
| Job        | Truss | Truss Type | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| 20020068-A | T1    | Common     | 9   | 1   | Job Reference (optional) | E14200250 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:37 ID:PrYU4ZbdzvH04CzCfS7wTozaNPb-W4rgJdl5hR1V0U\_qR1Z5WN2zGbo\_xaGlqj22PTzZi2d



Scale = 1:67.1

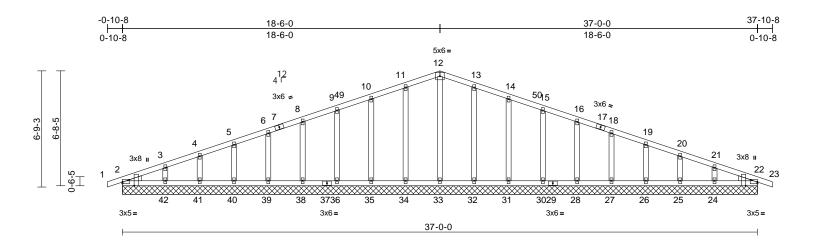
# Plate Offsets (X, Y): [10:Edge,0-0-13]

|              |                        | -                       | -      |                |                       |              |                 |        |       |        |     |                |          |          |
|--------------|------------------------|-------------------------|--------|----------------|-----------------------|--------------|-----------------|--------|-------|--------|-----|----------------|----------|----------|
| Loading      | (psf)                  | Spacing                 | 2-0-0  |                | CSI                   |              | DEFL            | in     | (loc) | l/defl |     | PLATES         | GRIP     |          |
| TCLL (roof)  | 20.0                   | Plate Grip DOL          | 1.15   |                | TC                    |              | Vert(LL)        |        | 12-14 | >999   |     | MT20           | 244/190  |          |
| Snow (Pf/Pg) | 13.9/20.0              | Lumber DOL              | 1.15   |                | BC                    | 0.67         | Vert(CT)        | -0.19  | 17-20 | >794   | 180 |                |          |          |
| TCDL         | 10.0                   | Rep Stress Incr         | YES    |                | WB                    | 0.85         | Horz(CT)        | 0.03   | 10    | n/a    | n/a |                |          |          |
| BCLL         | 0.0*                   | Code                    | IRC201 | 5/TPI2014      | Matrix-MSH            |              |                 |        |       |        |     |                |          |          |
| BCDL         | 10.0                   |                         |        |                |                       |              |                 |        |       |        |     | Weight: 179 lb | FT = 20% |          |
| LUMBER       |                        |                         | 2)     | Wind: ASCE     | 7-10; Vult=130mr      | oh (3-seo    | cond aust)      |        |       |        |     |                |          |          |
| TOP CHORD    | 2x4 SP No.2            |                         | ,      |                | ph; TCDL=6.0psf;      |              |                 |        |       |        |     |                |          |          |
| BOT CHORD    |                        |                         |        | Cat. II; Exp I | B; Enclosed; MWF      | RS (env      | elope) and C    | -C     |       |        |     |                |          |          |
| WEBS         | 2x4 SP No.2 *Excep     | t* 9-12,3-17,5-15:2x4   | SP     | Exterior (2) z | one; cantilever lef   | t and rig    | ht exposed ;    | end    |       |        |     |                |          |          |
|              | No.3                   | , ,                     |        |                | nd right exposed;     |              |                 |        |       |        |     |                |          |          |
| BRACING      |                        |                         |        |                | /FRS for reactions    |              | Lumber          |        |       |        |     |                |          |          |
| TOP CHORD    | Structural wood she    | athing directly applied | or     |                | late grip DOL=1.33    |              |                 |        |       |        |     |                |          |          |
|              | 4-1-6 oc purlins.      | 5 ,                     | 3)     |                | 7-10; Pr=20.0 ps      |              |                 | er     |       |        |     |                |          |          |
| BOT CHORD    | Rigid ceiling directly | applied or 6-0-0 oc     |        |                | late DOL=1.15); P     |              |                 | -      |       |        |     |                |          |          |
|              | bracing.               |                         |        |                | 3.9 psf (flat roof sn |              |                 | 5      |       |        |     |                |          |          |
| REACTIONS    | (size) 2=0-3-8, 1      | 10=0-3-8, 15=0-3-8      |        | Ct=1.10        | .15); Category II;    | EXP B; F     | ully Exp.;      |        |       |        |     |                |          |          |
|              | Max Horiz 2=64 (LC     | 15)                     | 4)     |                | snow loads have l     |              | aidarad for th  | nio    |       |        |     |                |          |          |
|              | Max Uplift 2=-22 (LC   |                         | 4)     | design.        | snow loads have i     | been co      | isidered for tr | 115    |       |        |     |                |          |          |
|              | 15=-32 (L              | C 11)                   | 5)     | 0              | as been designed f    | or groat     | or of min roof  | livo   |       |        |     |                |          |          |
|              | Max Grav 2=419 (LC     | C 33), 10=891 (LC 2),   | 5)     |                | psf or 2.00 times f   |              |                 |        |       |        |     |                |          |          |
|              | 15=1846                | (LC 2)                  |        |                | on-concurrent with    |              |                 | 51 011 |       |        |     |                |          |          |
| FORCES       | (lb) - Maximum Com     | pression/Maximum        | 6)     | 0              | has been designed     |              |                 | Opsf   |       |        |     |                |          |          |
|              | Tension                |                         | - /    |                | n chord in all area   |              |                 |        |       |        |     |                |          |          |
| TOP CHORD    | 1-2=0/21, 2-3=-438/    | 183, 3-4=-129/306,      |        | 3-06-00 tall I | by 2-00-00 wide wi    | ill fit betv | veen the botto  | om     |       |        |     |                |          |          |
|              | ,                      | 390/143, 6-24=-410/1    | 40,    | chord and a    | y other members.      |              |                 |        |       |        |     |                |          |          |
|              | 7-24=-418/117, 7-8=    |                         | 7)     | One RT7A L     | ISP connectors re     | commer       | ded to conne    | ct     |       |        |     | UN RTH         | 1111111  |          |
|              | ,                      | )=-1779/425, 10-11=0    | /21    |                | ing walls due to U    |              |                 | nd     |       |        |     | 111-14         | CARO     | 1.       |
| BOT CHORD    | 2-17=-144/385, 16-1    |                         |        |                | nection is for uplift | only an      | d does not      |        |       |        |     | N' Q'          |          | 11       |
|              | 15-16=-635/307, 14-    |                         |        | consider late  |                       |              |                 |        |       |        | /   | SOM            | SSID     | 17.      |
|              | 13-14=-126/1005, 12    | 2-13=-126/1005,         | 8)     |                | designed in accor     |              |                 |        |       |        | 4   | Nº D           | - Ai     |          |
| WEBS         | 10-12=-334/1633        | 057/000 7 40 05/5       | 45     |                | Residential Code      |              |                 | ind    |       |        | -   | :0             | - Maria  | /        |
| WEDS         | 9-12=-409/237, 3-17    | -857/298, 7-12=-25/5    |        |                | nd referenced star    | ndard Ar     | ISI/TPI1.       |        |       |        | -   |                |          | <b>1</b> |
|              | 5-17=-82/595, 5-15=    |                         | L      | DAD CASE(S)    | Standard              |              |                 |        |       |        | -   |                | SEAL     | 1        |
|              | 5-14=-241/1213         | - 1007/434,             |        |                |                       |              |                 |        |       |        |     | 0              | 36322    |          |
| NOTES        | 5 17= 271/1210         |                         |        |                |                       |              |                 |        |       |        | -   |                | 0022     | ÷        |
| NOTES        |                        |                         |        |                |                       |              |                 |        |       |        |     |                |          |          |

 Unbalanced roof live loads have been considered for this design.



A. GILB March 18,2020


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

| Job        | Truss | Truss Type             | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T1GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | E14200251 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:40 ID:MDgFVFduVWXjJW7antAOYDzaNPZ-LEDxahpsHHoekPS\_olgVleI7u0?CLTedCfVMc7zZi2X

Page: 1



### Scale = 1:67.1

| Plate Offsets (                                                                                       | (X, Y): [2:Edge,0-1-1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , [2:0-2-10,Edge], [22                                                    | ::Edge,0-1-1], [22:0-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,Edge]                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                        | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BC 0.04                                                                                                                                                                                                                                               | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>22                                                                                                                              | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                   | L/d<br>999<br>999<br>n/a                                                                                                                                  | PLATES<br>MT20<br>Weight: 202 lb                                                                                                                                                                                                                                                                                          | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | SP No.2<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=37-0-<br>28=37-0-<br>32=37-0-<br>35=37-0-<br>35=37-0-<br>42=37-0-<br>42=37-0-<br>Max Horiz 2=64 (LC<br>Max Uplift 2=-4 (LC<br>24=-20 (L<br>24=-21 (L<br>24=-21 (L<br>31=-12 (L<br>34=-12 (L<br>34=-12 (L<br>39=-12 (L)))) | ,, , ,                                                                    | d or<br><b>FORCES</b><br>-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0 | 4-5=-49/44, 5-6=-41/56, 6-7<br>7-8=-28/76, 8-9=-45/106, 9<br>10-49=-49/136, 10-11=-66/<br>11-12=-77/196, 12-13=-77/<br>13-14=-66/167, 14-50=-49/<br>15-50=-55/129, 15-16=-45/<br>16-17=-28/76, 17-18=-34/7<br>19-20=-28/17, 20-21=-36/1<br>22-23=0/21 | 25=151 (LC 2)<br>27=159 (LC 2)<br>27=160 (LC 3)<br>32=192 (LC 2)<br>36=160 (LC 3)<br>9=159 (LC 2),<br>41=151 (LC 2)<br>41=151 (LC 2)<br>41=151 (LC 2)<br>43=150 (LC 2),<br>41=151 (LC 2 | ),                       | this<br>2) Win<br>Vas<br>Cat.<br>Exte<br>verti<br>forc<br>DOI<br>3) Tru<br>only<br>see<br>or c<br>4) TCL<br>DOI<br>3) TrU<br>DOI<br>5) Unb<br>desi | alanced<br>design.<br>d: ASCE<br>d=103m<br>II; Exp<br>erior (2)<br>ical left :<br>es & MV<br>_=1.60 p<br>ss desig<br>r. For st<br>Standar<br>onsult q<br>L: ASCE<br>_=1.15 F<br>w); Pf=1<br>e DOL=<br>1.10<br>alanced<br>ign. | E 7-10;<br>ph; TC<br>B; Enc<br>zone;<br>and rig<br>WFRS<br>blate g<br>gned fe<br>truds ey<br>dulifier<br>E 7-10<br>7-late D<br>3.9 ps<br>1.15);<br>d snow | ; Vult=130mph (;<br>CDL=6.0psf; BCI<br>closed; MWFRS<br>cantilever left ar<br>pht exposed;C-C<br>for reactions shh<br>rip DOL=1.33<br>or wind loads in 1<br>cposed to wind (i<br>ustry Gable End<br>d building desigr<br>; Pr=20.0 psf (rc<br>ODL=1.15); Pg=2<br>f (flat roof snow:<br>Category II; Exp<br>loads have bee | DL=6.0psf; h=25ft;<br>(envelope) and C-C<br>dright exposed; end<br>for members and<br>own; Lumber<br>the plane of the truss<br>normal to the face),<br>Details as applicable,<br>her as per ANSI/TPI 1.<br>oof live load: Lumber<br>0.0. psf (ground<br>Lumber DOL=1.15 |

March 18,2020

SINEEDIN

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

| Job        | Truss | Truss Type             | Qty | Ply | 19 Sweetwater-Roof       |           |  |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|--|
| 20020068-A | T1GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | E14200251 |  |

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

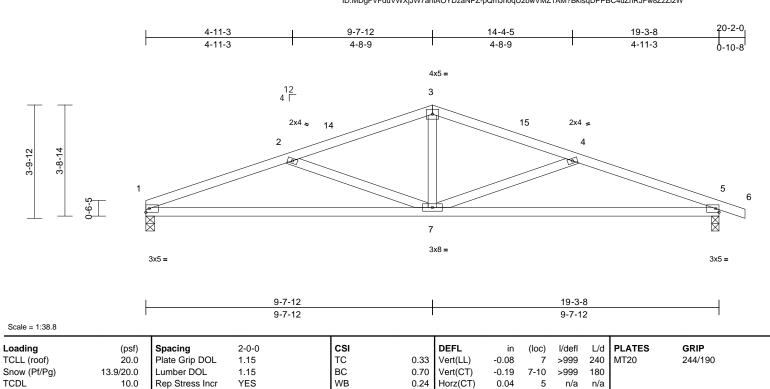
9) Gable studs spaced at 2-0-0 oc.

- 10) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22, 34, 35, 36, 38, 39, 40, 41, 42, 32, 31, 30, 28, 27, 26, 25, 24, and 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:40 ID:MDgFVFduVWXjJW7antAOYDzaNPZ-LEDxahpsHHoekPS\_olgVlel7u0?CLTedCfVMc7zZi2X Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




| Job        | Truss | uss Truss Type Qty |   | Ply | 19 Sweetwater-Roof       |           |  |
|------------|-------|--------------------|---|-----|--------------------------|-----------|--|
| 20020068-A | T2    | Common             | 2 | 1   | Job Reference (optional) | E14200252 |  |

3-9-12

TCDL

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:41 ID:MDgFVFduVWXjJW7antAOYDzaNPZ-pQmJn0qU2bwVMZ1AM?BklsqDPPBC4uZnRJFw8ZzZi2W



| BCLL                                                                                                                                       | 0.0*                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                       | IRC2015/TPI2014                                                                                                                                                                                 | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 | , iiiu iiiu |               | FT 000/                |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------------|
| BCDL                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |             | Weight: 80 lb | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                 | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>4-4-1 oc purlins.<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                        | applied or 9-5-9 oc<br>5=0-3-0<br>: 16)<br>11), 5=-34 (LC 12)                                                                                                              | load of 12.0<br>overhangs<br>6) * This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>7) One RT7A<br>truss to bea<br>This conne-<br>lateral force<br>8) This truss is<br>International | has been designed for greate<br>of psf or 2.00 times flat roof lo<br>non-concurrent with other lik<br>has been designed for a liv<br>om chord in all areas where<br>by 2-00-00 wide will fit betw<br>any other members.<br>USP connectors recommen-<br>aring walls due to UPLIFT at<br>ction is for uplift only and do<br>as.<br>s designed in accordance wi<br>al Residential Code sections<br>and referenced standard AN | oad of 13.9 psf on<br>/e loads.<br>e load of 20.0psf<br>a rectangle<br>/een the bottom<br>ded to connect<br>jt(s) 1 and 5.<br>es not consider<br>ith the 2015<br>.R502.11.1 and |             |               |                        |
| FORCES                                                                                                                                     | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                        | pression/Maximum                                                                                                                                                           | LOAD CASE(S                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |             |               |                        |
| TOP CHORD                                                                                                                                  | 1-2=-1657/451, 2-14<br>3-14=-1199/294, 3-1<br>4-15=-1246/282, 4-5                                                                                                                                                                                                                                    | 5=-1199/293,<br>=-1650/448, 5-6=0/2                                                                                                                                        | 21                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |             |               |                        |
| WEBS                                                                                                                                       | 3-7=-25/462, 2-7=-4                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            | 2                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |             |               |                        |
| NOTES                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |             |               |                        |
| this design<br>2) Wind: ASG<br>Vasd=103<br>Cat. II; Ex<br>Exterior (2<br>vertical lef<br>forces & N<br>DOL=1.6C<br>3) TCLL: AS<br>DOL=1.15 | ed roof live loads have<br>n.<br>CE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; BG<br>p B; Enclosed; MWFR3<br>2) zone; cantilever left a<br>ft and right exposed;C-1<br>MWFRS for reactions sl<br>0 plate grip DOL=1.33<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pg=<br>=13.9 psf (flat roof snov | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) and C-f<br>and right exposed ; e<br>C for members and<br>hown; Lumber<br>roof live load: Lumbe<br>=20.0 psf (ground | C<br>and<br>ar                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 | William     | UNDRA H       | CAROL<br>SEAL<br>36322 |

Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

C A. GI A. GILLIN March 18,2020

Page: 1

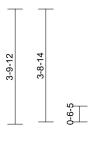


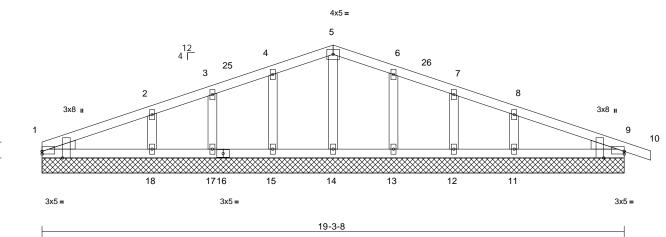
| Job        | Truss Type |                        | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|------------|------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T2GE       | Common Supported Gable | 1   | 1   | Job Reference (optional) | E14200253 |

9-7-12

9-7-12

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:41 ID:qQEdibdWGqfaxghnLbhd5RzaNPY-pQmJn0qU2bwVMZ1AM?BklsqHuPJ?4xgnRJFw8ZzZi2W


> 19-3-8 9-7-12

Page: 1

20-2-0

b-10-8





Scale = 1:38.2

## Plate Offsets (X, Y): [1:Edge,0-1-1], [1:0-2-10,Edge], [9:Edge,0-1-1], [9:0-2-10,Edge]

|                                                                | ∧, 1). [1.Euge,0-1-1],                                                                                                                                                                                                                                                               | [1.0-2-10,Euge], [9.E                                                                                                                                                                                                                                                                                                                              | uge,0-1-1], [                                        | 9.0-2-10,E0                                                                                                                                                                                                                                                                                                                              | ige]                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                           |                                    |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/T            | PI2014                                                                                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11<br>0.13<br>0.04                                                                                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                            | in<br>n/a<br>n/a<br>0.00                                         | (loc)<br>-<br>-<br>1                     | l/defl<br>n/a<br>n/a<br>n/a                                           | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 84 lb                                                                                             | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                | 6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=19-3-8,<br>12=19-3-8<br>15=19-3-8<br>19=19-3-8<br>Max Horiz 1=-38 (LC<br>Max Uplift 9=-27 (LC<br>15=-15 (LI<br>18=-26 (LI<br>Max Grav 1=140 (LC<br>11=278 (L<br>13=181 (L<br>15=182 (L<br>18=289 (L<br>22=201 (L | 9=19-3-8, 11=19-3-8<br>3, 13=19-3-8, 14=19-3<br>3, 17=19-3-8, 18=19-3<br>3, 22=19-3-8<br>16), 19=-38 (LC 16),<br>12), 11=-23 (LC 16),<br>12), 13=-15 (LC 11),<br>C 15), 17=-6 (LC 11),<br>C 15), 22=-27 (LC 12<br>C 2), 9=201 (LC 2),<br>C 34), 12=113 (LC 2),<br>C 34), 12=113 (LC 2),<br>C 33), 17=108 (LC 2),<br>C 33), 17=140 (LC 2),<br>C 2), | ), 6), 7, 60, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | ES<br>Inbalanced<br>his design.<br>Vind: ASCE<br>asd=103mp<br>at. II; Exp E<br>xterior (2) z<br>ertical left a<br>prces & MW<br>IOL=1.60 pl<br>Truss design<br>nly. For stu<br>ee Standarc<br>r consult qu<br>CLL: ASCE<br>IOL=1.15 Pl<br>IoL=1.15 Pl<br>Iate DOL=1<br>it=1.10<br>Inbalanced<br>esign.<br>his truss ha<br>pad of 12.0 pl | 5-14=-74/0, 4-15=<br>2-18=-189/98, 6-1:<br>3-11=-183/96<br>roof live loads have<br>7-10; Vult=130mg<br>b; TCDL=6.0psf;<br>3; Enclosed; MWF<br>one; cantilever lef<br>rFRS for reactions<br>ate grip DOL=1.3;<br>hed for wind loads<br>ds exposed to wind<br>1 ndustry Gable E<br>alified building de<br>7-10; Pr=20.0 ps<br>ate DOL=1.15; P<br>9.9 psf (flat roof sr<br>.15); Category II;<br>snow loads have l<br>s been designed 1<br>s been designed 1<br>of on-concurrent witt | 3=-135/7<br>ve been of<br>bh (3-see<br>BCDL=6<br>RS (env<br>ft and rig<br>C-C for r<br>shown;<br>a<br>in the p<br>nd (norm<br>ind Deta<br>signer as<br>f(rcof liv<br>g=20.0 p<br>iow: Lum<br>Exp B; F<br>been cor<br>for great<br>lat roof lo | r5, 7-12=-95/6<br>considered for<br>cond gust)<br>i.0psf; h=25ft;<br>elope) and C-0<br>ht exposed ; e<br>nembers and<br>Lumber<br>lane of the true<br>al to the face)<br>ils as applicab<br>s per ANSI/TP<br>e load: Lumber<br>posf (ground<br>ber DOL=1.1f;<br>ully Exp.;<br>nsidered for th<br>er of min roof 1<br>pad of 13.9 ps | 3,<br>C<br>end<br>ss<br>,<br>le,<br>11.<br>or<br>5<br>is<br>live | trus:<br>13,<br>doe:<br>12) This<br>Inte | s to bea<br>12, 11, a<br>s not co<br>truss is<br>rnationa<br>2.10.2 a | and 9.<br>Insider<br>a desig<br>and ref<br>) Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alls due to UPLIF<br>This connection<br>lateral forces.<br>ned in accordand<br>dential Code sec<br>erenced standar<br>ndard | CARO                               |
| FORCES                                                         | (lb) - Maximum Com<br>Tension<br>1-2=-88/25, 2-3=-78/<br>4-25=-57/84, 4-5=-79<br>6-26=-56/84, 7-26=-0<br>8-9=-63/19, 9-10=0/2                                                                                                                                                        | /57, 3-25=-69/79,<br>5/115, 5-6=-75/115,<br>69/80, 7-8=-77/57,<br>21                                                                                                                                                                                                                                                                               | 7) A<br>8) G<br>9) G<br>10) *                        | Il plates are<br>bable require<br>bable studs<br>This truss h<br>n the botton                                                                                                                                                                                                                                                            | 2x4 MT20 unless<br>es continuous bot<br>spaced at 2-0-0 o<br>nas been designed<br>n chord in all area                                                                                                                                                                                                                                                                                                                                                                              | s otherwi<br>tom chor<br>c.<br>d for a liv<br>s where                                                                                                                                                                                         | se indicated.<br>d bearing.<br>e load of 20.0<br>a rectangle                                                                                                                                                                                                                                                                        |                                                                  |                                          |                                                                       | THE DESIGNATION OF THE PARTY OF |                                                                                                                             | SEAL<br>36322<br>GINEER            |
| BOT CHORD                                                      | 1-18=-10/78, 17-18=<br>15-16=0/55, 14-15=(<br>12-13=0/55, 11-12=(                                                                                                                                                                                                                    | 0/55, 13-14=0/55,                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                          | y 2-00-00 wide w<br>y other members                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               | veen the botto                                                                                                                                                                                                                                                                                                                      | m                                                                |                                          |                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (11)                                                                                                                        | GINEER.                            |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



March 18,2020

| Job        | Truss | Truss Type | Qty | Ply | 19 Sweetwater-Roof       |           |  |
|------------|-------|------------|-----|-----|--------------------------|-----------|--|
| 20020068-A | Т3    | Monopitch  | 4   | 1   | Job Reference (optional) | E14200254 |  |

### Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:41 ID:EjNKmpTkZWuZGWd5WeRLXUzaNPm-pQmJn0qU2bwVMZ1AM?BkIsq8NPHR4oxnRJFw8ZzZi2W

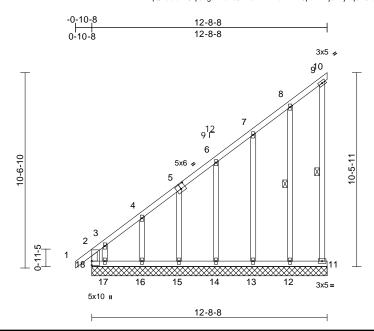
Page: 1



Scale = 1:63

# Plate Offsets (X, Y): [2:0-1-12,0-1-8]

|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | -                                                                                |                                                                          |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                                               |                                    |                          |                               |                                                                                                                 | -                               |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                  | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TP                               |                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                  | 0.30                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                      | in<br>0.05<br>-0.08<br>0.01        | (loc)<br>8-9<br>8-9<br>8 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                        | PLATES<br>MT20<br>Weight: 88 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=103<br>Cat. II; Ex<br>Exterior (2<br>vertical lef<br>forces & M<br>DOL=1.60<br>2) TCLL: ASI<br>DOL=1.15<br>snow); Pf= | 2x4 SP No.2<br>2x4 SP No.2 *Excep<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 8= Mecha<br>Max Horiz 10=316 (L<br>Max Uplift 8=-91 (LC<br>Max Grav 8=551 (LC<br>(lb) - Maximum Com<br>Tension | athing directly applie<br>cept end verticals.<br>applied or 7-1-11 oc<br>5-8<br> | d or<br>d or<br>5) Re<br>6) Pr<br>be<br>8.<br>7) Th<br>Int<br>Re<br>LOAD | ad of 12.0 ps<br>verhangs nor<br>This truss ha<br>n the bottom<br>06-00 tall by<br>hord and any<br>efer to girder<br>rovide mecha<br>earing plate of<br>his truss is di<br>atternational F | been designed for<br>sf or 2.00 times fla<br>n-concurrent with<br>is been designed<br>chord in all areas<br>v 2-00-00 wide will<br>v other members.<br>r(s) for truss to tru<br>anical connection<br>capable of withsta<br>esigned in accord<br>Residential Code s<br>d referenced stand<br>Standard | at roof k<br>other liv<br>for a liv<br>s where<br>I fit betw<br>uss conr<br>(by oth-<br>anding 9<br>lance w<br>sections | bad of 13.9 p<br>re loads.<br>e load of 20.1<br>a rectangle<br>veen the bott<br>ections.<br>ers) of truss i<br>1 lb uplift at j<br>th the 2015<br>R502.11.1 a | sf on<br>Opsf<br>om<br>to<br>joint |                          |                               | Contraction of the second s | UNATH<br>ORTH                   | CARO<br>SEAL<br>36322              |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



A. GI minimum) March 18,2020

| Job        | Truss | Truss Type                | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|---------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T3GE  | Monopitch Supported Gable | 1   | 1   | Job Reference (optional) | E14200255 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:42 ID:qQEdibdWGqfaxghnLbhd5RzaNPY-HcKi?Mr6pu2MzjbNvjizq3NJPpccpMlwgz\_Th?zZi2V Page: 1

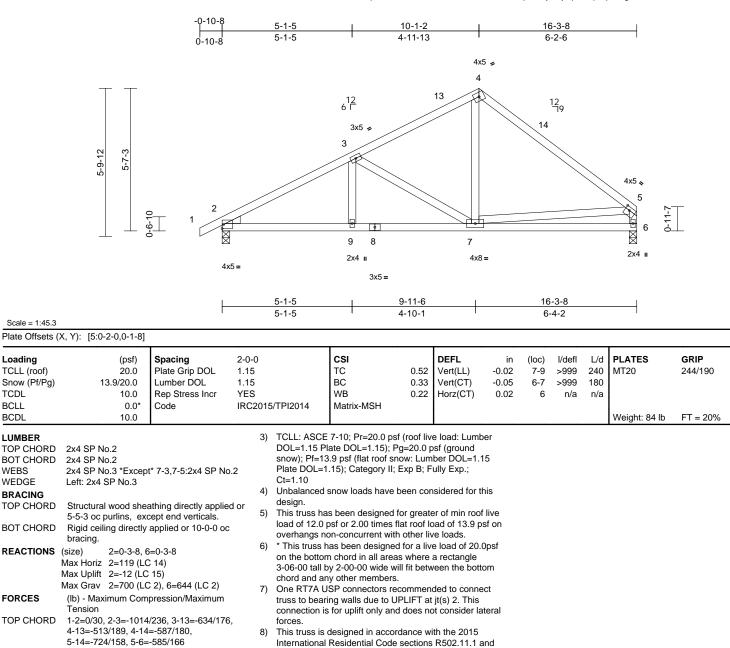


Scale = 1:62.2

Plate Offsets (X, Y): [5:0-3-0,0-3-0]

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg) | (psf)<br>20.0<br>13.9/20.0                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL                                                                                 | 2-0-0<br>1.15<br>1.15     |                                                                                                                       | CSI<br>TC<br>BC                                                                                                                                                                          | 0.70<br>0.30                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)                                                                                | in<br>n/a<br>n/a                 | (loc)<br>-<br>-   | l/defl<br>n/a<br>n/a   |                     | PLATES<br>MT20                          | <b>GRIP</b><br>244/190                                               |
|----------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|------------------------|---------------------|-----------------------------------------|----------------------------------------------------------------------|
| TCDL                                   | 10.0                                                                                 | Rep Stress Incr                                                                                                                | YES                       |                                                                                                                       | WB                                                                                                                                                                                       | 0.14                                                                             | Horz(CT)                                                                                                    | -0.02                            | 10                | n/a                    | n/a                 |                                         |                                                                      |
| BCLL                                   | 0.0*                                                                                 | Code                                                                                                                           | IRC201                    | 5/TPI2014                                                                                                             | Matrix-MR                                                                                                                                                                                |                                                                                  |                                                                                                             |                                  |                   |                        |                     |                                         |                                                                      |
| BCDL                                   | 10.0                                                                                 |                                                                                                                                |                           |                                                                                                                       |                                                                                                                                                                                          |                                                                                  |                                                                                                             |                                  |                   |                        |                     | Weight: 101 lb                          | FT = 20%                                                             |
| LUMBER<br>TOP CHORD                    | 2x4 SP No.2                                                                          |                                                                                                                                | W                         | 6                                                                                                                     | 3-12=-216/163, 7-1<br>6-14=-139/97, 5-15<br>3-17=-363/384                                                                                                                                |                                                                                  |                                                                                                             | /99,                             | ์ trus            | s to bea               | ring wa             | alls due to UPLIF                       | nended to connect<br>T at jt(s) 18, 10, 11,<br>nection is for uplift |
| BOT CHORD<br>WEBS                      | 2x4 SP No.2                                                                          | pt* 9-11:2x4 SP No.2                                                                                                           |                           |                                                                                                                       | 5-17=-303/304                                                                                                                                                                            |                                                                                  |                                                                                                             |                                  |                   |                        |                     | consider lateral f                      |                                                                      |
| OTHERS                                 |                                                                                      | pt* 15-5,16-4,17-3:2x4                                                                                                         |                           |                                                                                                                       | 7-10; Vult=130mph<br>h; TCDL=6.0psf; B                                                                                                                                                   |                                                                                  |                                                                                                             |                                  | 12) This<br>Inter | s truss is<br>rnationa | s desig<br>Il Resid | ned in accordanc<br>dential Code sect   | e with the 2015<br>ions R502.11.1 and                                |
| BRACING                                |                                                                                      |                                                                                                                                |                           |                                                                                                                       | ; Enclosed; MWFR                                                                                                                                                                         |                                                                                  |                                                                                                             |                                  |                   |                        |                     | erenced standard                        | ANSI/TPI 1.                                                          |
| TOP CHORD                              | 6-0-0 oc purlins, e                                                                  |                                                                                                                                | or                        | vertical left a                                                                                                       | one; cantilever left<br>nd right exposed;C                                                                                                                                               | -C for m                                                                         | embers and                                                                                                  | end                              | LOAD C            | ASE(S)                 | ) Sta               | ndard                                   |                                                                      |
| BOT CHORD                              | bracing.                                                                             | y applied or 6-0-0 oc                                                                                                          |                           | DOL=1.60 pl                                                                                                           | FRS for reactions s<br>ate grip DOL=1.33                                                                                                                                                 |                                                                                  |                                                                                                             |                                  |                   |                        |                     |                                         |                                                                      |
| WEBS                                   | 1 Row at midpt                                                                       | 9-11, 8-12                                                                                                                     | 2)                        |                                                                                                                       | ned for wind loads in<br>Ids exposed to wind                                                                                                                                             |                                                                                  |                                                                                                             |                                  |                   |                        |                     |                                         |                                                                      |
|                                        | 13=12-8<br>16=12-8<br>Max Horiz 18=317<br>Max Uplift 10=-101<br>12=-49 (<br>14=-37 ( | (LC 9), 11=-225 (LC 12<br>LC 13), 13=-32 (LC 13)<br>LC 13), 15=-37 (LC 13)<br>LC 13), 15=-37 (LC 13)<br>LC 13), 17=-359 (LC 10 | -8,<br>-8 3)<br>2),<br>), | see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 Pl<br>snow); Pf=13<br>Plate DOL=1<br>Ct=1.10<br>This truss ha | I Industry Gable Er<br>alified building desi<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pg<br>0.9 psf (flat roof sno<br>.15); Category II; E<br>s been designed fo<br>psf or 2.00 times flat | id Detai<br>igner as<br>(roof live<br>=20.0 p<br>w: Lum<br>xp B; Fi<br>or greate | Is as applicab<br>per ANSI/TF<br>e load: Lumbo<br>sf (ground<br>ber DOL=1.1<br>ully Exp.;<br>er of min roof | ble,<br>PI 1.<br>er<br>5<br>live |                   |                        |                     |                                         | 111111                                                               |
|                                        | 12=165<br>14=166                                                                     | (LC 12), 11=200 (LC 9)<br>(LC 25), 13=171 (LC 25<br>(LC 25), 15=168 (LC 25<br>(LC 25), 17=291 (LC 11<br>(LC 10)                | 5), 5), 5), 5)            | overhangs no<br>All plates are<br>Gable require<br>Truss to be f                                                      | on-concurrent with<br>2x4 MT20 unless<br>es continuous botto<br>ully sheathed from                                                                                                       | other liv<br>otherwis<br>m chore<br>one face                                     | e loads.<br>e indicated.<br>d bearing.<br>e or securely                                                     |                                  |                   |                        | 6                   | THUN ATH                                | CARO                                                                 |
| FORCES                                 | (lb) - Maximum Co<br>Tension                                                         | npression/Maximum                                                                                                              | 8)                        | Gable studs                                                                                                           | st lateral movemer<br>spaced at 2-0-0 oc.                                                                                                                                                |                                                                                  | <b>o</b> ,                                                                                                  |                                  |                   |                        | 11                  |                                         |                                                                      |
| TOP CHORD                              | 2-18=-638/523, 1-2<br>3-4=-535/488, 4-5=                                             | =0/46, 2-3=-769/682,<br>-462/427, 5-6=-391/369<br>-254/259, 8-9=-142/15<br>1=-225/187                                          | 1,                        | on the botton<br>3-06-00 tall b<br>chord and an                                                                       | as been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>by other members.                                                                                                   | where a fit betw                                                                 | a rectangle<br>een the botto                                                                                | m                                |                   |                        | CHILDEN.            | •                                       | SEAL<br>36322                                                        |
| BOT CHORD                              | 17-18=-160/175, 10<br>15-16=-160/175, 14<br>13-14=-159/174, 12<br>11-12=-159/174     | 1-15=-159/174,                                                                                                                 | 10                        | using ANSI/T                                                                                                          | int(s) 10 considers<br>PI 1 angle to grain<br>uld verify capacity o                                                                                                                      | formula                                                                          | . Building                                                                                                  | ÷                                |                   |                        | S                   | AND | GINEER                                                               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




March 18,2020

| Job        | Truss | Truss Type   | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|--------------|-----|-----|--------------------------|-----------|
| 20020068-A | Τ4    | Roof Special | 4   | 1   | Job Reference (optional) | E14200256 |

Run: 8 33 S. Mar 10 2020 Print: 8 330 S.Mar 10 2020 MiTek Industries. Inc. Wed Mar 18 12:39:42 ID:bhBDpWWtO3XsMHV2JC0WEYzaNPh-HcKi?Mr6pu2MzjbNvjizq3NLCpb7pL0wgz\_Th?zZi2V

Page: 1



R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BOT CHORD 2-9=-210/845, 8-9=-210/845, 7-8=-210/845, 6-7=-98/240 WEBS 3-9=0/84, 3-7=-417/179, 4-7=-24/305, 5-7=-15/293

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

FORCES

LUMBER

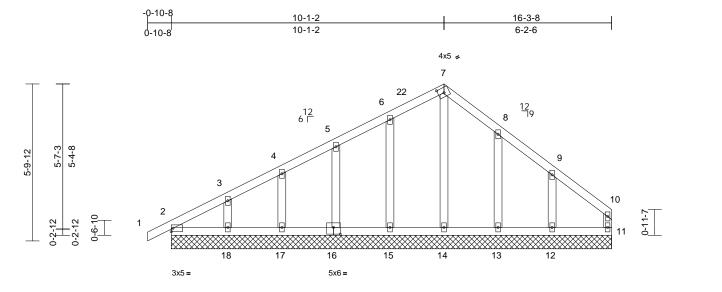
1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




| Job        | Truss | Truss Type                   | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T4GE  | Roof Special Supported Gable | 1   | 1   | Job Reference (optional) | E14200257 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:43 ID:3tlb1sXV9Mfj\_R4EtvYImIzaNPg-HcKi?Mr6pu2MzjbNvjizq3NSLpgwpOawgz\_Th?zZi2V

Page: 1

SINFERING

818 Soundside Road Edenton, NC 27932



| 16-3-8 |
|--------|
|        |

# Plate Offsets (X, Y): [7:0-2-10,0-2-4], [16:0-3-0,0-3-0]

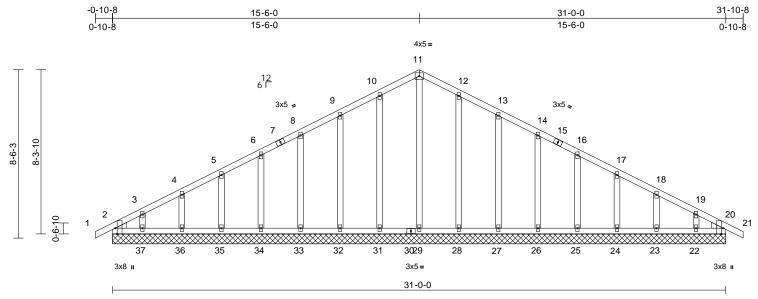
Scale = 1:42.6

|                                                                                                      | 7, 1). [7.0-2-10,0-2-4                                                                                                                                                                                                         | j, [10.0-3-0,0-3-0]                                                                                                                                                                        |                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                                        |                              |                       |                             |                           |                                                             |                                       |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|-----------------------------|---------------------------|-------------------------------------------------------------|---------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                       | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015             | 5/TPI2014                                                                                                                                                                                                                    | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                              | 0.07<br>0.03<br>0.06                                                                                                                       | - ( )                                                                                                                                                                                                  | in<br>n/a<br>n/a<br>0.00     | (loc)<br>-<br>-<br>11 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a  | PLATES<br>MT20<br>Weight: 86 lb                             | <b>GRIP</b><br>244/190<br>FT = 20%    |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 2=16-3-8<br>13=16-3-1<br>19=16-3-1<br>19=16-3-3<br>Max Horiz 2=119 (Lt | applied or 10-0-0 oc<br>, 11=16-3-8, 12=16-3-<br>3, 14=16-3-8, 15=16-3-<br>3, 17=16-3-8, 18=16-3-<br>3<br>C 14), 19=119 (LC 14                                                             | 2)<br>d or<br>3)<br>-8,<br>3-8,<br>3-8,<br>4)       | this design.<br>Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp E<br>Exterior (2) z<br>vertical left a<br>forces & MW<br>DOL=1.60 pl<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 Pl | I<br>roof live loads have<br>7-10; Vult=130mp<br>bh; TCDL=6.0psf; E<br>s; Enclosed; MWFF<br>and right exposed;C<br>FRS for reactions<br>ate grip DOL=1.33<br>need for wind loads<br>ds exposed to win<br>d Industry Gable En<br>alified building des<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); Pg<br>.9 psf (flat roof sno | h (3-sec<br>BCDL=6<br>RS (envi<br>and rig<br>C-C for n<br>shown;<br>in the pl<br>d (norm<br>nd Detai<br>signer as<br>(roof liv<br>g=20.0 p | cond gust)<br>.0psf; h=25ft;<br>elope) and C-C<br>ht exposed ; el<br>nembers and<br>Lumber<br>ane of the trus<br>al to the face),<br>ils as applicab<br>s per ANSI/TPI<br>e load: Lumbe<br>ssf (ground | nd<br>ss<br>le,<br>l 1.<br>r | Ínte                  | rnationa<br>2.10.2 a        | I Resid                   | ned in accordance<br>lential Code secte<br>erenced standard | e with the 2015<br>ions R502.11.1 and |
| FORCES                                                                                               | 16=-21 (L<br>18=-31 (L<br>Max Grav 2=146 (L<br>12=191 (I<br>14=139 (I<br>16=161 (I                                                                                                                                             | C 16), 15=-18 (LC 15<br>C 15), 17=-17 (LC 15<br>C 15), 19=-18 (LC 11<br>C 30), 11=86 (LC 2),<br>C 30), 13=169 (LC 3<br>C 32), 15=170 (LC 3<br>LC 2), 17=157 (LC 2),<br>C 33), 19=146 (LC 3 | 5),<br>5), 5)<br>(0), 6)<br>(3), 7)<br>(0) 7)<br>8) | Plate DOL=1<br>Ct=1.10<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs no<br>All plates are<br>Gable require                                                                                          | .15); Category II; E<br>snow loads have b<br>s been designed fo<br>osf or 2.00 times fil<br>on-concurrent with<br>2x4 MT20 unless<br>es continuous botto                                                                                                                                                                | Exp B; F<br>been cor<br>or greate<br>at roof lo<br>other liv<br>otherwis<br>om chor                                                        | ully Exp.;<br>nsidered for thi<br>er of min roof li<br>pad of 13.9 psf<br>ve loads.<br>se indicated.                                                                                                   | s<br>ive                     |                       |                             |                           | UNITH SEE                                                   | CARO                                  |
| TOP CHORD                                                                                            | Tension<br>1-2=0/30, 2-3=-111/<br>4-5=-114/68, 5-6=-1                                                                                                                                                                          | 50, 3-4=-100/51,<br>35/111, 6-22=-150/15<br>154/171, 8-9=-97/10                                                                                                                            | 52,<br>04,                                          | ) * This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar                                                                                                                                                          | spaced at 2-0-0 oc<br>las been designed<br>n chord in all areas<br>by 2-00-00 wide wil<br>by other members.                                                                                                                                                                                                             | for a liv<br>where<br>I fit betw                                                                                                           | a rectangle<br>veen the bottor                                                                                                                                                                         | m                            |                       |                             | Contraction of the second |                                                             | SEAL<br>36322                         |
| BOT CHORD                                                                                            | 2-18=-90/40, 17-18=                                                                                                                                                                                                            | =-29/36, 16-17=-29/36<br>5=-27/34, 13-14=-27/3                                                                                                                                             | 5, '                                                | truss to bear<br>18, 13, and 1                                                                                                                                                                                               | SP connectors rec<br>ing walls due to UF<br>2. This connection<br>sider lateral forces                                                                                                                                                                                                                                  | PLIFT at                                                                                                                                   | jt(s) 2, 15, 17,                                                                                                                                                                                       |                              |                       |                             | 1111                      |                                                             | R A                                   |
| WEBS                                                                                                 |                                                                                                                                                                                                                                | =-129/83, 5-16=-121/8<br>=-123/93, 8-13=-136/8                                                                                                                                             |                                                     | One RT16A<br>truss to bear<br>connection is                                                                                                                                                                                  | USP connectors re<br>ing walls due to UF<br>for uplift only and                                                                                                                                                                                                                                                         | comme<br>PLIFT at                                                                                                                          | jt(s) 16. This                                                                                                                                                                                         |                              |                       |                             |                           | A A A                                                       | GILBERT                               |
| NOTES                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                     | forces.                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                                        |                              |                       |                             |                           | Marcl                                                       | n 18,2020                             |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

| Job        | Truss | Truss Type | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| 20020068-A | Т5    | Common     | 9   | 1   | Job Reference (optional) | E14200258 |

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:43 ID:X4I\_ECY7vgnabbfRQc3\_JzzaNPf-lpu4CiskZCADbtAZTQDCNHwQiDqzYnq3udk0DRzZi2U

Page: 1

|                                                                                        | -0-1(<br>                                                                                                                                                                                                                                                                                         | 7 5 1                                                                                                                                                  |                                                                                                                                                                                                                         | <u>15-6-0</u><br>7-8-4                                                                                                                                                                                                                                                                             | 4x6=                                                                                                                                                                                                      | 23-2-4<br>7-8-4                               |                                             | <u>31-0-0</u><br>7-9-12                                           | 31-10-8<br>0-10-8                                |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|
|                                                                                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>6-3<br>3<br>-10<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>-10<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>-10<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5x6=                                                                                                                                                   | 6 <sup>12</sup><br>3x5 =<br>3 4<br>18<br>2x4 y                                                                                                                                                                          | 25<br>16<br>3132<br>17<br>2728<br>3x5 = MT<br>2x4 =                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                         | 26<br>13<br>11<br>2x4=<br>3x5=                |                                             | 0<br>10<br>10<br>10                                               | 8 9<br>5x6=                                      |
| Scale = 1:65.4                                                                         |                                                                                                                                                                                                                                                                                                   | 6-3-5<br>6-3-5                                                                                                                                         | <u> </u>                                                                                                                                                                                                                | 11-3-5<br>11-2-4 15-1-0<br>0-5-2 3-9-11<br>0-1-1                                                                                                                                                                                                                                                   | 15-6-0 <u>19-8-1</u><br>0-5-0 4-2-11                                                                                                                                                                      |                                               | 24-8-11<br>4-5-13                           | <u>31-0-0</u><br>6-3-5                                            |                                                  |
| Plate Offsets (                                                                        | (X, Y): [2:Edge,0-1-1                                                                                                                                                                                                                                                                             | 0], [8:Edge,0-1-10], [                                                                                                                                 | 15:0-4-0,Edge]                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                         |                                               |                                             |                                                                   |                                                  |
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                         | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                         | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                         | 0.92 Vert(LL)<br>0.81 Vert(CT<br>0.31 Horz(CT                                                                                                                                                             |                                               | (loc) l/defl<br>14 >999<br>14 >538<br>8 n/a | L/d <b>PLATES</b><br>240 MT20<br>180 MT18HS<br>n/a<br>Weight: 170 | <b>GRIP</b><br>244/190<br>244/190<br>Ib FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP 2400F 2.0E<br>No.2<br>2x4 SP No.3 *Exce<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3<br>Structural wood she                                                                                                                                                                                  | eathing directly appli<br>y applied or 10-0-0 o                                                                                                        | o.2 Vasd=103<br>SP Cat. II; Ex<br>Exterior (2<br>No.2 vertical lef<br>forces & M<br>DOL=1.60<br>3) TCLL: AS:<br>DOL=1.15<br>c snow); Pf=<br>Plate DOL<br>Ct=1.10                                                        | CE 7-10; Vult=130mp<br>mph; TCDL=6.0psf; l<br>b B; Enclosed; MWFI<br>b D; cone; cantilever left<br>t and right exposed; C<br>WVFRS for reactions<br>plate grip DOL=1.33<br>CE 7-10; Pr=20.0 psf<br>Plate DOL=1.15); P:<br>13.9 psf (flat roof sn<br>=1.15); Category II; l<br>ed snow loads have b | BCDL=6.0psf; h=2<br>RS (envelope) and<br>t and right expose<br>C-C for members a<br>shown; Lumber<br>shown; Lumber<br>f (roof live load: Lu<br>g=20.0 psf (groun<br>ow: Lumber DOL=<br>Exp B; Fully Exp.; | d C-C<br>d ; end<br>and<br>mber<br>d<br>:1.15 |                                             |                                                                   |                                                  |
| REACTIONS<br>FORCES<br>TOP CHORD                                                       | Max Horiz 2=-88 (L)<br>Max Grav 2=1480 (<br>(lb) - Maximum Cor<br>Tension<br>1-2=0/30, 2-3=-251                                                                                                                                                                                                   | C 13)<br>(LC 2), 8=1480 (LC 2<br>mpression/Maximum<br>8/219, 3-4=-2314/15                                                                              | design.<br>5) This truss<br>load of 12<br>overhangs<br>6) 200.0lb A0<br>4, from left e                                                                                                                                  | has been designed f<br>0 psf or 2.00 times fl<br>non-concurrent with<br>C unit load placed on<br>nd, supported at two                                                                                                                                                                              | or greater of min r<br>at roof load of 13.<br>other live loads.<br>the bottom chord<br>points, 5-0-0 apar                                                                                                 | oof live<br>9 psf on<br>15-6-0<br>t.          |                                             |                                                                   |                                                  |
| BOT CHORD                                                                              | 2-18=-235/2173, 17<br>17-27=0/1624, 27-2<br>12-15=0/1624, 12-2<br>11-30=0/1624, 10-1<br>8-10=-81/2159, 16-<br>14-32=-116/0, 14-3                                                                                                                                                                  | 26=-2299/174,<br>5=-2518/219, 8-9=0/3<br>7-18=-72/2199,<br>28=0/1624, 15-28=0/<br>29=0/1624, 29-30=0/                                                  | 8) * This trus<br>0 on the bot<br>3-06-00 ta<br>1624, chord and<br>1624, 9) This truss<br>Internation<br>16/0, R802.10.2                                                                                                | are MT20 plates unle<br>s has been designed<br>tom chord in all area:<br>Il by 2-00-00 wide wi<br>any other members,<br>is designed in accord<br>is designed in accord<br>and referenced stan<br><b>5)</b> Standard                                                                                | I for a live load of a<br>s where a rectang<br>II fit between the b<br>with BCDL = 10.0<br>dance with the 20<br>sections R502.11                                                                          | 20.0psf<br>le<br>ottom<br>lpsf.<br>I 5        |                                             | CIT OFT                                                           | A CARO                                           |
| WEBS                                                                                   | 5-16=0/970, 5-13=0                                                                                                                                                                                                                                                                                | 444/326, 16-17=-27/8<br>D/970, 11-13=-27/818<br>0=-85/2, 12-14=-92/0                                                                                   | l,                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                               |                                             |                                                                   | SEAL<br>036322                                   |
| NOTES<br>1) Unbalance<br>this design                                                   | ed roof live loads have                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                               |                                             | in C                                                              | A. GILBERT                                       |
| Design va<br>a truss sy<br>building o<br>is always<br>fabricatio                       | valid for use only with MiTek<br>ystem. Before use, the build<br>design. Bracing indicated is<br>s required for stability and to<br>on, storage, delivery, erectio                                                                                                                                | ® connectors. This design<br>ding designer must verify the<br>s to prevent buckling of ind<br>prevent collapse with pos<br>on and bracing of trusses a | DN THIS AND INCLUDED MIT<br>is based only upon paramete<br>e applicability of design para<br>vidual truss web and/or chorr<br>sible personal injury and prop<br>nd truss systems, see<br>I. Lee Street, Suite 312, Alex | rs shown, and is for an ind<br>meters and properly incorp<br>d members only. Additiona<br>erty damage. For general<br>ANSI/TPI1 Quality Crit                                                                                                                                                       | lividual building compo<br>porate this design into t<br>al temporary and perma<br>guidance regarding th                                                                                                   | nent, not<br>he overall<br>anent bracing<br>e | ponent                                      | TRI<br>818 Soundsid<br>Edenton, NC                                |                                                  |

| Job        | Truss | Truss Type             | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T5GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | E14200259 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:44 ID:?GsMSYZIg\_vRDIEd\_KaDrAzaNPe-D?SSQ2tMKWI4D1II18kRwUSordMJHGWD7HTaluzZi2T



Scale = 1:58.2

# Plate Offsets (X, Y): [2:0-3-8,Edge], [20:0-3-8,Edge]

|                                                                | A, T). [2.0                                                                                                                 | -3-6,Eugej,                                                                                                                                                                                                                                                                                                                         | [20.0-3-6,Euge]                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | 1                                                                                                                           | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                     | T<br>B<br>W                                                                                                                       | SI<br>C<br>SC<br>VB<br>Matrix-MSH                        | 0.07<br>0.03<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.00                                                      | ·                    | oc) l/defl<br>- n/a<br>- n/a<br>41 n/a                                                                                                                                                                                                                               |                                                                                                                                                                        | PLATES<br>MT20<br>Weight: 192 lb                                                                                                                                                                                                                                                                                             | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                      |
|                                                                | 2x4 SP N<br>2x4 SP N<br>29-11,31-<br>Left: 2x4<br>Right: 2x4<br>Structura<br>6-0-0 oc  <br>Rigid ceil<br>bracing.<br>(size) | Io.2<br>Io.3 *Excep<br>10,32-9,28<br>SP No.3<br>4 SP No.3<br>Il wood shea<br>purlins.<br>Iing directly<br>2=31-0-0,<br>23=31-0-0<br>26=31-0-0<br>23=31-0-0<br>33=31-0-0<br>33=31-0-0<br>33=31-0-0<br>2=-88 (LC<br>23=-18 (L<br>23=-18 (L<br>23=-18 (L<br>23=-18 (L<br>23=-18 (L<br>23=-19 (L<br>33==19 (L<br>33==19 (L<br>35=-20 (L | -12,27-13:2x4 SP No<br>athing directly applied<br>applied or 10-0-0 oc<br>20=31-0-0, 22=31-0<br>0, 24=31-0-0, 28=31-<br>0, 31=31-0-0, 32=31-<br>0, 31=31-0-0, 38=31-<br>0, 37=31-0-0, 38=31- | d or<br><b>FORCES</b><br>-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>0-0,<br>BOT CHORD<br>5),<br>5),<br>5),<br>5),<br>5),<br>5), | (lb)<br>Ten<br>1-2:<br>4-5:<br>7-8-8<br>10-<br>12<br>14<br>17<br>20<br>2-3:<br>35<br>33<br>33<br>33<br>29<br>29<br>29<br>29<br>29 | 24=159<br>26=160<br>28=197<br>31=197<br>33=160<br>35=159 | (LC 34),<br>(LC 34),<br>(LC 34),<br>(LC 23),<br>(LC 22),<br>(LC 33),<br>(LC | 23=165 (LC 2<br>25=160 (LC 2<br>27=159 (LC 2<br>27=159 (LC 2<br>32=159 (LC 2<br>32=159 (LC 2<br>34=160 (LC 2<br>36=165 (LC 2<br>38=122 (LC 2<br>on/Maximum<br>4=-90/60,<br>7=-57/90,<br>>10=-76/192,<br>/237,<br>/142,<br>10, 16-17=-39/4<br>29, 19-20=-104,<br>31,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/132,<br>/142,<br>10, 16-17=-39/4<br>29, 19-20=-104,<br>31,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/132,<br>/132,<br>/142,<br>10, 16-17=-39/4<br>29, 19-20=-114,<br>31,<br>/131,<br>/131,<br>/131,<br>/131,<br>/131,<br>/132,<br>/132,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/143,<br>/131,<br>/131,<br>/131,<br>/132,<br>/142,<br>/142,<br>/142,<br>/143,<br>/131,<br>/131,<br>/132,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/143,<br>/143,<br>/143,<br>/143,<br>/143,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142,<br>/142, | ),<br>),<br>),<br>),<br>),<br>),<br>),<br>,<br>/43,<br>//43,<br>//866,<br>32, | 2) 2) 3) 4) 4) 5) 10 | this design<br>Wind: ASC<br>Vasd=1037<br>Cat. II; Exp<br>Exterior (2)<br>vertical left<br>forces & M<br>DOL=1.60<br>Truss desi<br>only. For s<br>see Standa<br>or consult of<br>TCLL: ASC<br>DOL=1.15<br>Snow); Pf=<br>Plate DOL=<br>Ct=1.10<br>Unbalance<br>design. | E 7-10<br>mph; TC<br>B; Enc<br>zone;<br>and ric<br>WFRS<br>plate g<br>gned fc<br>tuds ex<br>ard Ind<br>qualifier<br>E 7-10<br>Plate D<br>13.9 ps<br>= 1.15);<br>d snow | ; Vult=130mph (;<br>CDL=6.0psf; BCI<br>closed; MWFRS<br>cantilever left ar<br>ght exposed;C-C<br>for reactions sho<br>rip DOL=1.33<br>or wind loads in 1<br>xposed to wind (i<br>ustry Gable End<br>d building desigr<br>; Pr=20.0 psf (ro<br>DOL=1.15); Pg=2<br>of (flat roof snow:<br>Category II; Exp<br>r loads have bee | DL=6.0psf; h=25ft;<br>(envelope) and C-C<br>dright exposed; end<br>for members and<br>own; Lumber<br>the plane of the truss<br>normal to the face),<br>Details as applicable,<br>her as per ANSI/TPI 1.<br>sof live load: Lumber<br>20.0 psf (ground<br>Lumber DOL=1.15 |
|                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                        | Maria                                                                                                                                                                                                                                                                                                                        | h 40.0000                                                                                                                                                                                                                                                               |

March 18,2020

Page: 1



Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek/® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



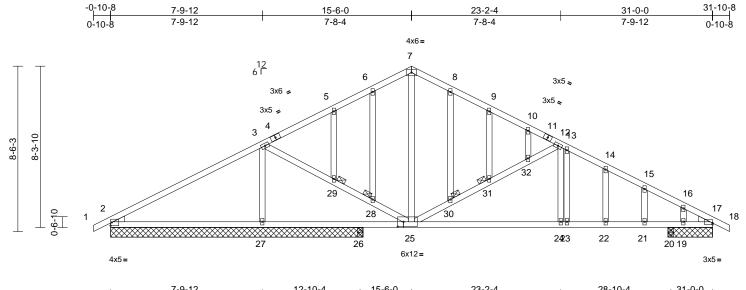
| Job        | Truss | Truss Type             | Qty | Ply | 19 Sweetwater-Roof       |           |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|
| 20020068-A | T5GE  | Common Supported Gable | 1   | 1   | Job Reference (optional) | E14200259 |

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

- 10) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 31, 32, 33, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, and 22. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:44 ID:?GsMSYZIg\_vRDIEd\_KaDrAzaNPe-D?SSQ2tMKWI4D1II18kRwUSordMJHGWD7HTaluzZi2T Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| ŀ | Job        | Truss | Truss Type              | Qty | Ply | 19 Sweetwater-Roof       |           |
|---|------------|-------|-------------------------|-----|-----|--------------------------|-----------|
| 1 | 20020068-A | T5SE  | Common Structural Gable | 1   | 1   | Job Reference (optional) | E14200260 |

Run: 8.33 S Mar 10 2020 Print: 8.330 S Mar 10 2020 MiTek Industries, Inc. Wed Mar 18 12:39:44 ID:TSQkfuaNRH1IruppY15SONzaNPd-D?SSQ2tMKWI4D1II18kRwUSe6dCUHCID7HTaluzZi2T



| L                               | 7-9-12                    | 12-10-4 | 15-6-0 | 23-2-4 | 28-10-4 | 31-0-0 |   |
|---------------------------------|---------------------------|---------|--------|--------|---------|--------|---|
| Г                               | 7-9-12                    | 5-0-8   | 2-7-12 | 7-8-4  | 5-8-0   | 2-1-12 |   |
| Scale = 1:59.3                  |                           |         |        |        |         |        |   |
| Plate Offsets (X, Y): [17:Edge, | 0-0-14], [25:0-3-8,0-3-0] |         |        |        |         |        |   |
|                                 |                           |         |        |        |         |        | _ |

| BL (mod)         2.0.0<br>(mP(PFg)         Plase Ginp DOL<br>1.15<br>(mode PDF)         1.15<br>(mode PDF)         TC         0.75<br>(WB         Vert(CT)         0.06         27.35<br>(27.35<br>(27.35)         998<br>(20.45)         240<br>(WB         MT20         244/190           DL         0.00         Code         IRC2015/TF12014         WB         0.43         Horz(CT)         0.04         17         n/a         n/a           MMER         Rep Stress Incr         YES         WES         0.04         Horz(CT)         0.04         17         n/a         n/a           MMER         Rep Strespin 23         Except 12-24,327.24 SP         Strespin 12-24,327.27.27.27.27.27.27.27.27.27.27.27.27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|-------------------------------------------------------|------------------------------|-------------|-------------------------|---------|---------------------|----------|--------------------------------------------------|-----------|--------|-------------------|----------------------------|--|
| Box         (Pirg)         13.9/20.0         Lumber DOL         1.15         Rep Stress incr         YES           2LL         10.0         Code         YES         Code         0.68         Verr(CT)         0.04         17         r/a         r/a           2DL         10.0         Code         YES         Code         0.68         Verr(CT)         0.04         17         r/a         r/a           2DL         10.0         Code         YES         Code         Verr(CT)         0.04         17         r/a         r/a           2DL         10.0         Code         YES         Code         Verr(CT)         0.04         17         r/a         r/a           2DL         10.0         Code         YES         Scaes         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Loading                                                                                                    |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | -                 |                            |  |
| DL         10.0<br>(Code         Rep Briess Incr         YES<br>(Rec 2015/TPI2014         WB         0.43<br>(Matrix-MSH         Horz(CT)         0.04         17         n/a         n/a           MBER<br>(PC CMOR)         2x4 SP No.2         (Code         (Rec 2015/TPI2014         Matrix-MSH         (Matrix-MSH         (Meight: 194 lb         FT = 20%           MBER<br>(PC CMOR)         2x4 SP No.2         (Framework)         (Framework) </td <td>TCLL (roof)</td> <td>20</td> <td>.0</td> <td></td> <td>1.15</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>MT20</td> <td>244/190</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TCLL (roof)                                                                                                | 20                                         | .0    |                                                       | 1.15                         |             | -                       |         |                     |          |                                                  |           |        | MT20              | 244/190                    |  |
| 21.L         0.0°         Code         IRC2015/TTPI2014         Matrix-MSH         Weight: 194 lb         FT = 20%           DBER         PCHORD         2x4 SP No.2         2x3 SP No.2         2x4 SP No.2         2x3 SP No.2         2x3 SP No.2         2x4 SP No.2         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x4 SP No.3         3x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         3x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         2x3 SP No.3         3x3 SP SP N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Snow (Pf/Pg)                                                                                               | 13.9/20                                    | .0    | Lumber DOL                                            |                              |             |                         | 0.66    | Vert(CT) -0         | 0.18     | 27-35                                            | >529      | 180    |                   |                            |  |
| DL     10.0     Weight: 194 lb     FT = 20%       MMBER<br>PC CHORD<br>244 SP No.2     BOT CHORD<br>244 SP No.2     Solution     EVENCE     2-27=215/277, 26-27=-70/277, 26-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/277, 25-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=-70/278, 15-27=70.     9) This trus is have been designed for an obse description of this design.     9) This trus is have been designed for an obse description of this design.       INTS     11 Brace at 1(15): 228, 20-238, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38, 10-2-38,                                                                                                                                                                                                                                                                                                                                                                                                         | TCDL                                                                                                       | 10                                         | .0    | Rep Stress Incr                                       | YES                          |             | WB                      | 0.43    | Horz(CT) 0          | 0.04     | 17                                               | n/a       | n/a    |                   |                            |  |
| <ul> <li>MBER<br/>PC HORD 2:4 SP No.2</li> <li>MACHOR 2:4 SP No.2</li> <li>PC HORD 2:4 SP No.2</li> <li>Sz 4 SP No.2 * Except 12:24,3-27:2x4 SP<br/>No.3</li> <li>CHORD 2:4 SP No.3 * Except 12:24,3-27:2x4 SP<br/>No.3</li> <li>THERS 2:4 SP No.3 * Except 12:24,3-27:24,3-27:2-946/307, 12:24194/1139, 21:2-3-946/307, 12:2494/17, 13:23-36/97, 13:23569/205, 9:3-1-97/86, 10:32-33/47, 13:23569/205, 9:3-1-97/86, 10:32-33/47, 13:23569/207, 12:24194/139, 21:2-3-946/307, 12:24194/139, 12:23-946/51, 12:23-946/51, 12:23-946/51, 12:23-946/50, 12:24194/139, 14:22-71/27, 15:21=-143/92, 16:19-83/79</li> <li>NTS 1 Tarce at JI(s): 28, 23-940/51, 0:25-28-90/526, 9:3-19-97/86, 10:25, 32-99-96/51, 22:3-90-95/16, 20:26, 12:24, 32:29-96/51, 22:24-96/57, 12:24-96/51, 22:24-96/51, 22:24-96/57, 12:24-96/51, 22:24-96/51, 22:24-96/57, 12:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51, 22:24-96/51,</li></ul>                                                                                                                                                                                                                                                                                 | BCLL                                                                                                       | 0                                          | .0*   | Code                                                  | IRC2                         | 015/TPI2014 | Matrix-MSH              |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>22-32-70277, 24-25-81-70277, 24-25-34-714739, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1139, 22-23-194/1149, 22-23-194/1149, 22-23-194/1149, 22-23-194/1149, 22-23-194/1149, 22-21-23-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-21/12, 22-23, 22-23-40/114, 22-23/14, 22-21/12, 22-23, 22-23-2</li></ul>                                                                                                                                                                                                                                                     | BCDL                                                                                                       | 10                                         | .0    |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | Weight: 194 lb    | FT = 20%                   |  |
| <ul> <li>2x4 SP No.2 * Except 32:-24.32-324.32 * 134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/1139, 20:21=134/20:21, 20:21=21:21=143/92, 16:19=137, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/1139, 20:20=134/111, 20:20/11, 20:20=133/11, 20:20=133/11, 20:20=134/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=133/11, 20:20=139/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20:20=134/11, 20</li></ul>                                                                                                                                                                                                                                                     | LUMBER                                                                                                     |                                            |       |                                                       |                              | BOT CHORD   | 2-27=-215/277, 26-2     | 27=-70  | /277,               |          | 8) Gab                                           | le studs  | space  | ed at 2-0-0 oc.   |                            |  |
| <ul> <li>Zixá Sp No.2 * Except* 12-24,327:2x4 SP No.2 * Except* 12-24,327:2x4 SP No.3 * Except* 12-24,327:2x4 SP No.3 * Except* 28-6,30-8:2x4 SP No.2 * Except* 28-6,30-8:2x4 SP No.3 * Except* 28-6,10-20 cm members</li> <li>P CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 38-130-0, 38-28-8; Except* 28-14,02-3, 28-23-8; Except* 28-3,02-23-8; Except* 28-3,02-23-8</li></ul>                                                                                                                                                                                                                                                 | TOP CHORD                                                                                                  | 2x4 SP No.2                                |       |                                                       |                              |             | 25-26=-70/277, 24-2     |         | 9) * Thi            | is truss | uss has been designed for a live load of 20.0psf |           |        |                   |                            |  |
| <ul> <li>No.3</li> <li>No.4 Broken Laber Labor Labor</li></ul>                                                                                                                                                                                                                                                         | BOT CHORD                                                                                                  | 2x4 SP No.2                                |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>THERS 244 SP No.3 *Except* 28-6,30-8:2x4 SP No.2 Left: 2x4 SP No.3 (2x4 SP</li></ul>                                                                                                                                                                                                                                                 | WEBS                                                                                                       | 2x4 SP No.2 *E                             | xcept | t* 12-24,3-27:2x4 SP                                  |                              |             |                         |         |                     |          |                                                  |           |        |                   | t between the bottom       |  |
| <ul> <li>Actione Left: 2x4 SP No.3<br/>Right: 2x4 SP No.3<br/>Structural wood sheathing directly applied or 40-00 oc<br/>bracing.</li> <li>DT CHORD Structural wood sheathing directly applied or 10-00 oc<br/>bracing.</li> <li>DT CHORD Rigid ceiling directly applied or 10-00 oc<br/>bracing.</li> <li>NTTS 1 Brace at 11(5): 28,<br/>29, 30, 31</li> <li>SACTIONS (size) 2 = 13.0-0, 17=2-3.8, 19=2-3.8,<br/>20=0-3.8, 26=0-3.8, 27=13-0-0,<br/>33=13-0-0, 36=2-3.8</li> <li>Max Horiz 2 = 88 (LC 13), 30=-88 (LC 15),<br/>33=-45 (LC 33), 33=-88 (LC 15),<br/>20=-34 (LC 16), 20=-620 (LC 2),<br/>20=-34 (LC 33), 36=-912 (LC 2),<br/>20=-34 (LC 16), 20=-620 (LC 2),<br/>20=-54 (LC 2), 20=-620 (LC 2),<br/>20=-54 (LC 2), 20=-620 (LC 2),<br/>20=-54 (LC 2), 20=-620 (LC 2),<br/>20=-54</li></ul> |                                                                                                            | No.3                                       |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>Right 2x4 SP No.3</li> <li>Right 2x4 SP</li></ul>                                                                                                                                                                                                                                                 | OTHERS                                                                                                     |                                            |       | t* 28-6,30-8:2x4 SP N                                 | No.2                         | WEBS        |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>Acting<br/>P CHORD Structural wood sheathing directly applied or<br/>4-92 oc purlins.</li> <li>DT CHORD Rigid ceiling directly applied or 10-0-0 oc<br/>bracing.</li> <li>DT CHORD Bird a directly applied or 10-0-0 oc<br/>bracing.</li> <li>INITS 1 Brace at It(s): 28,<br/>29, 30, 31</li> <li>EACTIONS (size) 2=13-0-0, 17=2-3-8, 19=2-3-8,<br/>20-0-3-8, 26=0-3-8, 27=13-0-0,<br/>33=13-0-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13)<br/>Max Upifit 2=-36 (LC 16), 13=-624 (LC 2),<br/>20-3-34 (LC 16), 33=-36 (LC 15),<br/>Max Grav 2=-484 (LC 33), 33=-88 (LC 13),<br/>Max Upifit 2=-36 (LC 16), 03=-624 (LC 2),<br/>20-34 (LC 16), 20-620 (LC 2),<br/>33=-454 (LC 23), 27=-1122 (LC 2),<br/>33=-454 (LC 23), 35=-812 (LC 2),<br/>26=-49 (LC 34), 27=-1122 (LC 2),<br/>33=-454 (LC 33), 85=-112 (LC 2),<br/>19=-13 (LC 16), 20-620 (LC 2),<br/>26=-49 (LC 34), 27=-1122 (LC 2),<br/>74=5=-769/295, 5-6=-696/316, 6-7=-651732,<br/>74=5=-699/330, 89=-70/0/321, 9-10=-711/279,<br/>10=11758/284, 11-12=-776/276,<br/>12=139 (134-128/382,<br/>14+15=-1314/358, 15-16=-1304/3007,<br/>16=17=-1308/264, 17-118=0/30</li> <li>28-29-0/510, 25-28=-0/524, 3-27=-94/6/307,<br/>6-28=-39/295, 5-6=-696/316, 6-7=-651732,<br/>74=5=-769/295, 5-6=-696/316, 6-7=-651732,<br/>74=5=-649/330, 8=-70/0/271, 9-10=-711/279,<br/>10=11758/284, 11-12=-776/276,<br/>12-13=-1149/295, 13-14=-1268/382,<br/>14+15=-1314/358, 15-16=-1304/3007,<br/>16=17=-1308/264, 17-18=0/30</li> <li>28-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20, 29-20,</li></ul>                                                                                                                                                         | WEDGE                                                                                                      |                                            |       |                                                       |                              |             | ,                       |         | ,                   | -        |                                                  | ring plat | e capa | able of withstand | ling 34 lb uplift at joint |  |
| <ul> <li>CHCRG</li> <li>PP CHORD</li> <li>DT CHORD</li> <li>Rigid ceiling directly applied or 10-0-0 cbracing.</li> <li>INTS</li> <li>1 Brace at Jt(s): 28, 29-30-0, 17=2-3-8, 19=2-3-8, 20-0, 33=13-0-0, 33=13-0-0, 38=25-28, 20-3-8, 26=0-3-8, 27=13-0-0, 33=13-0-0, 33=13-0-0, 38=25-3-8</li> <li>MAX Horiz 2=-88 (LC 13), 33=-88 (LC 13)</li> <li>Max Horiz 2=-88 (LC 15), 19=-524 (LC 2), 20=-34 (LC 16), 33=-88 (LC 13)</li> <li>Max Lipitit 2=-36 (LC 15), 19=-524 (LC 2), 20=-34 (LC 16), 33=-88 (LC 12)</li> <li>Max Grav 2=454 (LC 33), 17=912 (LC 2), 26=49 (LC 34), 72=1122 (LC 2), 26=49 (LC 34), 72=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 72=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=-49 (LC 34), 36=912 (LC 34), 96=912 (LC 34), 96=912 (LC 34), 96=912 (LC</li></ul>                                                                                                                                                                                                                                                  |                                                                                                            | Right: 2x4 SP N                            | 0.3   |                                                       |                              |             |                         |         |                     | ·        |                                                  | DT- / ·   |        |                   |                            |  |
| <ul> <li>9-31-97/68, 10-32-31/47, 13-23-198/172, 14-22=-17/27, 15-21-143/92, 16-19=-83/79</li> <li>9-31-97/68, 10-32-31/47, 13-23-198/172, 14-22=-17/27, 15-21-143/92, 16-19=-83/79</li> <li>9-31-97/68, 10-32-31/47, 13-23-198/172, 14-22=-17/27, 15-21-143/92, 16-19=-83/79</li> <li>NOTES</li> <li>Unbalanced roof live loads have been considered for this design.</li> <li>SACTIONS (size) 2=13-0-0, 17=2-3-8, 19=2-3-8, 20=0-3-8, 27=13-0-0, 33=-13-0-0, 36=-2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13), 33=-845 (LC 15), 19=-524 (LC 2), 20=: cantilever left and right exposed; C-C for members and vertical left and right exposed; C-C for members and vertical left and right exposed; C-C for members and rol (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>PRCES (b) - Maximum Compression/Maximum Tension</li> <li>PP CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-786/295, 5-5=-696/316, 6-7=651/332, 7-8=-649/330, 8=-700/31, 9-10-711/279, 10-11=-758/284, 11-12=-776/276, 12-11-10; Pig=20.0 psf (ground sonw): Lumber DOL=1.15); Category II; Exp B; Fully Exp.; Ci=1.10</li> <li>PRCES (b) - Maximum Compression/Maximum Tension</li> <li>PP CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-768/295, 5-5=-696/316, 6-7=651/332, 7-10; Pi=20.0 psf (ground sonw): Lumber DOL=1.15); Category II; Exp B; Fully Exp.; Ci=1.10</li> <li>PC HORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-786/295, 15=-1304/307, 16-17=-1308/264, 17-18=-0/30</li> <li>PC HORD 1-2-1308/264, 17-1</li></ul>                                                                                                                                                                                                                                                 | BRACING                                                                                                    |                                            |       |                                                       |                              |             |                         |         |                     | ,        |                                                  |           |        |                   |                            |  |
| <ul> <li>14-92 do purints.</li> <li>14-92 do purints.</li> <li>14-22=-17/27, 15-21=-143/92, 16-19=-83/79</li> <li>14-22=-17/27, 15-21=-143/92, 16-19=-83/79</li> <li>14-22=-17/27, 15-21=-143/92, 16-19=-83/79</li> <li>15 race at Jt(s): 28, 29, 30, 31</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>10 unbalanced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>14 radianced roof live loads have been considered for this design.</li> <li>15 ratio radiance roof live loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Delatils as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>14 radianced roof live Call roof since Lamber 200 psf (roof live load: Lumber DOL=1.15); rescond psr ANSI/TPI 1.</li> <li>15 rate DoL=1.15); rate or prive roof live consult roof since Lumber DOL=1.15); rate or prive roof live plane of the truss on prive radiance and signed for greater of min roof live blane of the truss on prive radiance disting designer as per ANSI/TPI 1.</li> <li>15 rate DOL=1.15); rate or prive radiance and blane radiance disting designer as per ANSI/TPI 1.</li> <li>15 rate DOL=1.15); rate or prive radiance and blane radiance disting designer as per ANSI/TPI 1.</li> <li>15 rate and right radiance and blane radiance and blane radiance and radia</li></ul>                                                                                                                                                                                                                                                 | TOP CHORD                                                                                                  |                                            |       | athing directly applied                               | d or                         |             | ,                       | ,       | ,                   | 2        |                                                  |           |        |                   |                            |  |
| <ul> <li>NOTES</li> <li>NOTES</li> <li>NOTES</li> <li>I Brace at Jt(s): 28,<br/>29, 30, 31</li> <li>EACTIONS (size) 2=13-0-0, 17=2-3-8, 19=2-3-8,<br/>20=-0-3-8, 26=-0-3-8, 27=13-0-0,<br/>33=13-0-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13)<br/>Max Uplit 2=-36 (LC 15), 19=-524 (LC 2),<br/>20=-34 (LC 16), 33=-36 (LC 15),<br/>19=-13 (LC 16), 20=-620 (LC 2),<br/>26=49 (LC 34), 27=1122 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>26=49 (LC 34), 27=1122 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>26=49 (LC 34), 27=1122 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>26=49 (LC 34), 27=1122 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>12=-130 (LP4)255, 56=-6603616, 67-e613(32,<br/>7-8=-649/300, 8-9=-700/321, 9-10=-711/279,<br/>10=11=-758/284, 11-12=-776/276,<br/>12-13=-114/255, 154-14=2768/382,<br/>14+15=-1314/358, 15-16=-1304/307,<br/>16-17=-1308/264, 17-18=0/30</li> <li>NOTES</li> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> <li>NOTES</li> <li>Unbalanced roof live loads have been considered for this<br/>design.</li> <li>NOTES</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |                                            |       |                                                       |                              |             | ,                       |         | ,                   | ,        |                                                  |           |        | for upint only ar | iu uues not consider       |  |
| <ul> <li>INTS 18 race at Jt(s): 28, 29, 30, 31</li> <li>CACTIONS (size) 2=13-0-0, 17=2-3-8, 19=2-3-8, 20=0-3-8, 26=0-3-8, 27=13-0-0, 33=13-0-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13) Max Upift 2=-36 (LC 16), 19=-524 (LC 2), 20=-34 (LC 16), 33=-36 (LC 15)</li> <li>Max Grav 2=454 (LC 33), 17=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 36=163 (LC 36) (LC 34), 27=1122 (LC 2), 36=163 (LC 36) (LC 34), 27=1122 (LC 2), 26=49 (LC 34), 27=1129 (LC 34), 28=148 (LC 34</li></ul>                                                                                                                                                                                                                                                 | BOT CHORD                                                                                                  |                                            | ectly | applied or 10-0-0 oc                                  |                              |             | 14-2217/27, 13-2        | 1=-145  | /32, 10-13-03/13    |          |                                                  |           |        | ned in accordan   | ice with the 2015          |  |
| <ul> <li>INTS 29, 30, 31</li> <li>EACTIONS (size) 2=13-0-0, 17=2-3-8, 19=2-3-8, 20=0-3-8, 27=13-0-0, 33=13-0-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13), Max Uplift 2=-36 (LC 15), 19=-524 (LC 2), 20=-34 (LC 16), 20=620 (LC 2), 20=-34 (LC 16), 20=620 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 17=9112 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 12=-708 (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2</li></ul>                                                                                                                                                                                                                                                 |                                                                                                            | 0                                          |       |                                                       |                              |             | l an af là sa la a da l |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>29, 30, 31</li> <li>Charling (size)</li> <li>2=13-0-0, 38, 26=0-3-8, 27=13-0-0, 33=13-0-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13)</li> <li>Max Uplift 2=-36 (LC 15), 19=-524 (LC 2), 20=3-34 (LC 16), 33=-36 (LC 15)</li> <li>Max Grav 2=454 (LC 33), 17=912 (LC 2), 19=-13 (LC 16), 20=620 (LC 2), 20=49 (LC 34), 27=112 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 33=454 (LC 33), 86=912 (LC 2), 33=454 (LC 33), 17=912 (LC 2), 10 TCLL: ASCE 7-10; Pr=20.0 psf (root five load: Lumber DOL=1.15); Pg=20.0 psf (root five load: Shave been considered for this design.</li> <li>Unbalanced snow loads have been considered for this design.</li> <li>Unbalanced snow loads have been considered for this design.</li> <li>This trus has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 1400 (12.0 psf or</li></ul>                                                                                                                                                                                                                                                                                      |                                                                                                            |                                            |       |                                                       | this design.                 |             |                         |         |                     |          | R802.10.2 and referenced standard ANSI/TPI 1.    |           |        |                   |                            |  |
| <ul> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br/>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C</li> <li>Vasd=103mpt; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf;</li></ul>                                                                                                                                                                                                 |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>Decision, 27=130-0, 36=2-3-8</li> <li>Max Horiz 2=-88 (LC 13), 33=-88 (LC 13)</li> <li>Max Uplift 2=-36 (LC 15), 19=-524 (LC 2), 20=-34 (LC 16), 23=-36 (LC 15)</li> <li>Max Grav 2=454 (LC 33), 17=912 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2)</li> <li>DRCES (lb) - Maximum Compression/Maximum Tension</li> <li>DP CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-698/316, 6-7=-651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776(276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30</li> <li>Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; 0- c for members and vertical left and right exposed; 0- C for members and vertical left and right exposed; 0- c for subscende for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>TCLL: ASCE 7-10; PT=20.0 psf (froof live load: Lumber DOL=1.15); Page 20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15); Plate DOL=1.15); Plate DOL=1.15; P</li></ul>                                                                                                                                                                                                                                                 | REACTIONS                                                                                                  |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | liuaru            |                            |  |
| <ul> <li>b) Signature 13:000, 302-033</li> <li>b) Max Uplift 2=-36 (LC 13), 33=-88 (LC 13)<br/>Max Uplift 2=-36 (LC 15), 19=-524 (LC 2),<br/>20=-34 (LC 16), 33=-36 (LC 15)</li> <li>b) Max Grav 2=454 (LC 33), 17=912 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2)</li> <li>b) P CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277,<br/>4-55=-769/295, 5-6=-696/316, 6-7=-651/332,<br/>7-8=-649/330, 8-9=-700/321, 9-10=-711/279,<br/>10-11=-758/284, 11-12=-776/276,<br/>12-13=-1149/295, 13-14=-1268/382,<br/>14-15=-1314/358, 15-16=-1304/307,<br/>16-17=-1308/264, 17-18=0/30</li> <li>b) Charlen Composition of the trus of the true of the true</li></ul>                                                                                                                                                                                                              |                                                                                                            |                                            |       |                                                       | ),                           |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>Max Holiz 2=-86 (LC 15), 33=-86 (LC 15)</li> <li>Max Uplift 2=-36 (LC 15), 19=-524 (LC 2), 20=-34 (LC 16), 19=-524 (LC 2), 19=-13 (LC 16), 20=620 (LC 2), 26=49 (LC 34), 27=1122 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 33=454 (LC 33), 36=912 (LC 2), 33=454 (LC 33), 36=912 (LC 2)</li> <li>DRCES (lb) - Maximum Compression/Maximum Tension</li> <li>DP CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-696/316, 6-7=651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776/276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30</li> <li>Vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=-1.3</li> <li>Vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.3</li> <li>Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Category II; Exp B; Fully Exp.; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this design.</li> <li>This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                            | ,     |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| <ul> <li>Max Uplift 2=-36 (LC 15), 19=-524 (LC 2),<br/>20=-34 (LC 16), 33=-36 (LC 15)</li> <li>Max Grav 2=454 (LC 33), 17=912 (LC 2),<br/>19=-13 (LC 16), 20=620 (LC 2),<br/>26=49 (LC 34), 27=1122 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2),<br/>33=454 (LC 33), 36=912 (LC 2)</li> <li>DRCES (lb) - Maximum Compression/Maximum<br/>Tension</li> <li>DP CHORD 1-2=0/30, 2-3=-401/174, 3-4=-787/277,<br/>4-5=-769/295, 5-6=-696/316, 6-7=-651/332,<br/>7-8=-649/330, 8-9=-700/321, 9-10=-711/279,<br/>10-11=-758/284, 11-12=-776/276,<br/>12-13=-1149/295, 13-14=-1268/382,<br/>14-15=-1314/358, 15-16=-1304/307,<br/>16-17=-1308/264, 17-18=0/30</li> <li>forces &amp; MWFRS for reactions shown; Lumber<br/>DOL=1.33</li> <li>forces &amp; MWFRS for reactions shown; Lumber<br/>DOL=1.30</li> <li>forces &amp; MWFRS for reactions shown; Lumber<br/>DOL=1.15 (Pa=20.0 psf (roof live load: Lumber<br/>DOL=1.15); Pa=20.0 psf (ground<br/>snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15)<br/>Plate DOL=1.15); Category II; Exp B; Fully Exp.;<br/>Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> <li>This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| ORCES       (Ib) - Maximum Compression/Maximum Tension       or consult qualified building designer as per ANSI/TPI 1.         OP CHORD       1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-696/316, 6-7=-651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776/276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30       4)       TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15); Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10         SEAL       0.36322         Unbalanced snow loads have been considered for this design.       0.36322         This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on       9 Minumer Momental Maximum Minumer Maximum Minumer Maximum Minumer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20=-34 (LC 16), 33=-36 (LC 15)<br>Max Grav 2=454 (LC 33), 17=912 (LC 2),<br>19=-13 (LC 16), 20=620 (LC 2), |                                            |       | forces & MWFRS for reactions shown; Lumber            |                              |             |                         |         |                     |          |                                                  |           |        |                   |                            |  |
| ORCES       (Ib) - Maximum Compression/Maximum Tension       or consult qualified building designer as per ANSI/TPI 1.         OP CHORD       1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-696/316, 6-7=-651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776/276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30       4)       TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15); Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10         SEAL       0.36322         Unbalanced snow loads have been considered for this design.       0.36322         This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on       9 Minumer Momental Maximum Minumer Maximum Minumer Maximum Minumer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                            |       |                                                       | DOL=1.60 plate grip DOL=1.33 |             |                         |         |                     |          |                                                  |           | 1111   |                   |                            |  |
| ORCES       (Ib) - Maximum Compression/Maximum Tension       or consult qualified building designer as per ANSI/TPI 1.         OP CHORD       1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-696/316, 6-7=-651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776/276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30       4)       TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15); Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10         SEAL       0.36322         Unbalanced snow loads have been considered for this design.       0.36322         This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on       9 Minumer Momental Maximum Minumer Maximum Minumer Maximum Minumer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                            |       | only. For studs exposed to wind (normal to the face), |                              |             |                         |         |                     |          |                                                  | "TH       | CARO   |                   |                            |  |
| ORCES       (Ib) - Maximum Compression/Maximum Tension       or consult qualified building designer as per ANSI/TPI 1.         OP CHORD       1-2=0/30, 2-3=-401/174, 3-4=-787/277, 4-5=-769/295, 5-6=-696/316, 6-7=-651/332, 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, 10-11=-758/284, 11-12=-776/276, 12-13=-1149/295, 13-14=-1268/382, 14-15=-1314/358, 15-16=-1304/307, 16-17=-1308/264, 17-18=0/30       4)       TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15); Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10         SEAL       0.36322         Unbalanced snow loads have been considered for this design.       0.36322         This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on       9 Minumer Momental Maximum Minumer Maximum Minumer Maximum Minumer                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  | N'R'      |        |                   |                            |  |
| DRCES       (lb) - Maximum Compression/Maximum<br>Tension       or consult qualified building designer as per ANSI/TPL1.         DP CHORD       1-2=0/30, 2-3=-401/174, 3-4=-787/277,<br>4-5=-769/330, 8-9=-700/321, 9-10=-711/279,<br>10-11=-758/284, 11-12=-776/276,<br>12-13=-1149/295, 13-14=-1268/382,<br>14-15=-1314/358, 15-16=-1304/307,<br>16-17=-1308/264, 17-18=0/30       4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber<br>DOL=1.15); Pg=20.0 psf (roof live load: Lumber<br>DOL=1.15); Pg=20.0 psf (ground<br>snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15<br>Plate DOL=1.15); Category II; Exp B; Fully Exp.;<br>Ct=1.10       5) SEAL         036322       0) Unbalanced snow loads have been considered for this<br>design.       036322         0) This truss has been designed for greater of min roof live<br>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | A O' iF           | ESART                      |  |
| Tension       4) TCL: ASCE 7-10; PF=20.0 psf (root live load: Lumber DoL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow); Pf=13.9 psf (flat root snow: Lumber DOL=1.15); Pd=20.0 psf (ground snow; Pf=13.9 psf on the pd=1.15); Pd=20.0 psf (ground snow; Pf=13.9 psf on the pd=1.15); Pd=20.0 psf (ground snow; Pf=13.9 psf on the pd=1.15); Pd=20.0 psf (ground snow; Pf=13.9 psf on the pd=1.15); Pd=20.0 psf or 2.00 times flat root load of 13.9 psf on the pd=1.15); Pd=20.0 psf or 2.00 times flat root load of 13.9 psf on the pd=1.15); Pd=20.0 psf or 2.00 times flat root load of 13.9 psf on the pd=1.15); Pd=1.15,                                                                                                                                                                                                                                                                                                    | FORCES                                                                                                     |                                            | •     | · · · · ·                                             | /                            |             |                         |         |                     | •        |                                                  |           |        | 17/0/             | 11.4                       |  |
| DP CHORD       1.2=0/30, 2-3=-401/174, 3-4=-787/277,<br>4-5=-769/295, 5-6=-696/316, 6-7=-651/332,<br>7-8=-649/330, 8-9=-700/321, 9-10=-711/279,<br>10-11=-758/284, 11-12=-776/276,<br>12-13=-1149/295, 13-14=-1268/382,<br>14-15=-1314/358, 15-16=-1304/307,<br>16-17=-1308/264, 17-18=0/30       DOL=1.15 Plate DOL=1.15<br>Plate DOL=1.15; Category II; Exp B; Fully Exp.;<br>Ct=1.10         O       Unbalanced snow loads have been considered for this<br>design.         O       This truss has been designed for greater of min roof live<br>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br>overhangs non-concurrent with other live loads.         O       All plate parts are 2x4 M1230 unlose at begins in disented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOROLO                                                                                                     | · · /                                      | Com   | pression/maximum                                      |                              |             |                         |         |                     |          |                                                  |           | 4      | .2.               |                            |  |
| <ul> <li>4-5=-769/295, 5-6=-696/316, 6-7=-651/332,<br/>7-8=-649/330, 8-9=-700/321, 9-10=-711/279,<br/>10-11=-758/284, 11-12=-776/276,<br/>12-13=-1149/295, 13-14=-1268/382,<br/>14-15=-1314/358, 15-16=-1304/307,<br/>16-17=-1308/264, 17-18=0/30</li> <li>5 SEAL<br/>Plate DOL=1.15; Category II; Exp B; Fully Exp.;<br/>Ct=1.10</li> <li>5 Unbalanced snow loads have been considered for this<br/>design.</li> <li>6 This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br/>overhangs non-concurrent with other live loads.</li> <li>7 All plate por 2.24 M220 uploce otherwise displayed d</li></ul>                                                                                                                                                                                                                             | TOP CHORD                                                                                                  |                                            | 401/1 | 174 3-4=-787/277                                      |                              |             |                         |         |                     |          |                                                  |           | =      |                   | CEAL :                     |  |
| 7-8=-649/330, 8-9=-700/321, 9-10=-711/279,<br>10-11=-758/284, 11-12=-776/276,<br>12-13=-1149/295, 13-14=-1268/382,<br>14-15=-1314/358, 15-16=-1304/307,<br>16-17=-1308/264, 17-18=0/30       036322         0       Unbalanced snow loads have been considered for this<br>design.         0       This truss has been designed for greater of min roof live<br>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br>overhangs non-concurrent with other live loads.         0       All plotes or 2.40 Mi20 unloss otherwise disploted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                            |       |                                                       | 32.                          |             |                         |         |                     |          |                                                  |           | =      | :                 | SEAL :                     |  |
| 10-11=-758/284, 11-12=-776/276,<br>12-13=-1149/295, 13-14=-1268/382,<br>14-15=-1314/358, 15-16=-1304/307,<br>16-17=-1308/264, 17-18=0/3010-11=-758/284, 11-12=-776/276,<br>tubbalanced snow loads have been considered for this<br>design.5)Unbalanced snow loads have been considered for this<br>design.6)This truss has been designed for greater of min roof live<br>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br>overhangs non-concurrent with other live loads.7)All plate or 24 MT20 unless otherwise indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | 7-8=-649/330, 8-9=-700/321, 9-10=-711/279, |       | ,                                                     | Ct=1.10                      |             |                         |         |                     |          |                                                  |           | : 0    | 36322 :           |                            |  |
| 12-13=-1149/295, 13-14=-1268/382,<br>14-15=-1314/358, 15-16=-1304/307,<br>16-17=-1308/264, 17-18=0/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  | -         |        |                   |                            |  |
| <ul> <li>14-15=-1314/358, 15-16=-1304/307,<br/>16-17=-1308/264, 17-18=0/30</li> <li>6) This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br/>overhangs non-concurrent with other live loads.</li> <li>7) All plotes or 224 MT20 upless otherwise indicated</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           | -      |                   |                            |  |
| 16-17=-1308/264, 17-18=0/30<br>Ioad of 12.0 psf or 2.00 times flat roof load of 13.9 psf on<br>overhangs non-concurrent with other live loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                            |       |                                                       |                              | 0           | as been designed fo     | r areat | er of min roof live | e.       |                                                  |           | 0      | - A SA            | OWFER X                    |  |
| overhangs non-concurrent with other live loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | 16-17=-1308/26                             | 4, 17 | 7-18=0/30                                             |                              |             |                         |         |                     |          |                                                  |           |        | 1 Al              | GINER                      |  |
| 7) All plates are 2x4 MT20 uplace otherwise indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | Mile ,            |                            |  |
| (1) All plates die 2X4 W120 ulliess otherwise indicated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |                                            |       |                                                       |                              |             |                         |         |                     |          |                                                  |           |        | 1111              | 1. GIL                     |  |

March 18,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



