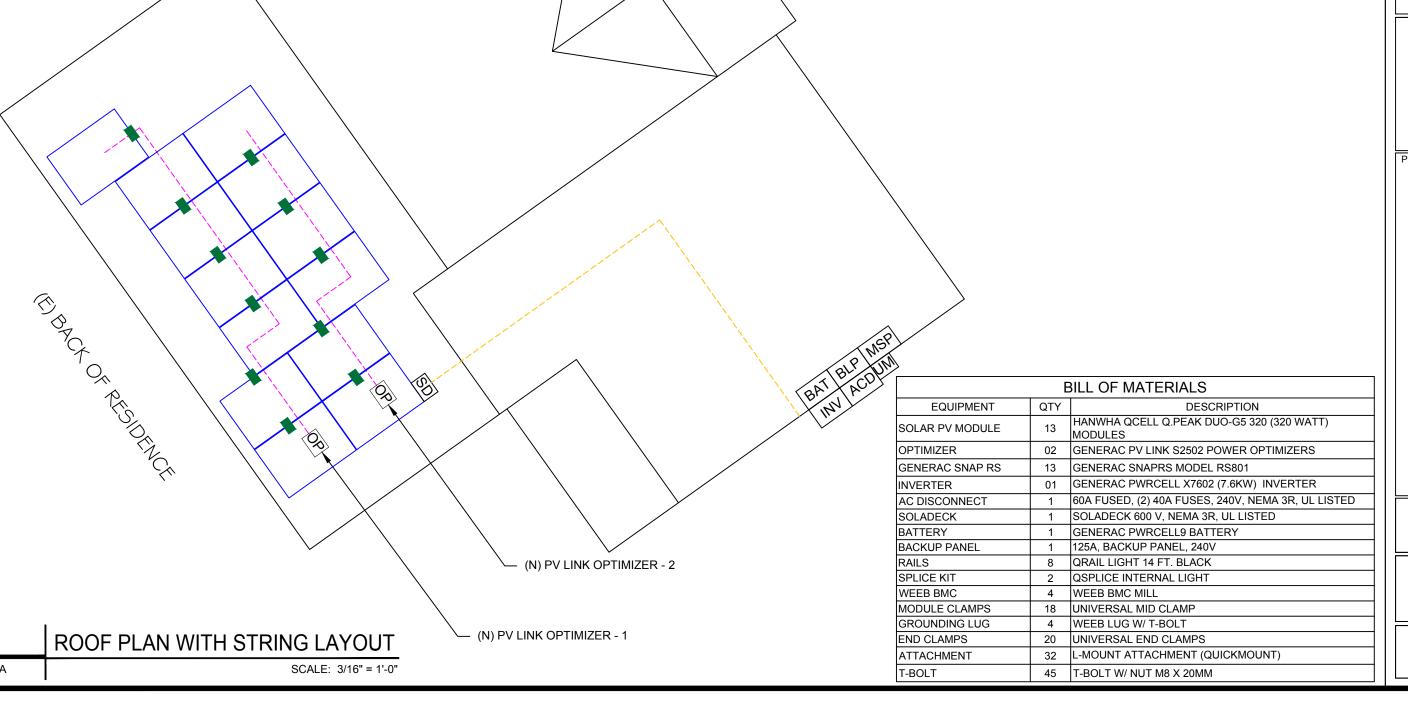
REVISIONS		
DESCRIPTION	DATE	REV

Signature with Seal

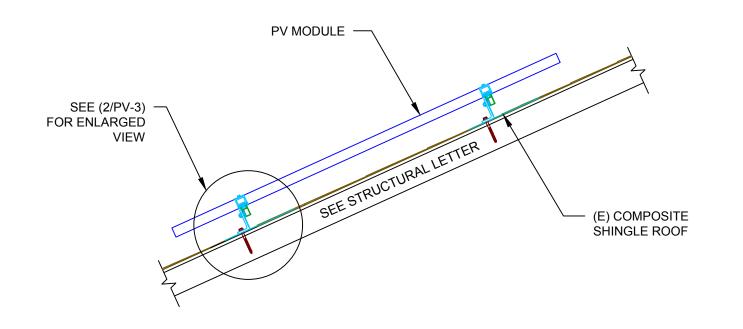
DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323

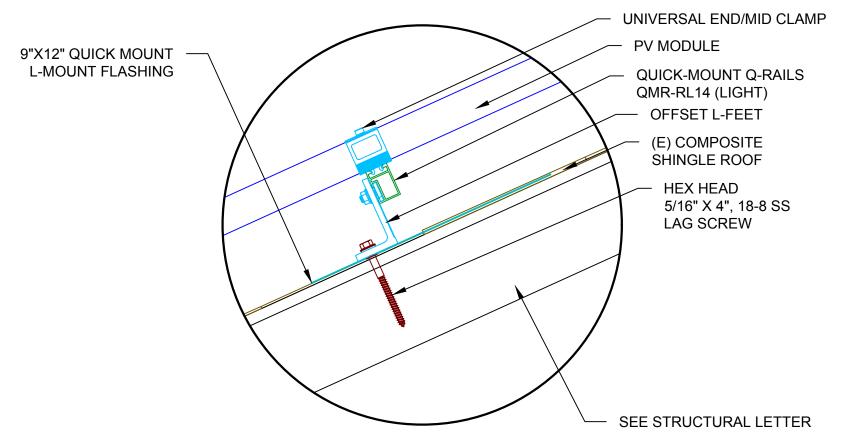

SHEET NAME STRING

SHEET SIZE


ANSI B 11" X 17"

SHEET NUMBER

PV-2A



PV-2A

1 ATTACHMENT DETAIL

PV-3 SCALE: 1" = 1'-0"

POWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
919 N. MAIN ST.
MOORESVILLE, NC 28115

REVISIONS		
DESCRIPTION	DATE	REV

Signature with Seal

DATE: 5/20/2020

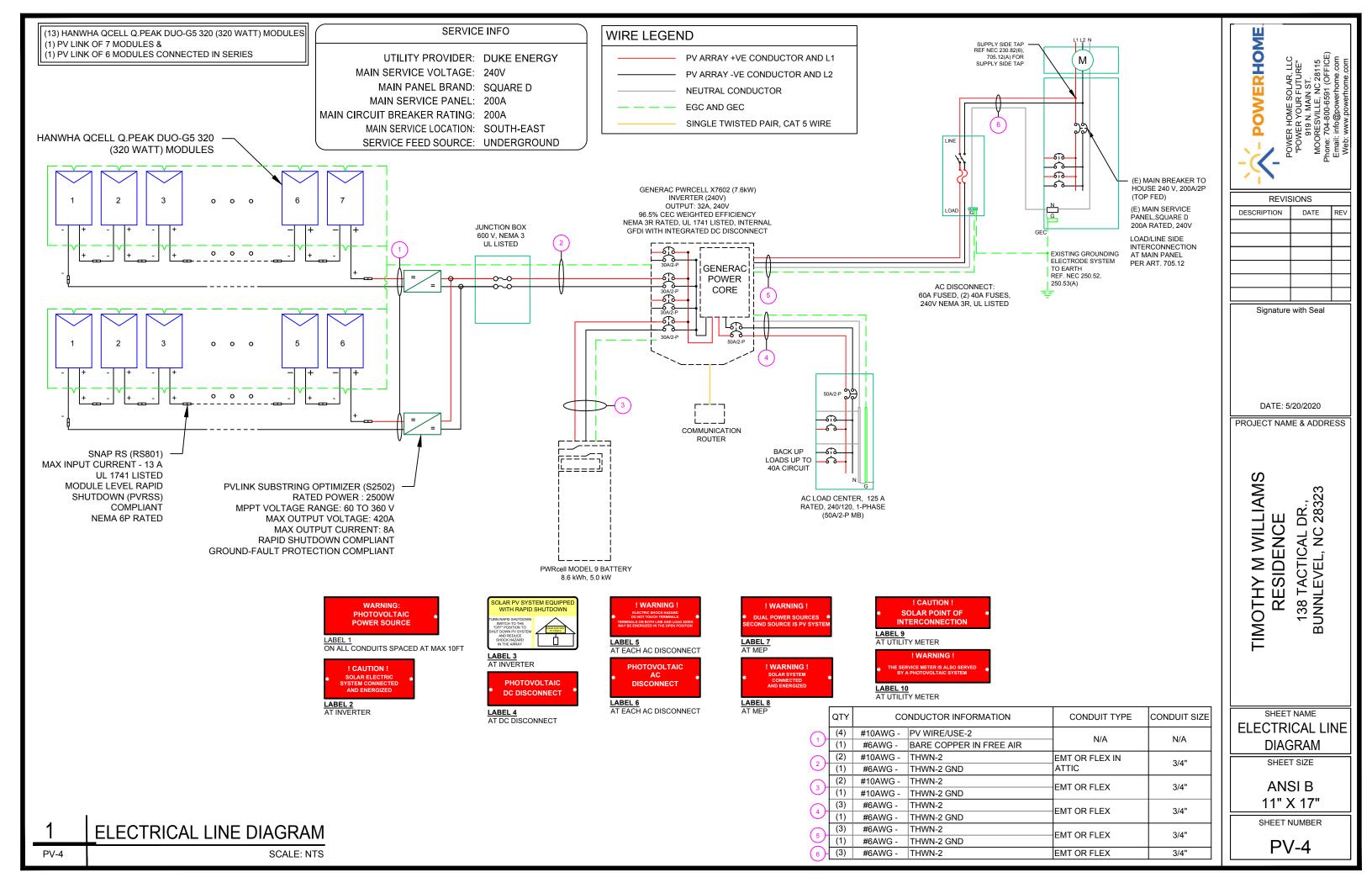
PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

SHEET NAME
ATTACHMENT
DETAIL

SHEET SIZE

ANSI B 11" X 17"


SHEET NUMBER

PV-3

ATTACHMENT DETAIL (enlarged view)

PV-3

SCALE: NTS

SOLAR MODULE SPECIFICATIONS		
MANUFACTURER / MODEL #	HANWHA QCELL Q.PEAK DUO-G5 320 (320 WATT) MODULES	
VMP	33.32V	
IMP	9.60A	
VOC	40.13V	
ISC	10.09A	
TEMP. COEFF. VOC	-0.28%/°C	
PTC RATING	297W	
MODULE DIMENSION	66.3"L x 39.4"W x 1.26"D (In Inch)	

INVERTER SPECIFICATIONS		
MANUFACTURER / MODEL #	GENERAC PWRCELL X7602	
AC POWER OUTPUT (LOADS/GRID)	7600VA	
AC POWER OUTPUT (BACKUP)	8000VA	
NOMINAL OUTPUT VOLTAGE	240 VAC	
MAX OUTPUT CURRENT @240V (LOADS/GRID)	32A	
MAX OUTPUT CURRENT @240V (BACKUP)	50A	
NOMINAL DC INPUT VOLTAGE	380Vdc	
MAX DC INPUT VOLTAGE	420Vdc	
CEC WEIGHTED EFFICIENCY	96.5%	
MAX DC POWER (PV)	10000W	
MAX INPUT CURRENT (PV)	20Adc	
CONT. PEAK POWER (BATTERY)	8000W	

SERIES SUB STRING OPTIMIZER SPECIFICATIONS		
MANUFACTURER / MODEL #	PV LINK S2502	
RATED POWER	2500W	
MPPT VOLTAGE RANGE	60-360 Vmp	
MAXIMUM INPUT VOLTAGE	420Voc	
MAXIMUM OUTPUT	420 Adc	
NOMINAL OUTPUT	380 Vdc	
MAXIMUM OUTPUT CURRENT	8 A	
MAXIMUM SHORT CIRCUIT CURRENT	18 A	

BATTERY SPECIFICATIONS		
MANUFACTURER / MODEL #	GENERAC PWRCELL9 BATTERY	
USABLE ENERGY	8.6kW	
RATED CONTINUOUS POWER	3.4Kw	
POWER: 60 MINUTES	4.2kW	
POWER: 2 MINUTES	5.0kW	
REBUS VOLTAGE: INPUT/ OUTPUT	360-420Vdc	
MODULE VOLTAGE	46.8Vdc	
ROUND-TRIP EFFICIENCY	96.5%	

AMBIENT TEMPERATURE SPECS	
RECORD LOW TEMP	-10°
AMBIENT TEMP (HIGH TEMP 2%)	35°
CONDUIT HEIGHT	0.5"
ROOF TOP TEMP	57°

DC CONDUCTOR AMPACITY CALCULATIONS: ARRAY TO JUNCTION BOX:

EXPECTED WIRE TEMP (In Celsius)	57 °
TEMP. CORRECTION PER NEC TABLE 310.15 (B)(2)(a)	0.71
NO. OF CURRENT CARRYING CONDUCTORS	4
CONDUIT FILL CORRECTION PER NEC TABLE 310.15(B)(3)(a)	0.8
CIRCUIT CONDUCTOR SIZE	10 AWG
CIRCUIT CONDUCTOR AMPACITY PER NEC TABLE 310.15(B)(16)	40A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	10A
1.25 X Imax	TUA
DERATED AMPACITY OF CIRCUIT CONDUCTOR	
TEMP. CORRECTION PER TABLE 310.15 (B)(2)(a) X CONDUIT FILL CORRECTION PER NEC 310.15(B)(3)(a) X CIRCUIT CONDUCTOR AMPACITY 310.15 (B)(16)	22.72A
Result should be greater than (10A) otherwise less the entry for circuit conductor size and	

Result should be greater than (10A) otherwise less the entry for circuit conductor size and ampacity

FROM JUNCTION BOX TO INVERTER:

EXPECTED WIRE TEMP (In Celsius)	57°
TEMP. CORRECTION PER NEC TABLE 310.15 (B)(2)(a)	0.71
NO. OF CURRENT CARRYING CONDUCTORS	2
CONDUIT FILL CORRECTION PER NEC TABLE 310.15(B)(3)(a)	1
CIRCUIT CONDUCTOR SIZE	10 AWG
CIRCUIT CONDUCTOR AMPACITY PER NEC TABLE 310.15(B)(16)	40A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	20A
1.25 X Imax X # of PV LINKS	20A
DERATED AMPACITY OF CIRCUIT CONDUCTOR	
TEMP. CORRECTION PER TABLE 310.15 (B)(2)(a) X CONDUIT FILL CORRECTION PER NEC 310.15(B)(3)(a) X CIRCUIT CONDUCTOR AMPACITY 310.15 (B)(16)	28.4A
Popult should be greater than (20A) athorwise less the entry for circuit conductor size and	

Result should be greater than (20A) otherwise less the entry for circuit conductor size and ampacity

FROM BATTERY TO INVERTER:

EXPECTED WIRE TEMP (In Celsius)	35°
TEMP. CORRECTION PER NEC TABLE 310.15 (B)(2)(a)	0.96
NO. OF CURRENT CARRYING CONDUCTORS	2
CONDUIT FILL CORRECTION PER NEC TABLE 310.15(B)(3)(a)	1
CIRCUIT CONDUCTOR SIZE	10 AWG
CIRCUIT CONDUCTOR AMPACITY PER NEC TABLE310.15(B)(16)	40A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	26.25A
1.25 X Imax	20.25A
DERATED AMPACITY OF CIRCUIT CONDUCTOR	
TEMP. CORRECTION PER TABLE 310.15 (B)(2)(a) X CONDUIT FILL CORRECTION PER NEC 310.15(B)(3)(a) X CIRCUIT CONDUCTOR AMPACITY 310.15 (B)(16)	38.40A

Result should be greater than (26.25A) otherwise less the entry for circuit conductor size and ampacity

AC CONDUCTOR AMPACITY CALCULATIONS: FROM INVERTER TO BACK-UP PANEL:

No. OF INVERTER	1
EXPECTED WIRE TEMP (In Celsius)	35°
TEMP. CORRECTION PER NEC TABLE 310.15(B)(2)(a)	0.96
NO. OF CURRENT CARRYING CONDUCTORS	3
CONDUIT FILL CORRECTION PER NEC TABLE 310.15(B)(3)(a)	1
CIRCUIT CONDUCTOR SIZE	6 AWG
CIRCUIT CONDUCTOR AMPACITY PER NEC TABLE 310.15(B)(16)	75A

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	42 5A
1.25 X INVERTER OUTPUT CURRENT (BACKUP POWER)	42.5A
DERATED AMPACITY OF CIRCUIT CONDUCTOR	
TEMP. CORRECTION PER TABLE 310.15 (B)(2)(a) X CONDUIT FILL CORRECTION PER NEC 310.15(B)(3)(a) X CIRCUIT CONDUCTOR AMPACITY 310.15 (B)(16)	72A

Result should be greater than (42.5A) otherwise less the entry for circuit conductor size and ampacity

AC CONDUCTOR AMPACITY CALCULATIONS: FROM INVERTER TO MEP:

No. OF INVERTER	1
EXPECTED WIRE TEMP (In Celsius)	35°
TEMP. CORRECTION PER NEC TABLE 310.15(B)(2)(a)	0.96
NO. OF CURRENT CARRYING CONDUCTORS	3
CONDUIT FILL CORRECTION PER NEC TABLE 310.15(B)(3)(a)	1
CIRCUIT CONDUCTOR SIZE	6 AWG

CIRCUIT CONDUCTOR AMPACITY PER NEC TABLE 310.15(B)(16)

REQUIRED CIRCUIT CONDUCTOR AMPACITY PER NEC 690.8(A&B)	40A
1.25 X MAX INVERTER OUTPUT CURRENT (LOADS/GRID)	40A
DERATED AMPACITY OF CIRCUIT CONDUCTOR	
TEMP. CORRECTION PER TABLE 310.15 (B)(2)(a) X CONDUIT FILL CORRECTION PER NEC 310.15(B)(3)(a) X CIRCUIT CONDUCTOR AMPACITY 310.15 (B)(16)	72A

Result should be greater than (40A) otherwise less the entry for circuit conductor size and ampacity

- POWERHOME

POWER HOME SOL "POWER YOUR FU 919 N. MAIN S MORESVILLE, NG Phone: 704-800-6591 Email: info@owerho

REVISIONS				
DESCRIPTION	DATE	REV		

Signature with Seal

DATE: 5/20/2020

PROJECT NAME & ADDRESS

75A

TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323

SHEET NAME
WIRING
CALCULATIONS

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

The new Q.PEAK DUO-G5 solar module from Q CELLS impresses thanks to innovative Q.ANTUM DUO Technology, which enables particularly high performance on a small surface. Q.ANTUM's world-record-holding cell concept has now been combined with state-of-the-art circuitry half cells and a six-busbar design, thus achieving outstanding performance under real conditions - both with low-intensity solar radiation as well as on hot, clear summer days.

Q ANTUM TECHNOLOGY: LOW LEVELIZED COST OF ELECTRICITY

Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 19.9%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behavior.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID and Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminum alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa) regarding IEC.

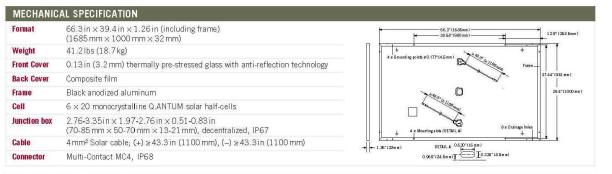
A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance guarantee².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

THE IDEAL SOLUTION FOR:



- ¹ APT test conditions according to IEC/TS 62804-1:2015, method B (-1500 V, 168 h)
- See data sheet on rear for further

	WER CLASS				315	320		325	330
MI	NIMUM PERFORMANCE AT STAN	DARD TEST COI	IDITIONS, STC	(POWER TOLERANC	E +5 W / -0 W)	4300			
	Power at MPP ¹		PMPP	[W]	315	320		325	330
	Short Circuit Current		Isc	[A]	10.04	10.09		10.14	10.20
	Open Circuit Voltage ¹		V _{oc}	[V]	39.87	40.13		40.40	40.66
Minimum	Current at MPP ¹		I _{MPP}	[A]	9.55	9.60		9.66	9.71
	Voltage at MPP		V _{MPP}	[V]	32.98	33.32		33.65	33.98
	Efficiency 1		η	[%]	≥18.7	≥19.0		≥19.3	≥19.6
MII	NIMUM PERFORMANCE AT NORM	MAL OPERATING	CONDITIONS,	NM OT 2					
	Power at MPP		PMPP	[W]	235.3	239.0		242.8	246.5
=	Short Circuit Current		I _{sc}	[A]	8.09	8.13		8.17	8.22
Minimum	Open Circuit Voltage		V _{oc}	[V]	37.52	37.77		38.02	38.27
Σ	Current at MPP		I _{MPP}	[A]	7.52	7.56		7.60	7.64
	Voltage at MPP		V _{MPP}	[V]	31.30	31.62		31.94	32.25
NOMINAL POWER [%]	98 Q EELLS Industry standard for lis Industry standard for lis Industry standard for lis Industry standard for lis		Thereafter ma At least 93.1 At least 85%	of nominal power dur ix. 0.54% degradation % of nominal power u of nominal power up n measurement toleral	per year. p to 10 years. to 25 years.	110 CO LOS	-		
COMPARED TO NOMINAL		and manarisa	Thereafter ma At least 93.1 ' At least 85%' All data within Full warrantie terms of the C respective cou	ix. 0.54 % degradation % of nominal power u of nominal power up in measurement toleral is in accordance with 1 0 CELLS sales organiz.	per year. p to 10 years. to 25 years. nces, he warranty	Typical modul		nce under le	800 1000 RRADIANCE [Wm²] ow irradiance conditions in
COMPARED TO NOMINAL	85 85 80 75 10 15	and manarisa	Thereafter ma At least 93.1 'At least 85%' All data within Full warrantie terms of the C respective cou	ix. 0.54 % degradation % of nominal power u of nominal power up in measurement toleral is in accordance with 1 0 CELLS sales organiz.	per year. p to 10 years. to 25 years. nces, he warranty	Typical modul	e performa	nce under lo	RRADIANCE [W/m²] ow irradiance conditions in
COMPARED TO NOMINAL	85 80 5 10 15 Standard forms of guarantee for the 10 PV comparies with the highest projection capacity in 2018 (see 11 Sept.	and manarisa	Thereafter ma At least 93.1 'At least 85%' All data within Full warrantie terms of the C respective cou	ix. 0.54 % degradation % of nominal power u of nominal power up in measurement toleral is in accordance with 1 0 CELLS sales organiz.	per year. p to 10 years. to 25 years. nces, he warranty	Typical modul comparison to	e performa	nce under la itions (25°C	RRADIANCE [W/m²] ow irradiance conditions in
UBT.	85 80 5 10 15 Standard forms of guarantee for the 10 PV comparies with the highest profession capacity in 2014 for at 2 Syst	20 25 TEAR 2014)	Thereafter ma At least 93.1' At least 85% All data within Full warrantie terms of the C respective cou	ix, 0,54% degradation, % of nominal power up of nominal power up n measurement toleral s in accordance with I CELLS sales organiz untry.	per year: p to 10 years. to 25 years. to 25 years. toes. the warranty ation of your	Typical modul comparison to	e performa STC cond	nce under lo itions (25°C	RRADIANCE [W/m²] ow irradiance conditions in c, 1000W/m²)0.28
LEAT COMPARED TO NOMINAL	85 80 5 10 15 Standard forms of garanthe for the 10 PV comparies with the highest profession capacity in 2014 for at 2 Sayth WPERATURE COEFFICIENTS upperature Coefficient of I _{SG}	20 25 Stain ber 2014) CC Y	Thereafter ma At least 93.1 At least 93.1 At least 85% All data within Full warrantie terms of the C respective could see the country of the C respective could be considered to the country of the C respective country of the C	ix, 0,54% degradation of nominal power up of nominal power up of measurement tolerals in accordance with tolerals in accordance with tolerals cells sales organiz untry. +0.04	per year: p to 10 years. to 25 years. to 25 years. toes. the warranty ation of your	Typical modul comparison to	e performa STC cond β	nce under la itions (25°C	RRADIANCE [W/m²] ow irradiance conditions in 5, 1000W/m²).
TEN Ten Ten Ten	25 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15	20 25 Stain ber 2014) CC Y	Thereafter ma At least 93.1 At least 85% All data within Full warrantie terms of the Crespective could see [%/K]	ix, 0,54% degradation of nominal power up of nominal power up of measurement tolerals in accordance with tolerals in accordance with tolerals cells sales organiz untry. +0.04	per year: p to 10 years. to 25 years. to 25 years. toes. the warranty ation of your	Typical modul comparison to	e performa STC cond β	nce under la itions (25°C	RRADIANCE [W/m²] ow irradiance conditions in c, 1000W/m²)0.28
TEN	28 5 10 15 Standard terms of guarantee for the 10 Per companies with the highest productor capacity in 2014 face of Sayah WPERATURE COEFFICIENTS INDERATURE COEfficient of I SG INDERATURE COEfficient of PMPP REPERATURE COE	20 25 25 YEAR OF YEAR Y	Thereafter ma At least 93.1 At least 85% All data within Full warrantie terms of the Crespective could see [%/K]	x. 0.54% degradation % of nominal power up of nominal power up of measurement toleral s in accordance with 1 CELLS sales organiz untry. +0.04 -0.37	In per year, pto 10 years, to 25 years, to 25 years, to 25 years, the warranty attion of your Temperature Coeff Normal Module Op	Typical modul comparison to	e performa STC cond β	nce under la itions (25°C	RRADIANCE [W/m²] ow irradiance conditions in c, 1000W/m²)0.28
TEN Ten Ten Ten Ma. Ma. Ma. Ma. Ma.	28 5 10 15 3 Sandard terms of guarantee for the 10 PM comparies with the highest production capacity in 2014 face of Sayah WPERATURE COEFFICIENTS INDERATURE COEFFICIENT of I SG INDERATURE COEFFICIENT OF PMPP COPERTIES FOR SYSTEM Ximum System Voltage V _{SYS}	20 25 25 YEAR OF YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR	Thereafter ma At least 93.1 At least 83.4 At least 85% All data within Full warrantie terms of the Crespective could be at least 100 at	x. 0.54% degradation % of nominal power up of nominal power up of measurement toleral is in accordance with 1 QELLS sales organiz untry. +0.04 -0.37	per year, pto 10 years, to 25 years, to 25 years, to 25 years, to 25 years, the warranty attion of your Temperature Coeff Normal Module Op	Typical modul comparison to licient of V ₀₀ erating Temperature	e performa STC cond β	nce under letitions (25°C) [%/K] [°F] II C (IEC) -40°F	RRADIANCE (W/m²) ow irradiance conditions in (1000W/m^2) . -0.28 $109 \pm 5.4 (43 \pm 3 \text{C})$

QUALIFICATIONS AND CERTIFICATES PACKAGING INFORMATION UL 1703; VDE Quality Tested; CE-compliant; Number of Modules per Palle 32 Number of Pallets per 53' Trailer Number of Pallets per 40' High Cube Container Pallet Dimensions (L \times W \times H) 69.3 in × 45.3 in × 46.9 in $(1760 \,\mathrm{mm} \times 1150 \,\mathrm{mm} \times 1190 \,\mathrm{mm})$

Pallet Weight 14151bs (642 kg) NOTE: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

300 Spectrum Center Drive, Suite 1250, Irvine, CA 92618, USA | TEL +1 949 748 59 96 | EMAIL inquiry@us.q-cells.com | WEB www.q-cells.us

POWERHOME

REVISIONS				
DESCRIPTION	DATE	REV		

Signature with Seal

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE

138 TACTICAL DR., BUNNLEVEL, NC 28323

EQUIPMENT SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

PV-6

Engineered in Germany

FEATURES:

No autotransformer or battery inverter needed

User-selectable modes

Free system monitoring

Inverter Model: X7602, X11402

Solar-plus-storage is simple with the Generac PWRcell Inverter. This bi-directional, REbus[™]-powered inverter offers a simple, efficient design for integrating smart batteries with solar. Ideal for self-supply, backup power, zero-export and energy cost management, the PWRcell inverter is the industry's most feature-rich line of inverters, available in single-phase and three-phase models.

ADDITIONAL FEATURES

- Single inverter for grid-tied solar with smart battery integration
- Simplified system design: No autotransformer or battery inverter needed
- User-selectable modes for backup power, self-supply, time-of-use and zero-export
- Free system monitoring included via PWRview Web Portal and Mobile App

AC OUTPUT/ GRID-TIE	MODEL X7602	MODEL X11402
RATED AC POWER OUTPUT	7600 W	11400 W
AC OUTPUT VOLTAGE	120/240, 1Ø VAC	120/208, 3Ø VAC
AC FREQUENCY	60 Hz	60 Hz
MAXIMUM CONTINUOUS OUTPUT CURRENT	32 A, RMS	32 A, RMS
GROUND-FAULT ISOLATION DETECTION	Included	Included
CHARGE BATTERY FROM AC	Yes	Yes
THD (CURRENT)	< 2 %	< 2 %
TYPICAL NIGHTTIME POWER CONSUMPTION	< 7 W	< 7 W

AC OUTPUT/ BACKUP	MODEL X7602	MODEL X11402
RATED AC BACKUP POWER OUTPUT	8000 W	8000 W
MAXIMUM AC BACKUP POWER OUTPUT	12000 W	12000 W
AC BACKUP OUTPUT VOLTAGE	120/240, 1Ø VAC	120/240, 1Ø VAC
AC FREQUENCY	60 HZ	60 HZ
AC CIRCUIT BREAKER	50 A	50 A
THD (VOLTAGE)	< 2 %	< 2 %
AUTOMATIC SWITCHOVER TIME	< 1 Seconds	< 1 Seconds
TYPICAL NIGHTTIME POWER CONSUMPTION	30 W	30 W

DC INPUT	MODEL X7602	MODEL X11402
DC INPUT VOLTAGE RANGE	360-420 VDC	360-420 VDC
NOMINAL DC BUS VOLTAGE	380 VDC	380 VDC
MAX INPUT CURRENT	20 A	30 A
REVERSE-POLARITY PROTECTION	YES	YES
GROUND-FAULT ISOLATION DETECTION	YES	YES
TRANSFORMERLESS, UNGROUNDED	YES	YES

PWREE

DC INPUT/ BATTERY	MODEL X7602	MODEL X11402
MAXIMUM CONTINUOUS POWER	8000 W	8000 W
INTERNAL DC DISTRIBUTION BREAKERS	4X 2P30A	4X 2P30A
DC FUSES ON PLUS AND MINUS	40 A	40 A
2-POLE DISCONNECTION	YES	YES

EFFICIENCY	MODEL X7602	MODEL X11402
PEAK EFFCIENCY	97 %	98 %
CEC WEIGHTED EFFCIENCY	96.5 %	97.5 %

Specifications

FEATURES AND MODES	
ISLANDING ³	Yes
GRID SELL	Yes
SELF CONSUMPTION	Yes
PRIORITIZED CHARGING FROM RENEWABLES	Yes
GRID SUPPORT - ZERO EXPORT	Yes

ADDITIONAL FEATURES	
SUPPORTED COMMUNICATION INTERFACES	CANbus, RS4854, Ethernet
SYSTEM MONITORING	PWRview Web Portal and Mobile App
CRITICAL LOADS DISCONNECT ³	Yes
MANUAL INVERTER BYPASS SWITCH	Automatic
WARRANTY	10 Years

STANDARDS COMPLIANCE	
SAFETY	UL1741 SA, CSA 22.2
GRID CONNECTION STANDARDS	IEEE1547, Rule 21, Rule 14H
EMISSIONS	FCC part15 class B

DIMENSIONS AND INSTALLATION SPECIFICATIONS	
WIRE GAUGE RANGE	10 - 8 AWG
TOTAL AC KNOCKOUTS X SIZE	2" x 0.75", 2 x 1"
TOTAL DC KNOCKOUTS X SIZE	5" x 1"
DIMENSIONS (L,W,H)	24.5" x 19.25" x 8"
WEIGHT	62.7 lb
COOLING	Forced convection
NOISE	< 40 dBA
OPERATING TEMPERATURE	-20 to 50 °C*
PROTECTION RATING	NEMA 3R

INSTALLATION GUIDELINES	
BATTERY TYPES SUPPORTED	PWRcell battery module
MODULE STRING SIZE PER PV LINK OPTIMIZER	2-9 PV modules
MAXIMUM RECOMMENDED DC POWER FROM PV	10kW (10), 15kW (30)
BATTERIES PER INVERTER	Up to 2

³ 3Ø inverters offer islanding for 1Ø loads, ⁴ Modbus, *Reduced power at extreme temperatures

Specifications subject to change without notice.

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722)

REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323

SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

PV-7

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722)

FEATURES:

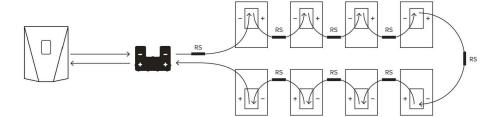
asy installation

Low cost, high efficiency solution

NEC 2017 and 2020 PVRSS compliant

SnapRS™

Instant Rapid Shutdown Compliance Model: RS801


The Generac SnapRS is NEC 2017 compliant, and doesn't require any extra hardware to mount, no pairing and no fussy digital communications. Just snap a Generac SnapRS disconnect device to each PV module for total rapidshutdown performance. When signaled by the inverter, SnapRS units break the PV circuit, reducing array voltage to <80V in seconds.

SYSTEM DESIGN

Snap a Generac SnapRS disconnect device to the negative whip (-) of each module in the solar array for simple NEC-2017 module-level rapid shutdown compliance. SnapRS devices isolate array voltage when a rapid shutdown command is given by a connected Islanding Inverter

Generac PWRcell Inverter Generac PV Link

Single-string PV Array with Generac SnapRS[™] devices
SnapRS devices (RS) installed to negative (-) whip of each PV module.

ADDITIONAL FEATURES

- · Fast, easy and simple to install
- One SnapRS device per PV module
- Achieves PVRSS Compliance
- · Low cost, high efficiency solution

Specifications

SNAPRS (RS801)

PV MODULE MAX VOC	75 V
EFFICIENCY	99.9 %
MAX INPUT CURRENT	13 A
SHUTDOWN TIME	< 10 Seconds
ENCLOSURE RATING	NEMA 6P

	OPERATING TEMPERATURE	-40 to 70 °C
	CERTIFICATIONS	UL1741
-	WEIGHT	100 g
-	DIMENSIONS (L,W,H)	1" x 1" x 7"
-	WARRANTY	25 Years

Specifications subject to change without notice.

REVISIONS

DESCRIPTION DATE REV

POWERHOME

Signature with Seal

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323

SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

Generac Power Systems, Inc.

S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722) ANSI B 11" X 17"

SHEET NUMBER

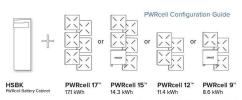
PV-8

GENERAC®

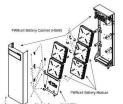
Generac Power Systems, Inc. \$45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722)

Connect up to 2 PWRcells to a

GENERAC


PWRCELL

Model: 9, 12, 15, 17


No other smart battery offers the flexibility of PWRcell. Whether for backup power or smart energy management, the PWRcell battery has power and capacity options for every need, without sacrificing flexibility or function.

The PWRcell battery series allows system owners the flexibility to scale from the economical 8.6kWh PWRcell 9™ to the massive 17.1 kWh PWRcell 17™ by adding additional PWRcell battery modules, the gold standard in storage.

PWRCELL CONFIGURATION GUIDE

PWRCELL ASSEMBLY

PWRCELL BATTERY DESIGN

PWRcell is a modular smart battery platform that allows for a range of configurations to suit any need, small or large. PWRcell can be built in capacities ranging from 8.6-17.1kWh. When needs change, PWRcell can be upgraded with additional modules. Use the chart above to understand what components you need for your chosen PWRcell configuration.

ADDITIONAL FEATURES

- Connect as many as two 2 PWRcells to a single PWRcell Inverter[™] for up to 34.2kWh of storage
- Best-in-class battery backup power
- Plug-and-play with PWRcell Inverters[™] and PV Links[™]
- Time-of-use (TOU) and zero-export ready
- Residential and commercial application ready

GENERAC

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722)

Specifications

PWRCELL MODEL	9	12	15	17
BATTERY MODULES	3	4	5	6
USABLE ENERGY	8.6 kWh	11.4 kWh	14.3 kWh	17.1 kWh
POWER: RATED CONTINUOUS	3.4 kW	4.5 kW	5.6 kW	6.7 kW
POWER: 60 MINUTES	4.2 kW	5.6 kW	7.0 kW	8.4 kW
POWER: 2 MINUTES	5.0 kW	6.7 kW	8.4 kW	10.0 kW
REBUS VOLTAGE: INPUT/OUTPUT		360-420 VDC		
MODULE VOLTAGE		46.8 VDC		
ROUND-TRIP EFFICIENCY	96.5 %			
OPERATING TEMPERATURE	-10 to 45 °C*			
RECOMMENDED TEMPERATURE	13 to 30 °C			
MAXIMUM INSTALLATION ALTITUDE	9834 ft, (3000 m)			
DIMENSIONS (L,W,H)	68" x 22" x 10"			
WEIGHT (ENCLOSURE)	 115 lb, (52 kg)			
WEIGHT (INSTALLED)	280 lb, (127 kg)	335 lb, (152 kg)	390 lb, (178 kg)	445 lb, (202 kg)
WARRANTY: LI-ION MODULES	10 Years, (22.6 MWh)	10 Years, (30.2 MWh)	10 Years, (37.8 MWh)	10 Years, (45.3 MWh)
WARRANTY: ELECTRONICS AND ENCLOSURE	10 Years			
COMMUNICATION PROTOCOL	REbus DC Nanogrid™			
COMPLIANCE	UL 9540, UL 1973, UL 1642, CSA 22.2			

*Reduced power at extreme temperatures

GENERAC

Specifications subject to change without notice.

UPGRADING PWRCELL

Inside of the PWRcell battery, the PWRcell battery modules are stacked 2-deep on three levels, allowing for up to six modules to be connected in series. Upgrade an existing PWRcell battery by adding modules and a module spacer (HMSK) if required. PWRcell 9 and PWRcell 15 require a module spacer.

Generac offers a convenient PWRcell Battery Upgrade Kit (HMUK) to help replace lost or misplaced hardware. A PWRcell Battery Upgrade Kit may be purchased from your Generac distributor.

Refer to the table to the right for material requirements related to upgrading PWRcell.

UPGRADE MATERIAL REQUIREMENTS

Ending Configuration

_		PWRCELL 17	PWRCELL 15	PWRCELL 12
Configuration	PWRCELL 9	+ 3 x PWRCell Mod + 2 x HMUK*	+ 2 x PWRCell Mod + 1 x HMUK*	+ 1 x PWRCell Mod + 1 x HMUK*
	PWRCELL 12	+ 2 x PWRCell Mod + 1 x HMUK*	+1x PWRCell Mod +1x HMSK	
Starting	PWRCELL 15	+ 1x PWRCell Mod + 1x HMUK*		

*HMUK (Upgrade kit) only required if original hardware is unavailable

Generac Power Systems, Inc. S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722) - POWERHOME

REVISIONS				
DESCRIPTION	DATE	REV		

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

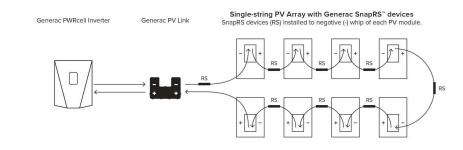
FEATURES:

Fast, simple installation

Lower failure risk than module-level optimizers

NEC 2017 rapid shutdown compliant with SnapRS™

PV Link™


S2500 Series substring optimizer Model: S2502

PV Link is the simple solar optimizer for quick installation and long-lasting performance. Connect as few as two or as many as nine PV modules to each PV Link to overcome shading and challenging roof lines.

ADDITIONAL FEATURES

- Quick connections with MC4 connectors
- 2500W capacity
- Compatible with high-voltage smart batteries
- Cost-effective solution for high-performance PV
- Ground-fault protection

GENERAC

Generac Power Systems, Inc. \$45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722)

Specifications

PWRCELL PV LINK (S2502)

RATED POWER	2500 W
PEAK EFFICIENCY	99%
MPPT VOLTAGE RANGE	60-360 VMP
MAX INPUT VOLTAGE	420 VOC; max when cold
MAX OUTPUT	420 VOC
NOMINAL OUTPUT (REBUS™)	380 VDC
MAX OUTPUT CURRENT	8 A
MAX SHORT CIRCUIT CURRENT (ISC)	18 A
STANDBY POWER	<1W

PROTECTIONS	Ground-fault, Arc-fault (Arc-fault Type 1 AFCI, Integrated)
MAX OPERATING TEMP	70 °C
SYSTEM MONITORING	PWRview Web Portal and Mobile App
ENCLOSURE	Type 3R
WEIGHT	7.3 lb
DIMENSIONS (L,W,H)	2" x 15.4" x 9.6"
COMPLIANCE	UL 1741, CSA 22.2
WARRANTY	25 Years

Specifications subject to change without notice.

Generac Power Systems, inc. S45 W29290 Hwy. 59, Waukesha, WI 53189 www.Generac.com 1-888-GENERAC (1-888-436-3722) POWER HOME SOLAR, LLC
"POWER YOUR FUTURE"
919 N. MAIN ST.

REVISIONS

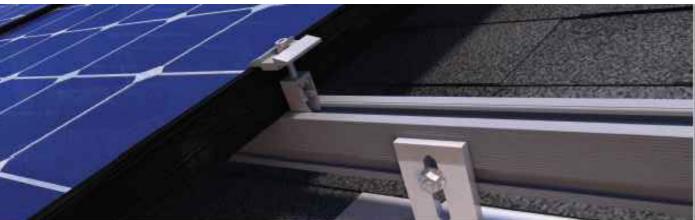
DESCRIPTION DATE REV

Signature with Sea

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS
RESIDENCE
138 TACTICAL DR.,
BUNNLEVEL, NC 28323


SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

QRail™ - Fully Integrated Mounting and Racking System

The QRail Series is a strong and versatile solar array mounting system that provides unrivaled benefits to solar designers and installers. Combined with Quick Mount PV's industry-leading waterproof mounts, QRail offers a

complete racking solution for mounting solar modules on any roof.

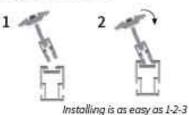
Easily design array configurations with the QD esign software application. Generate complete engineering reports and calculate a precise bill of materials for all the mounting, racking and accessories needed for a complete solar array.

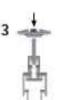
Comprehensive, One-Source Solution

QRail, together with Quick Mount PV's waterproof mounting products, provides the benefit of a single-sourced, seamlessly integrated rooftop installation that works with all roof types - composition/asphalt shingles, flat or curved tile, metal shingle, shake, slate and low slope roofs. The QRail system also works with any roof attachment system for maximum flexibility.

Superior Strength and Versatility

QRail is engineered for optimal structural performance. The system is certified to UL 2703, fully code compliant and backed by a 25-year warranty. QRail is available in Light, Standard and Heavy versions to match all geographic locations. QRail is compatible with virtually all modules and works on a wide range of pitched roof surfaces. Modules can be mounted in portrait or landscape orientation in standard or shared-rail configurations.




QRails come in two lengths -168 inches (14 ft) and 208 inches (17.3 ft) Mill and Black Finish

Fast, Simple Installation: It Just Clicks

QClick Technology*

The universal mid and end clamps use QClick technology to simply "click" into the rail channel and remain upright, ready to accept the module. The pre-assembled clamps fit virtually all module frames and require no extra hardware, eliminating pre-loading and reducing installation time.

2 clamps for modules from 30-45mm or 38-50mm thick

2 clamps for modules from 30-45mm or 38-50mm thick

QSplice Technology

QRail's innovative internal QSplice installs in seconds, requiring no tools or screws. Simply insert QSplice into the rail and slide the other rail on to create a fully structural, bonded splice. An external splice is also available.

Installs in seconds - no tools or hardware required

Fully Integrated Electrical Bonding

The QRail system provides an integrated electrical bonding path, ensuring that all exposed metal parts and the solar module frames are electrically connected. All electrical bonds are created when the components are installed and tightened down.

POWERHOME

REVISIONS			
DESCRIPTION DATE REV			

Signature with Seal

DATE: 5/20/2020

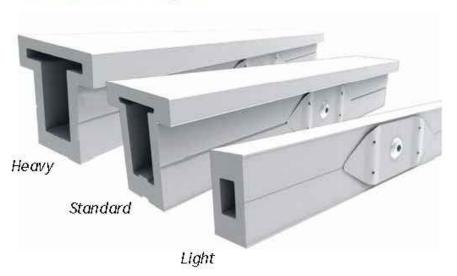
PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323


EQUIPMENT SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"


SHEET NUMBER

QRail™ Configurations

Item Code	Part Number	Description	Finish
QMR-RL14A60	800	QRail Light, 14 ft, 60 Pack	Mill
QMR-RL17.3 A 60	801	QRail Light, 17.3 ft, 60 Pack	Mill
QMR-RL14B60	805	QRail Light, 14 ft., 60 Pack	Black
QMR-RL17.3 B 60	806	QRail Light, 17.3 ft, 60 Pack	Black
QMR-RS14 A 60	810	QRail Standard, 14ft., 60 Pack	Mill
QMR-RS17.3 A 60	811	QRail Standard, 17.3 ft, 60 Pack	Mill
QMR-RS14 B 60	815	QRail Standard, 14ft., 60 Pack	Black
QMR-RS17,3 B 60	816	QRail Standard, 17.3 ft, 60 Pack	Black
QMR-RH14A60	820	QRail Heavy, 14ft., 60 Pack	Mill
QMR-RH17.3 A 60	821	QRail Heavy, 17.3 ft, 60 Pack	Mill
QMR-RH14B60	825	QRail Heavy, 14ft, 60 Pack	Black
QMR-RH17.3 B 60	826	QRail Heavy, 17.3 ft, 60 Pack	Black

OSplice™ Internal Structural Splice

Item Code	Part Number	Description	Finish
QMR-ISL A 15	830	QSplice Internal, Light, 15 Pack	Mill
QMR-ISS A 15	831	QSplice Internal, Standard, 15 Pack	Mill
QMR-ISH A 15	832	QSplice Internal, Heavy, 15 Pack	Mill

Item Code	Part Number	Description	Finish
QMR-ESS A 15	834	QSplice External, Standard, 15 Pack	Mill
QMR-ESH A 15	835	QSplice External, Heavy, 15 Pack	Mill

- POWERHOME

REVISIONS			
DESCRIPTION	DATE	REV	

DATE: 5/20/2020 PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

EQUIPMENT SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

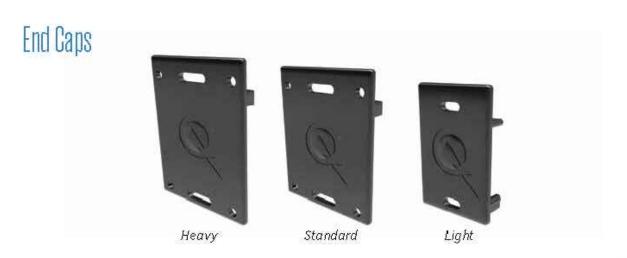
PV-11A

(925) 478-8269 2

Universal End Clamp with QClick™ Technology

Item Code	Part Number	Description	Finish
QMR-UEC3045 A 2 0	860	Universal End Clamp, 30-45mm, 20 Pack	Mill
QMR-UEC3850A20	861	Universal End Clamp, 38-50mm, 20 Pack	Mill
QMR-UEC3045 B 20	865	Universal End Clamp, 30-45mm, 20 Pack	Black
QMR-UEC3850B20	866	Universal End Clamp, 38-50mm, 20 Pack	Black
QMR-UEC3045BP A20	862	Universal End Clamp, 30-45mm, w/ Bonding, 20 Pack	Mill
QMR-UEC3850BP A 20	863	Universal End Clamp, 38-50mm, w/ Bonding, 20 Pack	Mill
QMR-UEC3045BP B 20	867	Universal End Clamp, 30-45mm, w/ Bonding, 20 Pack	Black
QMR-UEC3850BPB20	868	Universal End Clamp, 38-50mm, w/ Bonding, 20 Pack	Black

Mid Clamp with QClick™ Technology



ltem Code	Part Number	Description	Finish
QMR-UMC3045BP 1.2 A 20	872	Universal Mid Clamp, 30-45mm, w/ Bonding, 20 Pack	Mill
QMR-UMC3850BP 1.2 A 2 0	873	Universal Mid Clamp,38-50mm,w/ Bonding,20 Pack	Mill
QMR-UMC3045BP 1.2 B 20	877	Universal Mid Clamp, 30-45mm, w/ Bonding, 20 Pack	Black
QMR-UMC3850BP 1,2 B 20	878	Universal Mid Clamp, 38-50mm, w/ Bonding, 20 Pack	Black

Single-Slot L-Foot

Item Code	Part Number	Description	Finish
QMC-LF A12	692	Single-slot L-foot, 12 Pack	Mill
QMC-LF B 12	693	Single-slot L-foot, 12 Pack	Black

Item Code	Part Number	Description	Finish
QMR-CPL B 50	885	End Cap Light, 50 Pack	Black
QMR-CPS B 50	886	End Cap Standard, 50 Pack	Black
QMR-CPH B 50	887	End Cap Heavy, 50 Pack	Black

- POWERHOME

•			
REVISIONS			
DESCRIPTION	DATE	REV	

Signature with Seal

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

EQUIPMENT SPECIFICATION

ANSI B 11" X 17"

SHEET NUMBER

PV-11B

T-Bolt

Item Code	Part Number	Description	Finish
QMR-TBA300	880	T-Boltw/ Nut, 300 Pack	stainless steel

Wire Clip

Works with both PV and Trunk Cabling

ltem Code	Part Number	Description	Finish
QMR-WCA 300	892	Trunk/PV Cable, 300 Pack	stainless steel

Grounding Lug

Item Code	Part Number	Description	Finish
QMR-GL A50	890	WEEB Lug w/ T-Bolt, 50 Pack	n/a

WEEB BMC

Item Code	Part Number	Description	Finish
QMR-ECWA 50	891	WEEB BMC, 50 Pack	stainless steel

- POWERHOME

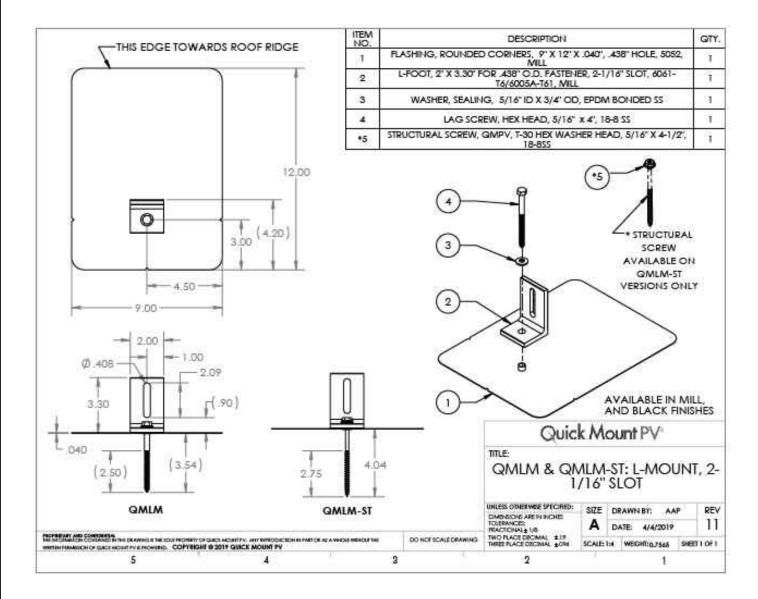
REVISIONS					
DESCRIPTION DATE REV					

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

SHEET NAME **EQUIPMENT** SPECIFICATION

SHEET SIZE ANSI B

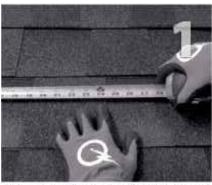

11" X 17" SHEET NUMBER

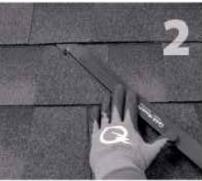
(925) 478-8269 6

PV-11C

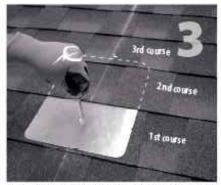
L-Mount | QMLM / QMLM-ST

Elevated Water Seal Technology®




L-Mount Installation Instructions

Installation Tools Required: tape measure, roofing bar, chalk line, stud finder, caulking gun, sealant compatible with roofing materials, drill with 7/32" or 1/8" bit, drill or impact gun with 1/2" socket.


WARNING: Quick Mount PV products are NOT designed for and should NOT be used to anchor fall protection equipment.

mounted. Select the courses of shingles where mounts will be placed.

Locate, choose, and mark centers of rafters to be Carefully lift composition roof shingle with roofing Insert flashing between 1st and 2nd course. Slide

bar, just above placement of mount. Remove up so top edge of flashing is at least 34" higher nails as required and backfill holes with aproved than the butt-edge of the 3rd course and lower sealant. See "Proper Flashing Placement" on next flashing edge is above the butt-edge of 1st course. Mark center for drilling.

If attaching with lag bolt use a 1/22* bit (Lag). Use a Clean off any sawdust, and fill hole with sealant Place L-foot onto elevated flute and rotate L-foot to %" bit (ST) for attaching with the structural screw. compatible with roofing materials. Drill pilot hole into roof and rafter, taking care to drill square to the roof. Do not use mount as a drill guide. Drill a 2" deep hole into rafter.

can no longer easily rotate. DO NOT over-torque. sure top of L-Foot makes solid contact with racking. NOTE: Structural screw can be driven with T-30 hex

Prepare lag bolt or structural screw with sealing You are now ready for the rack of your choice. washer. Using a 1/2-inch socket on an impact gun, Follow all the directions of the rack manufacturer drive prepared lag bolt through L-foot until L-foot as well as the module manufacturer. NOTE: Make

All roofing manufacturers written instructions must also be followed by anyone modifying a roof system. Consult the roof manufacturer's specs and instructions prior to working on the roof.

Apr-2019 Rev 6

POWERHOME

REVISIONS				
DESCRIPTION DATE REV				

Signature with Seal

DATE: 5/20/2020

PROJECT NAME & ADDRESS

TIMOTHY M WILLIAMS RESIDENCE 138 TACTICAL DR., BUNNLEVEL, NC 28323

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

May 18, 2020

Power Home Solar and Roofing 919 North Main Street Mooresville, NC 28115 **Design Criteria:**

Ultimate Wind Speed- 120 mph Ground Snow Load- 10 psf Risk Category- II Exposure category- C

RE: Structural Roof Evaluation for the Williams Residence: 138 Tactical Drive, Bunnlevel, North Carolina

As per your request, we have evaluated the roof structure under the proposed solar panel array. The information used to evaluate this structure was gathered during a field visit by Power Home Solar and Roofing on behalf of Right Angle Engineering. The roof structure consists of pre-manufactured trusses spaced at 24" on center. The roof material consists of asphalt shingles. The design criteria used to analyze this structure are listed above and included with this letter. The adopted building codes in this jurisdiction are: the 2018 North Carolina Building Code, the 2018 North Carolina Existing Building Code, and ASCE 7-16.

North Carolina Existing Building Code (NCEBC) 2018 section 807.4 indicates that alterations to an existing building that results in less than a 10% increase in the total stress may be performed without a structural evaluation of the existing building. As demonstrated in the attached calculations, the additional weight of the solar panels will be less than 10% increase in the gravity loading and the stress on the existing roof framing.

Based on our assessment we have determined that the existing roof framing will safely and adequately support the additional loads imposed by the solar panels. In order for the loads to be evenly distributed, the roof attachments should be staggered and spread evenly throughout the panel array. Attachment points should be spaced at a maximum of 48" on center. The racking system should be installed per the manufacture's specifications. There should be a minimum of 27 L-foot attachment points to the roof. Each attachment should have a 5/16" or 18/8 SS lag screw with 2.5" minimum penetration centered on each truss top chord. Waterproofing around the roof penetrations is the responsibility of others. Right Angle Engineering assumes no responsibility for improper installation of the solar panels.

Regards,

Robert D Smythe, P.E. Right Angle Engineering 5/18/20

Design Criteria:			
Design Wind Speed (3 second gust)	120	mph	-
Exposure Category	С		
Risk Category	2		
Mean Roof Height	30	ft	
Roof Type	Gable Roof		
Building Type	enclosed		
Roof Dead Load- ASCE Table	C3-1		
Asphalt Shingles	2	psf	
3/8" Plywood Sheathing	1.2	psf	
Roof Framing	4	psf	
Insulation	3.85	psf	
Gypsum sheathing	2	psf	
Solar Panel Array	3	psf	
	40.05	•	
Dead Load Without Panels	13.05	psf	
Dead Load With Solar panels	16.05	psf	
Roof Live Load			1
	20	nof.	ACCE 7 1C Table 4 2 1
Existing Roof Live Load	20	psf	ASCE 7-16 Table 4.3-1
Roof Live Load with Solar Panels	0	psf	2018 NCBC 1607.12.5
Roof Snow Load-ASCE 7-16			l
Ground Snow Load (pg)	10	psf	Section 7.2
Exposure Factor (Ce)	0.9		Table 7.3-1
Thermal Factor (Ct)	1.1		Table 7.3-2
Importance Factor (Is)	1		Table 1.5-2
Flat Roof Snow Load (Pf)	7		Equation 7.3-1
Slippery surface Slope Factor (Cs)	0.6		Figure 7-2
Nonslippery Surface Slope Factor			
(Cs)	1		Figure 7-2
	_		
Roof Snow Load	7	psf	Equation 7.4-1
Reduced Roof Snow Load (Slippery Surface)	4	psf	Equation 7.4-1
Load Combinations - ASCE 7-3	·	μ31	Equation 7.4-1
Toda Combinations 713CL 7		With Solar	
	Without Solar Panels	panels	
D + Lr	33 psf	16 psf	_

20 psf

20.2 psf

D + S

Roof Slope	34	degrees	
Number of panels	13		
Panel Area	227.5	ft^2	
Wind Calculations- ASCE 7-16			
GCp Zone 1	-1		Figure 30.3-(2A-5B)
GC _p Zone 2	-1.2		Figure 30.3-(2A-5B)
GC _p Zone 3	-1.2		Figure 30.3-(2A-5B)
Gcpi	0.18		Table 26.13-1
Velocity Pressure (qh)	30.7	psf	
qh= .00256KhKhtKdV^2			Equation 26.10-1
Kh	0.98		Table 26.10-1
Kht	1		Equation 26.8-1
Kd	0.85		Table 26.6-1
Designed wind pressure (P)		psf	Equation 30.8-1
P = qh(GCh) - (GChi)			
Zone 1 Pressure (P)	-36.2	psf	
Zone 2 Pressure (P)	-42.4	psf	
Zone 3 Pressure (P)	-42.4	psf	
Roof Connection _			
Shear Capacity	190	lbs	NDS 2015 Table 121
Shear tributary area	47.5	ft^2	
Pullout Capacity	266	lbs/in	

Roof Connection	_	_	
Shear Capacity	190	lbs	NDS 2015 Table 12K
Shear tributary area	47.5	ft^2	
Pullout Capacity	266	lbs/in	
Lag screw embedment	2.5	in	
Total pullout capacity	665	lbs	NDS 2015 Table 12.2A
Pullout max tributary area	15.7	ft^2	
Factor of Safety	2.31		
Minimum number of connections	27		

Beam Stress NCEBC 2018 Section 806.2					
Beam Span	14	ft			
Spacing	2	ft			
Roof Framing type pre-manufactured tr					
Panel Orientation	portrait				
Number of Panels per rafter	2				
Panel distance from eave	1				
	Without Solar	With Solar			

	Without Solar	With Solar	Percent	
	Panels	Panels	Increase	
Bending Moment	1619.4 ft-lbs	647.5 ft-lbs	40%	Less than 105%
Vertical Reaction (V1)	462.7 lbs	279.8 lbs	60.5%	Less than 105%
Vertical Reaction (V2)	462.7 lbs	252.1 lbs	54.5%	Less than 105%