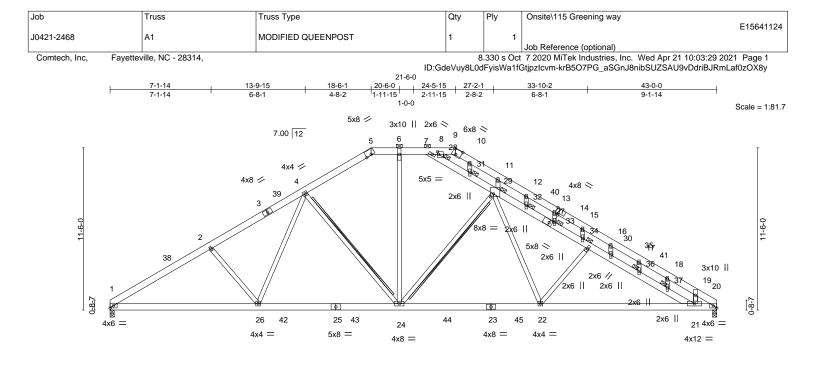


Trenco 818 Soundside Rd Edenton, NC 27932

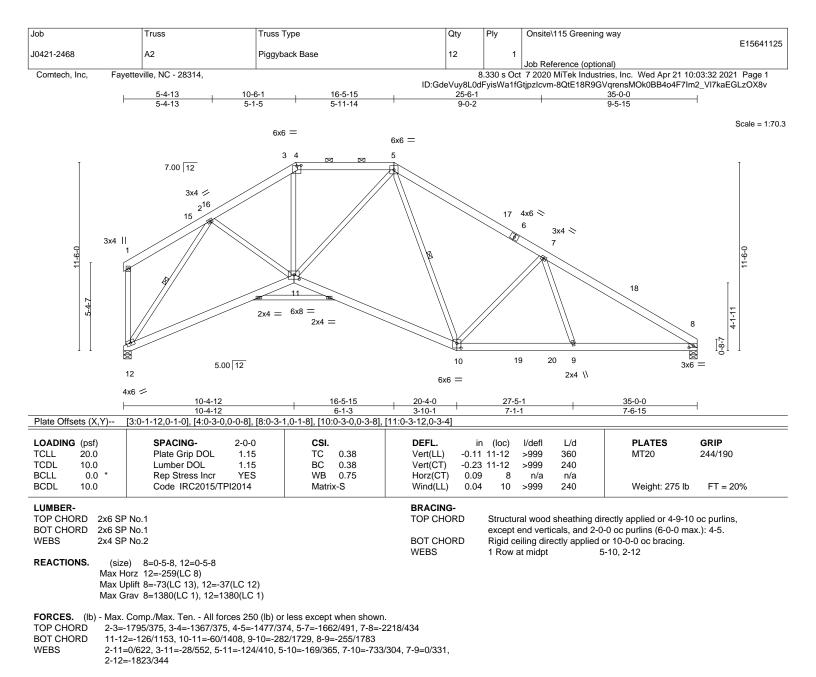
Re: J0421-2468 Onsite\115 Greening way

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15641124 thru E15641174


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844



April 21,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	↓ <u>10-5-15</u> 10-5-15	20-6-0	30-6-1			43-0-0 12-5-15
Plate Offsets (X,Y)		10-0-1 -4-10,0-4-6], [14:0-2-15,Ed		28:0-0-14,0-2-3],	[28:0-1-12,0-1-	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.69 BC 0.54 WB 0.41 Matrix-S	Vert(LL) -0.20 Vert(CT) -0.34 Horz(CT) 0.09	n (loc) l/defl) 24-26 >999 4 24-26 >999 9 20 n/a 4 21-22 >999	L/d 360 240 n/a 240	PLATES GRIP MT20 244/190 Weight: 364 lb FT = 20%
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir T-Brace: Fasten (2X) T a (0.131"x3") nail Brace must cov	I sheathing dire (4-4-9 max.): { ectly applied or 2x and I braces to s, 6in o.c.,with rer 90% of web	ectly applied or 4-5-1 oc purlins, except 5-9. r 10-0-0 oc bracing. r4 SPF No.2 - 4-24, 24-29 narrow edge of web with 10d 3in minimum end distance. length.
M	(size) 1=0-3-8, 20=0-3-8 lax Horz 1=331(LC 9) lax Uplift 1=-318(LC 12), 20=-318(LC 13) lax Grav 1=1770(LC 19), 20=1749(LC 20)		JOINTS	1 Brace at Jt(s)	: 28, 29, 30, 31	1, 32, 33, 36, 37
TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) o 1-2=-2929/628, 2-4=-2725/635, 4-5=-1990/5 11-12=-2171/642, 12-13=-2225/624, 13-15= 16-17=-2089/440, 17-18=-2123/414, 18-19= 6-7=-1716/548, 7-8=-1943/658, 8-9=-1943/6 1-26=-569/2662, 24-26=-315/2149, 22-24=-7 7-28=-292/431, 28-31=-315/495, 29-31=-37 33-34=-526/143, 30-34=-632/160, 30-35=-7 21-37=-851/284, 8-28=-68/265, 2-26=-426/3 6-24=-163/1064, 24-29=-398/217, 22-29=-19 15-34=-357/236, 19-21=0/603	76, 9-10=-1966/663, 10-11 -2244/597, 15-16=-2117/43 -2083/371, 19-20=-2371/33 /58 215/1902, 21-22=-440/247! 3/619, 29-32=-521/149, 32 21/204, 35-36=-766/246, 3/ 24, 4-26=-133/712, 4-24=-	=-2193/714, 94, 34, 5-6=-1716/548, 5, 20-21=-236/1734 33=-510/151, 6-37=-772/258, 661/335,			TH CAROUN
 Wind: ASCE 7- MWFRS (envel Interior(1) 30-8- DOL=1.60 Provide adequa All plates are 22 This truss has to this truss has to this truss has will fit between Provide mechan 1=318, 20=318 Graphical purlin 	of live loads have been considered for this d 10; Vult=130mph (3-second gust) Vasd=103 ope) gable end zone and C-C Exterior(2) 0- 10 to 42-10-4 zone;C-C for members and for ate drainage to prevent water ponding. K4 MT20 unless otherwise indicated. been designed for a 10.0 psf bottom chord line the bottom chord and any other members, w incal connection (by others) of truss to bear incal presentation does not depict the size or to onal permanent and stability bracing for truss	Smph; TCDL=6.0psf; BCDL 1-12 to 4-6-9, Interior(1) 4- prces & MWFRS for reaction we load nonconcurrent with the bottom chord in all are with BCDL = 10.0psf. Ing plate capable of withsta he orientation of the purlin	6-9 to 18-6-1, Exterior(2 ns shown; Lumber DOL any other live loads. as where a rectangle 3- nding 100 lb uplift at joi along the top and/or bo	 18-6-1 to 30-8-1 =1.60 plate grip 6-0 tall by 2-0-0 v nt(s) except (jt=lb) ttom chord. 	vide	SEAL 16673 A STRZ April 21,2021
Design valid for us a truss system. Be building design. E is always required fabrication, storag	trify design parameters and READ NOTES ON THIS AND se only with MiTek® connectors. This design is based or fore use, the building designer must verify the applicabi tracing indicated is to prevent buckling of individual truss for stability and to prevent collapse with possible perso e, delivery, erection and bracing of trusses and truss sy m available from Truss Plate Institute, 2670 Crain High	nly upon parameters shown, and is lity of design parameters and prop s web and/or chord members only. nal injury and property damage. F stems, see ANSI/TPI1 Q	For an individual building con erly incorporate this design in Additional temporary and pe or general guidance regarding uality Criteria, DSB-89 and I	nponent, not to the overall rmanent bracing g the	onent	AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

NOTES-

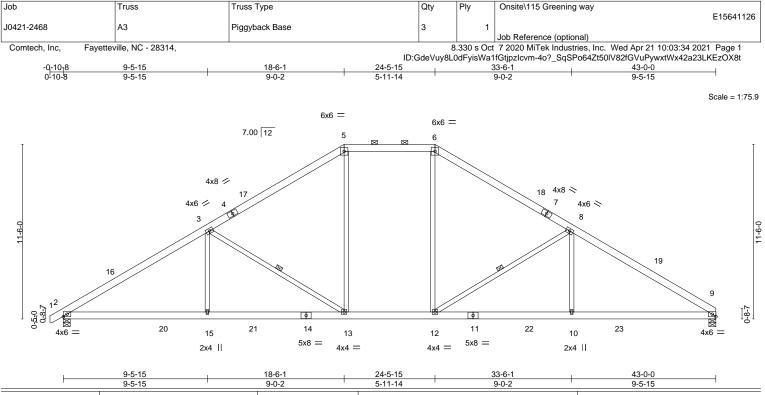
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 10-6-13, Exterior(2) 10-6-13 to 22-8-10, Interior(1) 22-8-10 to 34-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

		9-5-15	1	9-0-2	1	5-11-14	1	9-0-2		9-5-15	I
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.26 10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.37 10-12	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.10 9	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matrix	-S	Wind(LL)	0.21 13-15	>999	240	Weight: 296 lb	FT = 20%
										_	

BRACING-

TOP CHORD

BOT CHORD

WEBS

except

1 Row at midpt

2-0-0 oc purlins (5-8-7 max.): 5-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-5-8, 9=0-5-8

Max Horz 2=268(LC 9)

Max Uplift 2=-97(LC 12), 9=-83(LC 13) Max Grav 2=2002(LC 19), 9=1945(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-3213/588, 3-5=-2288/578, 5-6=-1873/566, 6-8=-2288/583, 8-9=-3192/585

BOT CHORD 2-15=-388/2815, 13-15=-388/2815, 12-13=-140/1919, 10-12=-380/2622, 9-10=-380/2622

WFBS 3-15=0/525, 3-13=-1070/293, 5-13=-74/775, 6-12=-80/776, 8-12=-1076/295, 8-10=0/526

NOTES-

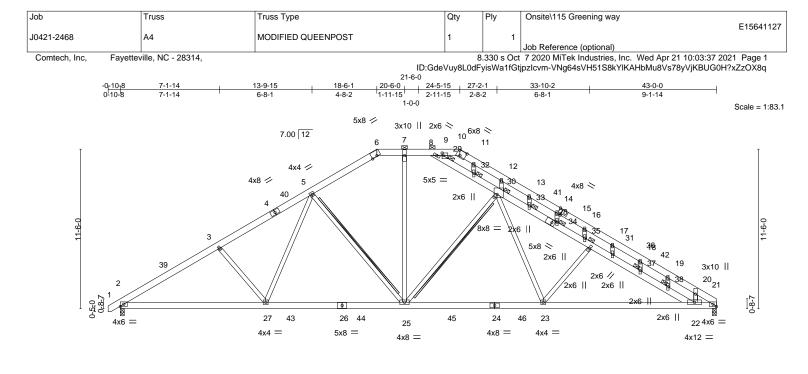
1) Unbalanced roof live loads have been considered for this design.

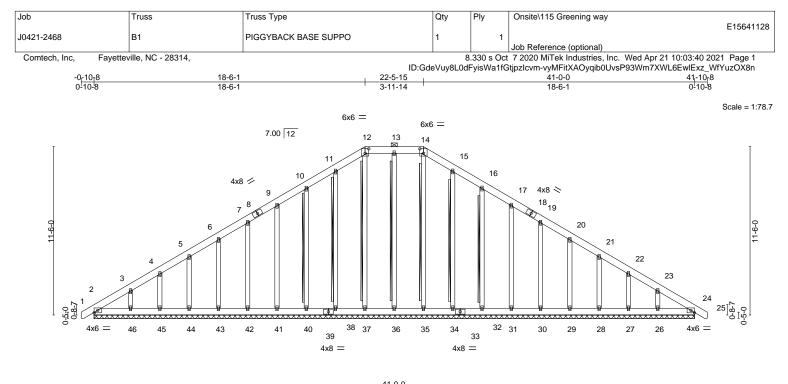
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 18-6-1, Exterior(2) 18-6-1 to 30-8-10, Interior(1) 30-8-10 to 42-9-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.


7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


Structural wood sheathing directly applied or 3-11-4 oc purlins,

3-13, 8-12

	10-5-15	20-6-0	30-6-1		43-0-0
Plate Offsets (X,Y)		10-0-1 0:0-4-10.0-4-6]. [15:0-2-15.E			<u>12-5-15</u> D-1-0]. [30:0-2-8.0-2-8]
LOADING (psf)	SPACING- 2-0-0	CSI.	<u> </u>	(loc) I/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0 BCLL 0.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.69 BC 0.54 WB 0.41	Vert(LL) -0.20 Vert(CT) -0.34 Horz(CT) 0.09	25-27 >999 360	MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		22-23 >999 240	Weight: 366 lb FT = 20%
WEBS 2x4	SP No.1 SP No.1 SP No.2 *Except* 3,22-28: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (4-4-12 max Rigid ceiling directly applied T-Brace: Fasten (2X) T and I braces (0.131"x3") nails, 6in o.c.,wi Brace must cover 90% of w	or 10-0-0 oc bracing. 2x4 SPF No.2 - 5-25, 25-30 to narrow edge of web with 10d th 3in minimum end distance. eb length.
Ma: Ma	size) 2=0-3-8, 21=0-3-8 x Horz 2=336(LC 9) x Uplift 2=-344(LC 12), 21=-318(LC 13) x Grav 2=1824(LC 19), 21=1749(LC 20)	JOINTS	1 Brace at Jt(s): 29, 30, 31,	32, 33, 34, 37, 38
TOP CHORD 2- 12 17 80T CHORD 2- WEBS 8- 34 22 7-	ax. Comp./Max. Ten All forces 250 (lb 3=-2924/616, 3-5=-2721/624, 5-6=-1985 2-13=-2170/641, 13-14=-2224/624, 14-1 -18=-2089/439, 18-19=-2122/414, 19-2 8=-1715/548, 8-9=-1943/657, 9-10=-194 27=-564/2655, 25-27=-315/2148, 23-25 29=-292/431, 29-32=-315/495, 30-32=- 2-35=-526/143, 31-35=-632/159, 31-36= 2-38=-850/283, 9-29=-68/264, 3-27=-421 25=-162/1063, 25-30=-398/218, 23-30= 2-35=-357/236, 20-22=0/603	0/573, 10-11=-1967/663, 11-1 6=-2244/597, 16-17=-2117/45 0=-2082/370, 20-21=-2370/35 13/657 =-213/1901, 22-23=-437/2474 373/619, 30-33=-521/149, 33 -701/203, 36-37=-765/245, 37 7/318, 5-27=-131/708, 5-25=-1	2=-2193/714, 94, 34, 6-7=-1715/548, 4, 21-22=-236/1734 -34=-509/151, 7-38=-772/257, 660/336,		TH CARO
 Wind: ASCE 7-10 MWFRS (envelop Interior(1) 30-8-1 DOL=1.60 Provide adequate 4) All plates are 2x4 This truss has be 6) * This truss has be will fit between th 7) Provide mechanic 2=344, 21=318. Graphical purlin r 	live loads have been considered for this); Vult=130mph (3-second gust) Vasd=1 be) gable end zone and C-C Exterior(2) 0 to 42-10-4 zone;C-C for members and e drainage to prevent water ponding. MT20 unless otherwise indicated. en designed for a 10.0 psf bottom chord been designed for a live load of 30.0psf e bottom chord and any other members cal connection (by others) of truss to be representation does not depict the size of hall permanent and stability bracing for true be the size of the size of the size of the size of the size of the size	03mph; TCDL=6.0psf; BCDL -0-9-5 to 3-7-8, Interior(1) 3-7 I forces & MWFRS for reaction I live load nonconcurrent with on the bottom chord in all area , with BCDL = 10.0psf. aring plate capable of withstar or the orientation of the purlin	7-8 to 18-6-1, Exterior(2) ns shown; Lumber DOL= any other live loads. as where a rectangle 3-6 nding 100 lb uplift at joint along the top and/or bott	:(s) except (jt=lb) om chord.	SEAL 16673 A STRZ April 21,2021
Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage,	y design parameters and READ NOTES ON THIS Al only with MITek® connectors. This design is based re use, the building designer must verify the applic icing indicated is to prevent buckling of individual tr or stability and to prevent collapse with possible per delivery, erection and bracing of trusses and truss available from Truss Plate Institute, 2670 Crain H	d only upon parameters shown, and is ability of design parameters and prop uss web and/or chord members only. 'sonal injury and property damage. F systems, see ANS//TPI1 Q	s for an individual building comp erly incorporate this design into Additional temporary and perm for general guidance regarding t uality Criteria, DSB-89 and BC	onent, not the overall nanent bracing the	TRENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

<u>├</u> ──			<u>41-0-0</u> 41-0-0		
Plate Offsets (X,Y)	[12:0-3-0,0-3-12], [14:0-3-0,0-3-12]		41-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.13 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.07) 24 n/r 120) 24 n/r 120	PLATES GRIP MT20 244/190 Weight: 385 lb FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP	' No.1		BRACING- TOP CHORD	2-0-0 oc purlins (6-0-0 max.):	
OTHERS 2x4 SF	2 No.2		BOT CHORD WEBS	,	or 10-0 oc bracing. tx4 SPF No.2 - 14-35, 13-36, 12-37, 11-38 10-40, 15-34, 16-32 o narrow edge of web with 10d

REACTIONS. All bearings 41-0-0.

(lb) - Max Horz 2=338(LC 11)

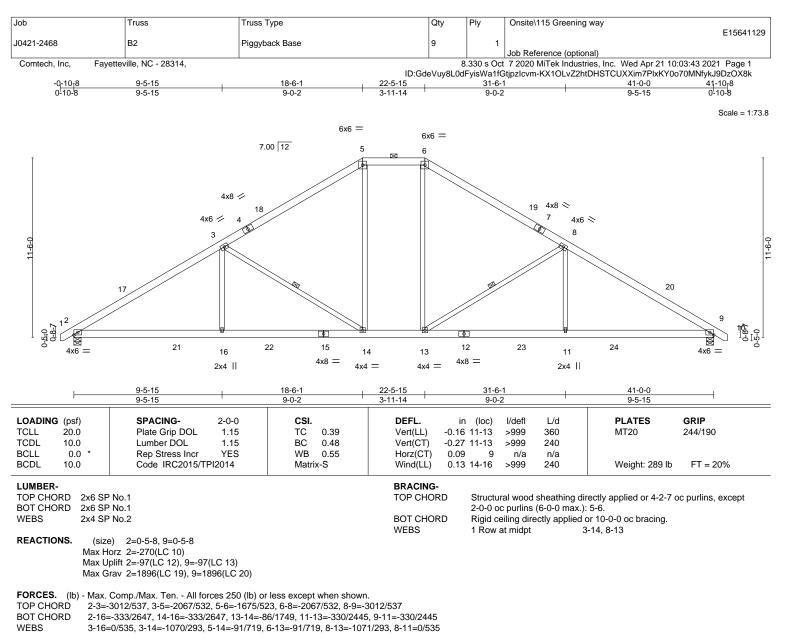
Max Uplift All uplift 100 lb or less at joint(s) 2, 36, 37, 38, 40, 41, 42, 43, 44, 45, 34, 32, 31, 30, 29, 28, 27, 24 except 46=-120(LC 12), 26=-114(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 34, 32, 31, 30, 29, 28, 27, 26, 24

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-316/278, 9-10=-201/267, 10-11=-254/306, 11-12=-296/343, 12-13=-273/324,
 - 13-14=-273/324, 14-15=-296/343, 15-16=-255/293

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-5 to 3-7-8, Exterior(2) 3-7-8 to 18-6-1, Corner(3) 18-6-1 to 26-10-12, Exterior(2) 26-10-12 to 41-9-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 36, 37, 38, 40, 41, 42, 43, 44, 45, 34, 32, 31, 30, 29, 28, 27, 24 except (jt=lb) 46=120, 26=114.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

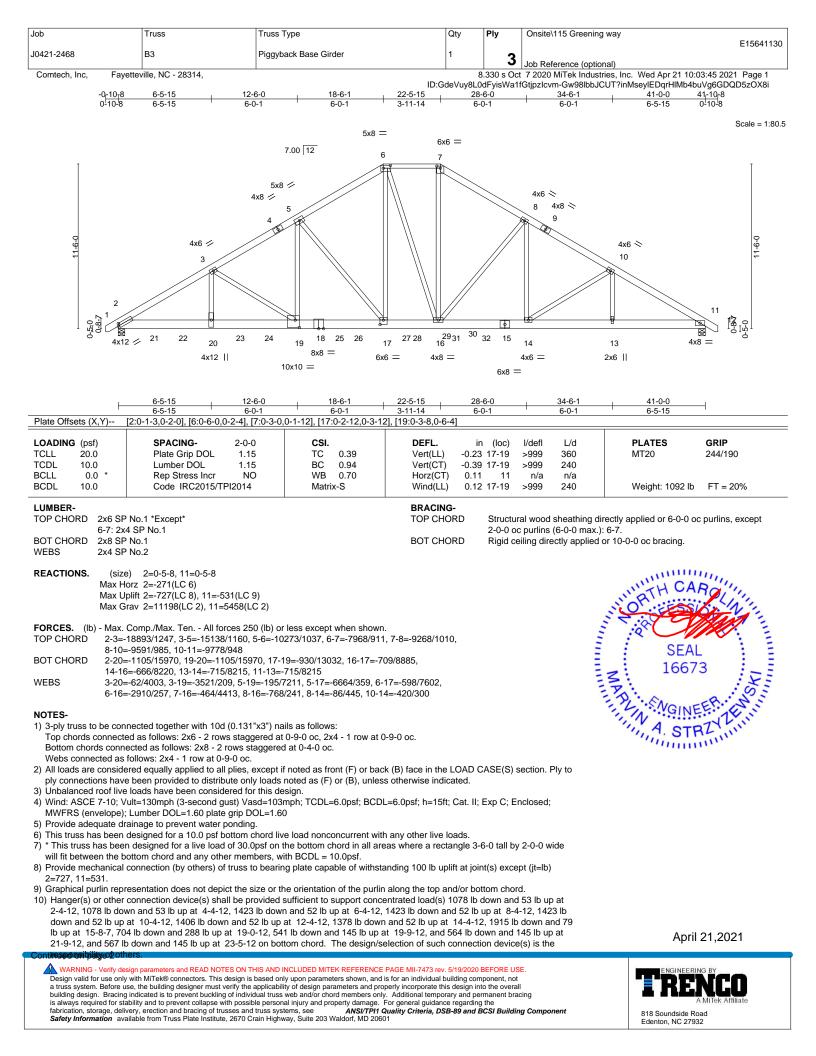
Brace must cover 90% of web length.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 18-6-1, Exterior(2) 18-6-1 to 28-8-10, Interior(1) 28-8-10 to 41-9-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

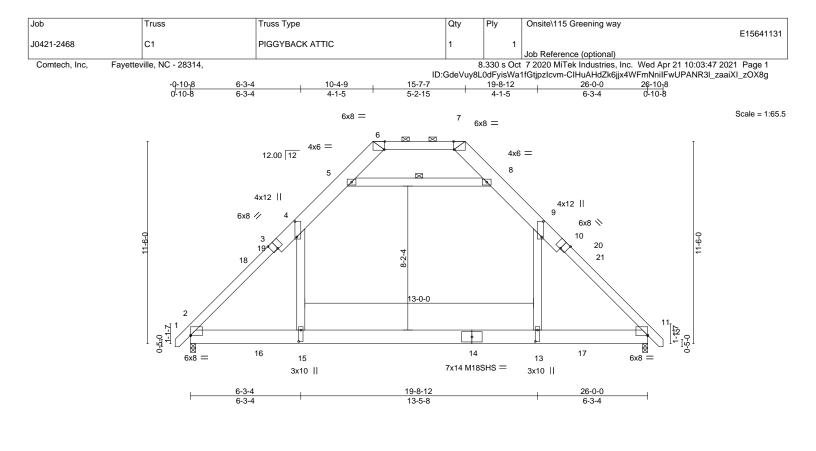
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss	Truss Type	Qty	Ply	Onsite\115 Greening way	
					E15641130
B3	Piggyback Base Girder	1	2		
			3	Job Reference (optional)	
Fayetteville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc.	Wed Apr 21 10:03:45 2021 Page 2
	В3	B3 Piggyback Base Girder	B3 Piggyback Base Girder 1	B3 Piggyback Base Girder 1 3	B3 Piggyback Base Girder 1 3 Job Reference (optional)

ID:GdeVuy8L0dFyisWa1fGtjpzIcvm-Gw98lbbJCUT?inMseyIEDqrHIMb4buVg6GDQD5zOX8i

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

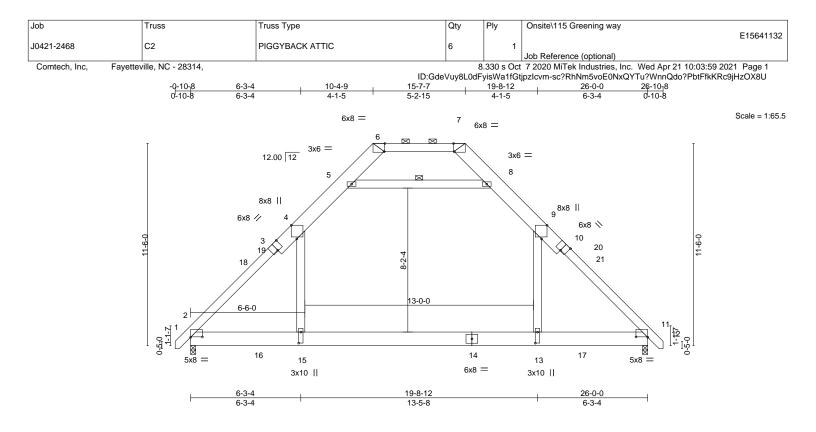
Uniform Loads (plf) Vert: 1-6=-60, 6-7=-60, 7-12=-60, 2-11=-20

Concentrated Loads (lb)

Vert: 20=-1047(B) 19=-1047(B) 21=-1047(B) 22=-1047(B) 23=-1047(B) 24=-1047(B) 25=-1047(B) 25=-1007(B) 25=-1007(B) 25=-1007(B) 25=-1007(B) 25=-1007(B)

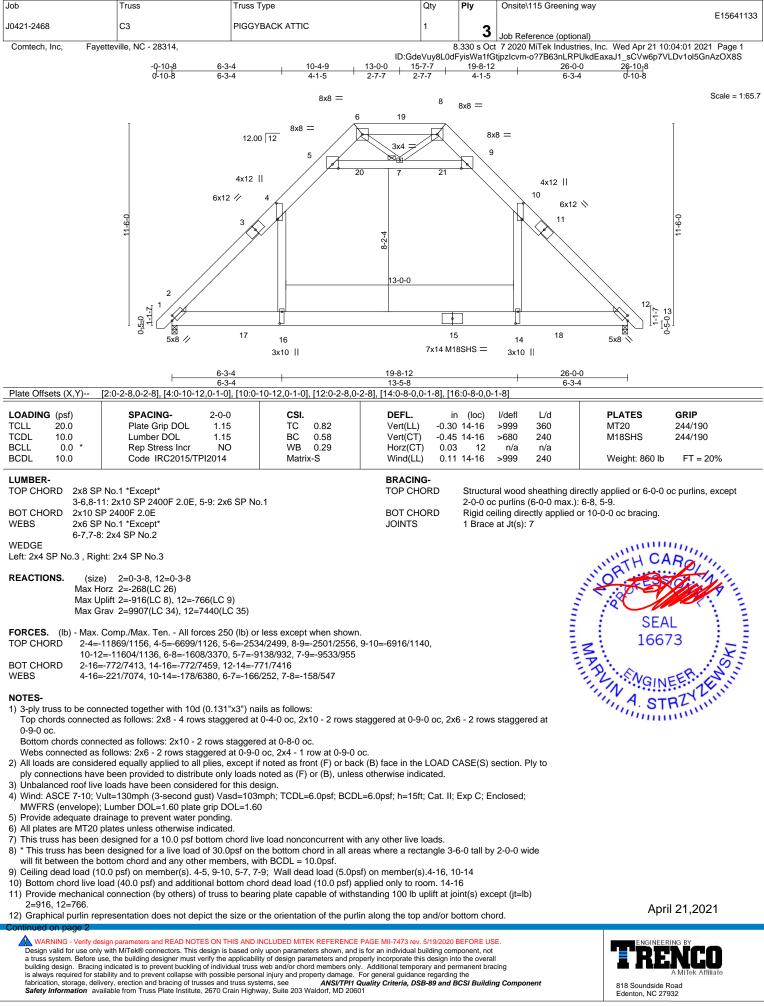
(, ,	[2:0-0-0,0-0-3], [3:0-4-0,Edge], [4:0-10- [15:0-7-12,0-1-8]	3,0-1-4], [6:0-0-7,Edge], [7:	0-0-7,Edge], [9:0-10-8,	0-1-4], [10:0-4-0,E	Edge], [11:0-0-	0,0-0-3], [13:0-7-12,0)-1-8],
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.96 BC 0.56 WB 0.77 Matrix-S	Vert(LL) -0.29 Vert(CT) -0.45 Horz(CT) 0.02	n (loc) l/defl 13-15 >999 13-15 >682 11 n/a 13-15 >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 263 lb	GRIP 244/190 244/190 FT = 20%
BOT CHORD 2x10 S WEBS 2x6 SP	0: 2x10 SP No.1 P 2400F 2.0E P No.1		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins	(10-0-0 max.)	r 10-0-0 oc bracing.	oc purlins, except
Max H Max U Max G ORCES. (Ib) - Max. OP CHORD 2-4=- 9-11= 3OT CHORD 2-15=	e) 2=0-3-8, 11=0-3-8 orz 2=337(LC 11) plift 2=-33(LC 12), 11=-33(LC 13) irav 2=2257(LC 20), 11=2257(LC 21) Comp./Max. Ten All forces 250 (lb) or 3204/111, 4-5=-1672/246, 5-6=-46/692, =-3203/111, 6-7=-45/1014 =0/2002, 13-15=0/2013, 11-13=0/2001	7-8=-47/693, 8-9=-1672/2	46,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 21-6-5 to 2 DOL=1.60 3) Provide adequate dr 4) All plates are MT20 1 5) This truss has been 6) * This truss has been will fit between the b 7) Ceiling dead load (11 3) Bottom chord live loa 9) Provide mechanical 10) Graphical purlin rep 11) Attic room checked 12) In the LOAD CASE	 -18/1855, 9-13=-17/1854, 5-8=-2915/32 a loads have been considered for this defult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) -0-26-9-2 zone;C-C for members and force rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord livn n designed for a live load of 30.0psf on totom chord and any other members, w 0.0 psf) on member(s). 4-5, 8-9, 5-8; W ad (40.0 psf) and additional bottom chor connection (by others) of truss to bearir presentation does not depict the size or a for L/360 deflection. E(S) section, loads applied to the face of the size of the	sign. mph; TCDL=6.0psf; BCDL= 3-2 to 3-7-11, Interior(1) 3- s & MWFRS for reactions is a wwFRS for reactions is b wwFRS for reactions is a wwFRS for reactions is b wwFRS for reactions is a wwFRS for reactions is b wwwFRS for reactions is b wwFRS for reactions is b wwFRS for reactions is b wwwFRS for reactions is b wwFRS for reactions is b wwwFRS for reactions is b wwFRS for reactions is b wwwFRS for reactions is b wwFRS for reactions is b wwFRS for reactions is b wwFRS for reactions is b wwFRS for reactions is b wwfRS for reactions is b wwFRS for reactions is b wwfRS for reactions is b wwf	7-11 to 10-8-5, Exterior shown; Lumber DOL=1 any other live loads. as where a rectangle 3- member(s).4-15, 9-13 lied only to room. 13-15 nding 100 lb uplift at join a long the top and/or b	(2) 10-8-5 to 21-€ .60 plate grip 6-0 tall by 2-0-0 w 5 nt(s) 2, 11.	ide	SEA 166 Apr	73 EEP. LE
a truss system. Before u building design. Bracing is always required for sta	with MiTek® connectors. This design is based on see, the building designer must verify the applicabil g indicated is to prevent buckling of individual truss ability and to prevent collapse with possible person year, erection and bracing of trusses and truss system.	y upon parameters shown, and is ty of design parameters and prope web and/or chord members only. al injury and property damage. For	for an individual building com erly incorporate this design in Additional temporary and pe or general guidance regarding	nponent, not to the overall rmanent bracing g the	nont	TRE	RING BY A MiTek Affiliate

Taking to the standing of the


J	ob	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way			
						E15641131			
J	0421-2468	C1	PIGGYBACK ATTIC	1	1				
						Job Reference (optional)			
	Comtech, Inc, Fayettev	ille, NC - 28314,	8.330 s Oct 7 2020 MiTek Industries, Inc. Wed Apr 21 10:03:48 2021 Page 2						
	-		ID:GdeVuy8L0dFyisWa1fGtjpzIcvm-gVrHOddBVPraZE5RK5IxqSTf9ZjgoCE6oES4qQzOX8f						

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 2-15=-20, 13-15=-80(F=-40), 11-13=-20, 1-4=-60, 4-5=-80, 5-6=-60, 7-8=-60, 8-9=-80, 9-12=-60, 6-7=-60, 5-8=-20 Drag: 4-15=-10, 9-13=-10

LOADING (psi) TCDL SPACING- 2.00 2-0-0 Piate Grip DOL CSI. DEFL. in (loc) // tdefl L/d PLATES GRIP DCDL 0.0 Imber DOL 1.15 BC 0.61 Vert(CT) -0.22 13-15 >989 360 MT20 244/190 BCLL 0.0 Code IRC2015/TP/D15 WB 0.53 Wind(LL) 0.08 15 >999 240 Weight: 283 lb FT = 20% LUMBER- TOP CHORD Zxd SP No.1 Except* SAF.10: 2X10 SP No.1 Structural wood sheathing directly applied or 4-5-0 oc purlins, except SAF.710: 2X10 SP No.1 BT = 20% BOT CHORD Zxd SP No.1 Except* SAF.710: 2X40 SP No.1 BT = 20% Weight: 283 lb FT = 20% WEBS 2x6 SP No.1 Except* SAF.710: 2X40 SP No.1 BT = 20% Weight: 283 lb FT = 20% FRACIONS (size) 2=-0-3.8, 11=-0-3.8 Max Frav 2=1802(LC 20), 11=1802(LC 21) BT = 20%/417, 8-9=-1357/188, 9-11=-24330, 6-7-007/16 ST = 20%/417, 7-8=-29471, 8-9=-1357/188, 9-11=-24330, 6-7-007/16 ST = 20%/517, 13-15=00/1521, 13-15=00/1524, 11-13=00/1524, 11-13=-00/1516 WEBS 1.100-10-000000000000000000000000000000		[2:0-8-0,0-0-5], [3:0-4-0,Edge], [4:0-9-5, [15:0-7-8,0-1-8]	Edge], [6:0-0-7,Edge], [7:0-0	0-7,Edge], [9:0-9-5,Ec	lge], [10:0-4-0,E	dge], [11:0-8-0	,0-0-5], [13:0-7-8,0-1-8	ı],
 TOP CHORD 2x6 SP No.1 *Except* 3-6,7-10: 2x10 SP No.1 BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 REACTIONS. (size) 2=0-3-8, 11=0-3-8 Max Horz 2=280gLC 11) Max Grav 2=280gLC 12) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2+150/1524, 11-1357/188, 5-6=-29/471, 7-8=-29/4	TCLL 20.0 TCDL 10.0 BCLL 0.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.61 BC 0.80 WB 0.53	Vert(LL) -0.22 Vert(CT) -0.36 Horz(CT) 0.02	2 13-15 >999 5 13-15 >868 2 11 n/a	360 240 n/a	MT20	244/190
 Max Grav 2=1802(LC 20), 11=1802(LC 21) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2434/0, 4-5=-1357/188, 5-6=-29/471, 7-8=-29/471, 8-9=-1357/188, 9-11=-2433/0, 6-7=0/716 BOT CHORD 2-15=0/1517, 13-15=0/1524, 11-13=0/1516 WEBS 4-15=0/1306, 9-13=0/1306, 5-8=-2090/190 NOTES- Ubabalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-8-5, Exterior(2) 10-8-5 to 21-6-5, Interior(1) 21-6-5 to 26-9-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Celling dead load (10.0 psf) on member(s), 4-5, 8-9, 5-8; Wall dead load (50.psf) on member(s).4-15, 9-13 Bottom chord live load (40.0 psf) on member(s), 4-5, 8-9, 5-8; Wall dead load (10.0 psf) applied only to room. 13-15 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 	TOP CHORD 2x6 SF 3-6,7-1 BOT CHORD 2x10 S WEBS 2x6 SF REACTIONS. (siz:	I0: 2x10 SP No.1 SP No.1 P No.1 e) 2=0-3-8, 11=0-3-8		TOP CHORD BOT CHORD	2-0-0 oc purlir Rigid ceiling c	ns (10-0-0 max. lirectly applied (): 6-7. or 10-0-0 oc bracing.	oc purlins, except
	Max Horz 2=269(LC 11) Max Grav 2=1802(LC 20), 11=1802(LC 21) FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 2-4=-2434/0, 4-5=-1357/188, 5-6=-29/471, 7-8=-29/471, 8-9=-1357/188, 9-11=-2433/0, 6-7=0/716 BOT CHORD 2-15=-0/1517, 13-15=0/1524, 11-13=0/1516 WEBS 4-15=0/1306, 9-13=0/1306, 5-8=-2090/190 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-8-5, Exterior(2) 10-8-5 to 21-6-5, Interior(1) 21-6-5 to 26-9-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (10.0, psf) on member(s). 4-5, 8-9, 5-8; Wall dead load (10.0, psf) and member(s).4-15, 9-13 7) Bottom chord live load (40.0, psf) and additional bottom chord dead load (10.0, psf) applied only to room. 13-15 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.							

[Job	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way	
	J0421-2468	C3	PIGGYBACK ATTIC	1	•	E	15641133
	00121 2100				3	Job Reference (optional)	
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Apr 21 10:04:01 2021	Page 2
	-		ID:Gde	Vuy8L0dF	visWa1fG	tjpzlcvm-o?7B63nLRPUkdEaxaJ1 sCVw6p7VLDv1ol5GnAz	zOX8S

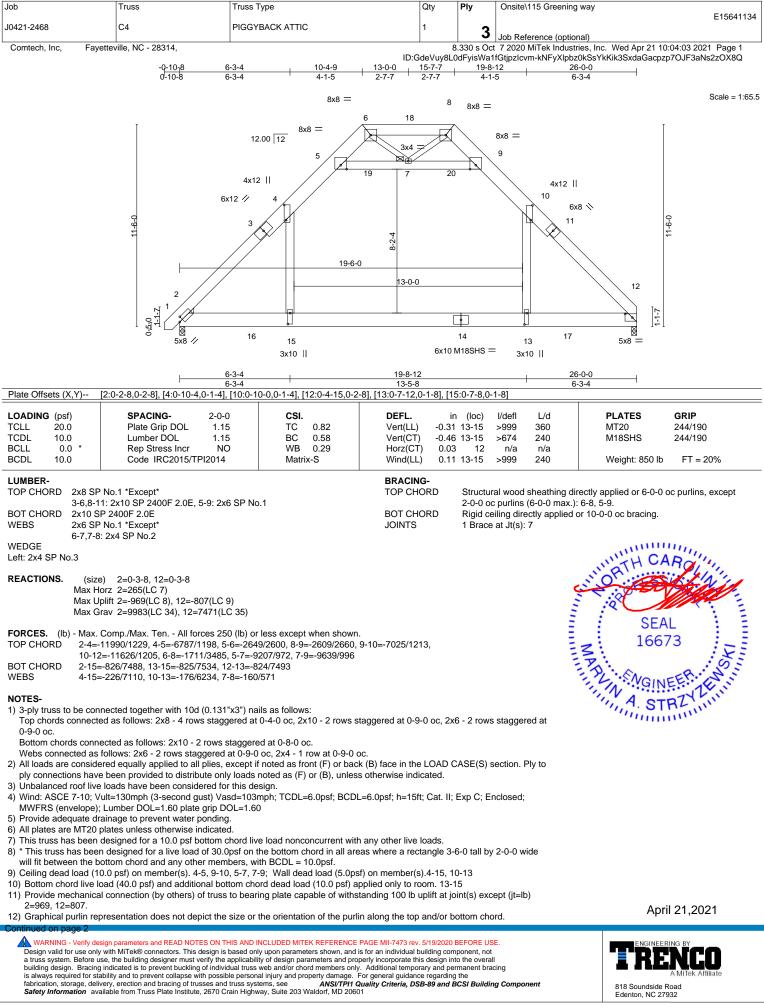
NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 3566 lb down and 1365 lb up at 13-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 2-16=-320(F=-300), 14-16=-340(F=-300), 12-14=-20, 1-4=-60, 4-5=-80, 5-6=-60, 8-9=-60, 9-10=-80, 10-13=-60, 6-8=-100, 5-20=-80, 20-21=-120, 9-21=-80 Drag: 4-16=-10, 10-14=-10

Concentrated Loads (lb)

Vert: 19=-3566(F)

818 Soundside Road

Edenton, NC 27932

ſ	Job	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way		
	10.404 0.400	04				E15641134		
	J0421-2468	C4	PIGGYBACK ATTIC	1	3	Job Reference (optional)		
_ L					-			
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Apr 21 10:04:03 2021 Page 2		
			ID:G	ID:GdeVuy8L0dFyisWa1fGtjpzIcvm-kNFyXlpbz0kSsYkKik3SxdaGacpzp70JF3aNs2zOX8Q				

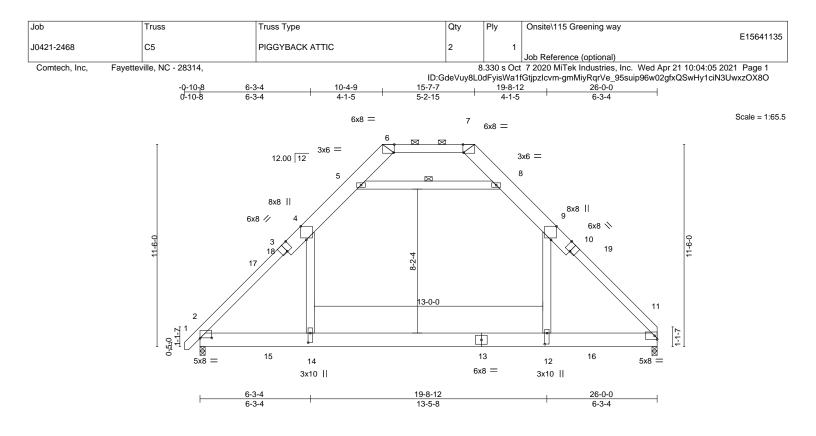
NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 3722 lb down and 1470 lb up at 13-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

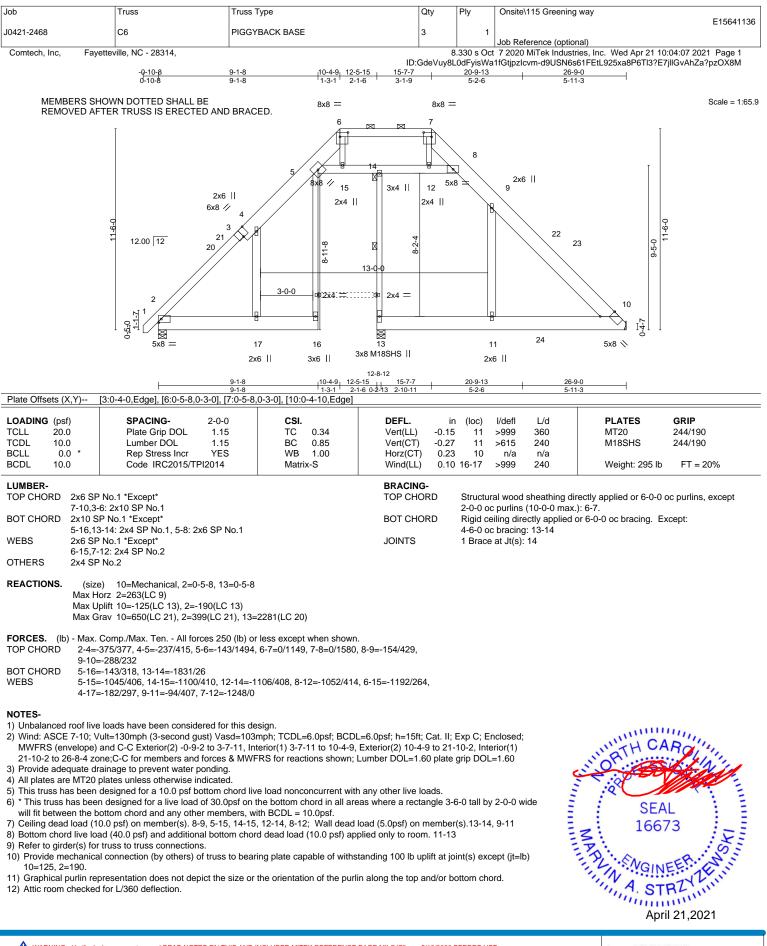
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

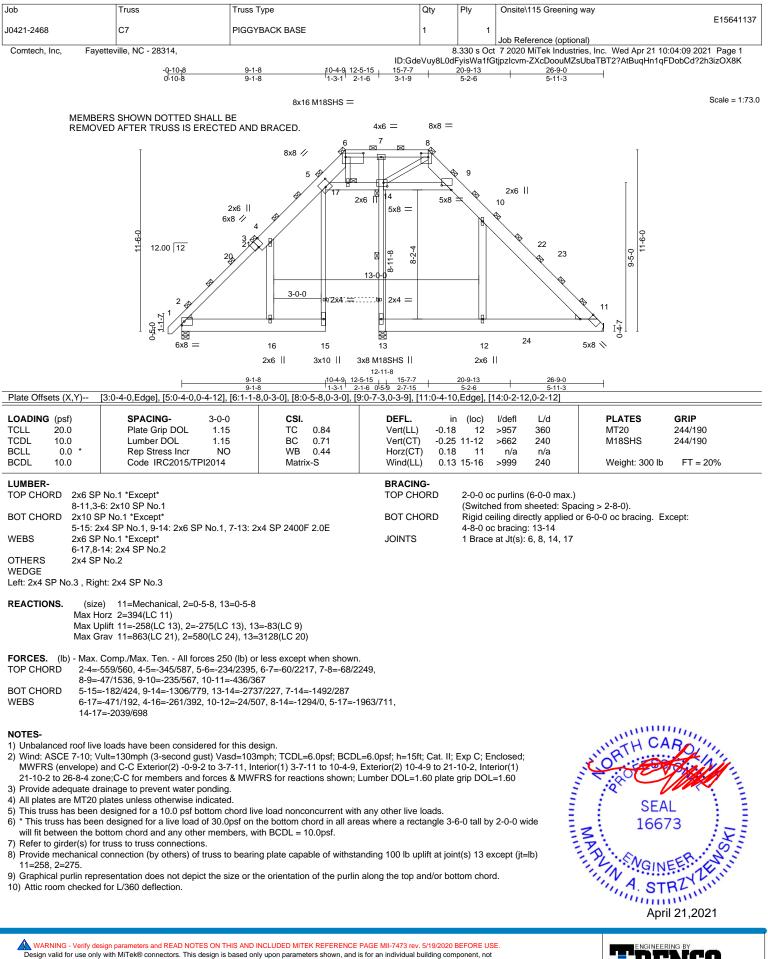

Uniform Loads (plf)

Vert: 2-15_-320(B=-300), 13-15=-340(B=-300), 12-13=-20, 1-4=-60, 4-5=-80, 5-6=-60, 8-9=-60, 9-10=-80, 10-12=-60, 6-8=-100, 5-19=-80, 19-20=-120, 9-20=-80 Drag: 4-15=-10, 10-13=-10

Concentrated Loads (lb)

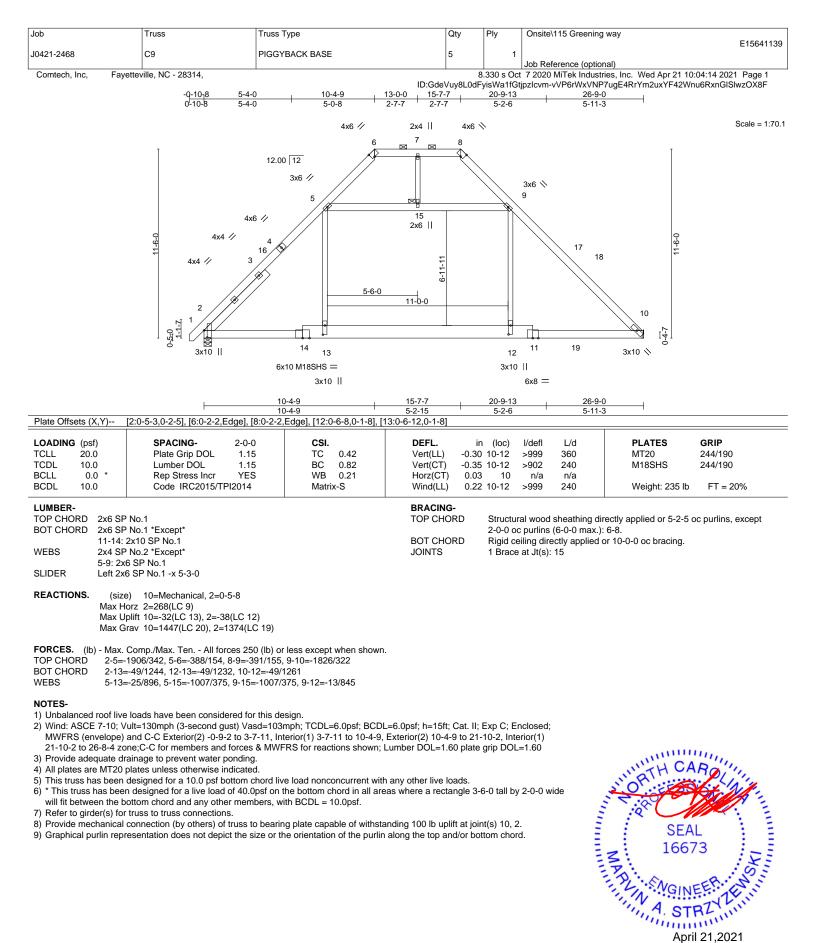
Vert: 18=-3722(B)




Plate Offsets (X,Y)	[2:0-8-0,0-0-5], [3:0-4-0,Edge], [4:0-9-5,	Edge], [6:0-0-7,Edge], [7:	0-0-7,Edge], [9:0-9-5,Ed	ge], [10:0-4-0,Ed	ge], [12:0-7-8,0	0-1-8], [14:0-6-8,0-1-8]
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.64 BC 0.80	Vert(LL) -0.22 Vert(CT) -0.36	(loc) l/defl 12-14 >999 12-14 >857	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.54 Matrix-S	Horz(CT) 0.02 Wind(LL) 0.08		n/a 240	Weight: 260 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SF 3-6,7-1 BOT CHORD 2x10 S WEBS 2x6 SF	10: 2x10 SP No.1 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins	(10-0-0 max.)	or 10-0-0 oc bracing.	oc purlins, except
Max H	e) 2=0-3-8, 11=0-3-8 lorz 2=267(LC 9) Grav 2=1803(LC 20), 11=1751(LC 21)						
TOP CHORD 2-4=- 6-7= BOT CHORD 2-14:	Comp./Max. Ten All forces 250 (lb) or -2442/0, 4-5=-1357/188, 5-6=-22/487, 7- 0/735 =0/1517, 12-14=0/1524, 11-12=0/1516 =0/1315, 9-12=0/1274, 5-8=-2123/219						
 Wind: ASCE 7-10; MWFRS (envelope) to 25-10-4 zone;C-0 Provide adequate d This truss has been will fit between the b Ceiling dead load (1 Bottom chord live load 	e loads have been considered for this de /ult=130mph (3-second gust) Vasd=103 and C-C Exterior(2) -0-9-2 to 3-7-11, In C for members and forces & MWFRS for rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 30.0psf on to oottom chord and any other members, w 0.0 psf) on member(s). 4-5, 8-9, 5-8; W ad (40.0 psf) and additional bottom chor resentation does not depict the size or th for L/360 deflection.	mph; TCDL=6.0psf; BCDL erior(1) 3-7-11 to 10-8-5, reactions shown; Lumber e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. all dead load (5.0psf) on r d dead load (10.0 psf) app	Exterior(2) 10-8-5 to 21- DOL=1.60 plate grip DO any other live loads. as where a rectangle 3- member(s).4-14, 9-12 blied only to room. 12-14	6-5, Interior(1) 21 DL=1.60 6-0 tall by 2-0-0 v	-6-5 ride	SEA 166	73 EER TENIN

April 21,2021

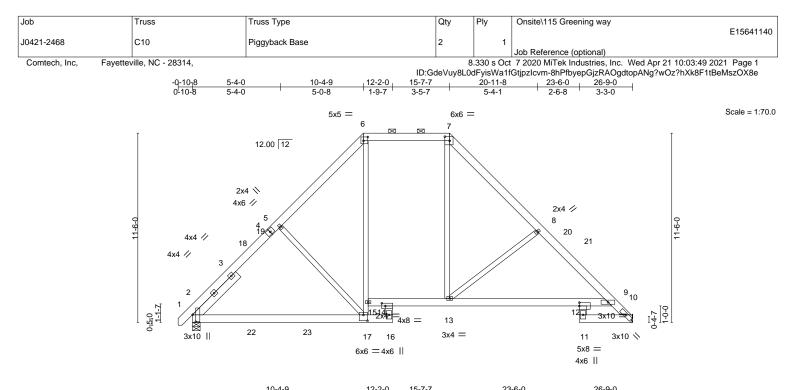
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway. Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way
J0421-2468	C8	PIGGYBACK BASE	1	2	E1564113
Comtech, Inc, Fay	yetteville, NC - 28314,			8.330 s Oct	ct 7 2020 MiTek Industries, Inc. Wed Apr 21 10:04:11 2021 Page 1
	-0 <mark>-10₁8 5-4</mark> 0-10-8 5-4		-0 15-7-7	20-9-13	
	0-10-8 5-4	-0 5-0-8 2-7-	-7 2-7-7	5-2-6	5-11-3
		4x6 1/	2x4 4x6 7 ♀	1	Scale = 1:70
	I	12.00 12			I
		3x6 1/		Ą	
		5 \$			3x6 ∕\ 9
	4	x6 // 4	15		♦
			2x6		Q.
	0- 4x4 // 4x4 // 4x4 //		Ξ		
	4,4 1/	×	6-11-1		
	, Alexandream and Alexandream and Alexandream and Alexandream and Alexandream and Alexandream and Alexandream a	5-6-0	11-0-0		
	2		11-0-0		10
	0-35-0 1-1-1 1-1-1				If I
	3x6	$\frac{14}{13}$		12	
		6x8 = 2x6		2x6	 6x8 =
		10-4-9	15-7-7	20-9-13	
Plate Offsets (X,Y)	[2:0-2-11,0-0-12], [6:0-2-2,Edg	10-4-9	5-2-15	5-2-6	5-11-3
LOADING (psf)	SPACING- 3-0		DEFL. i	n (loc)	l/defl L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.33	Vert(LL) -0.1	9 10-12	>999 360 MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.7 Rep Stress Incr N	O WB 0.13	Horz(CT) 0.0		>999 240 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	. ,	7 10-12	>999 240 Weight: 470 lb FT = 20%
LUMBER- TOP CHORD 2x6 SF	P No.1		BRACING- TOP CHORD		c purlins (6-0-0 max.)
	P No.1 *Except* : 2x10 SP No.1		BOT CHORD		ed from sheeted: Spacing > 2-8-0). eiling directly applied or 10-0-0 oc bracing.
	P No.2 *Except* x6 SP No.1		JOINTS	1 Brace	e at Jt(s): 6, 8, 15
	x6 SP No.1 -x 5-3-0				e at Jt(s): 6, 8, 15
	ze) 10=Mechanical, 2=0-5-8 Horz 2=402(LC 9)				IN ATH CAROLIN
Max L	Jplift 10=-49(LC 13), 2=-57(LC				
	Grav 10=1979(LC 20), 2=1910(
TOP CHORD 2-5=	-2602/513, 5-6=-583/232, 6-7=-	50 (lb) or less except when shown. 299/171, 7-8=-299/171, 8-9=-587/233	,		SEAL 16672
)=-2492/483)=-74/1690, 12-13=-73/1675, 10	12=-74/1712			IN IOUNS IN
WEBS 5-13	=-37/1134, 5-15=-1349/563, 9-1	5=-1349/563, 9-12=-19/1026			E P. SNOWSER
NOTES- 1) 2-plv truss to be cor	nnected together with 10d (0.13	1"x3") nails as follows:			SEAL 16673 A STRZ
Top chords connect	ted as follows: 2x6 - 2 rows stag		tangered at 0-9-0 oc		ALL STREAM
Webs connected as	s follows: 2x4 - 1 row at 0-9-0 oc	, 2x6 - 2 rows staggered at 0-9-0 oc. except if noted as front (F) or back (B			section Div to
ply connections hav	ve been provided to distribute or	ly loads noted as (F) or (B), unless of	,	5/(02(0) 3	
4) Wind: ASCE 7-10; \		asd=103mph; TCDL=6.0psf; BCDL=6.			
21-10-2 to 26-8-4 z	one;C-C for members and force	-7-11, Interior(1) 3-7-11 to 10-4-9, Ext s & MWFRS for reactions shown; Lum			
	Irainage to prevent water pondir a designed for a 10.0 psf bottom	g. chord live load nonconcurrent with an	y other live loads.		
,	en designed for a live load of 30 bottom chord and any other me	Opsf on the bottom chord in all areas nbers, with BCDL = 10.0psf.	where a rectangle 3	-6-0 tall by	y 2-0-0 wide
8) Refer to girder(s) fo	or truss to truss connections.	to bearing plate capable of withstandi	ng 100 lb unlift at ioi	int(s) 10 2	
		e size or the orientation of the purlin al			

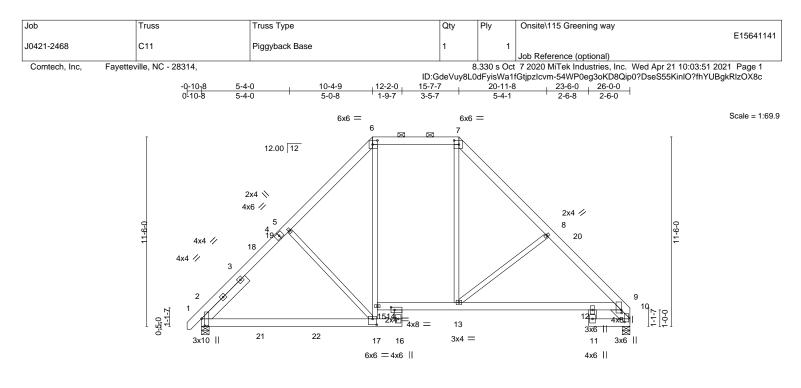
April 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


ENGINEERING BY RENCO A MITek Attiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY

Edenton, NC 27932



			-2-0 15-7-7	23-6-0		6-9-0	
			9-7 3-5-7	7-10-9	3-	-3-0	
Plate Offsets (X,Y)	[2:0-5-3,0-2-5], [6:0-3-4,0-2-12], [7:0-3	-8,0-3-0], [12:0-0-0,0-2-8],	[14:0-2-8,0-2-0], [17:0	-3-0,0-4-4]			
DADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.61	Vert(LL) -0.	23 12-13 >999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.71	Vert(CT) -0.	48 12-13 >666	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.47	Horz(CT) 0.	20 10 n/a	n/a		
CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.	15 12-13 >999	240	Weight: 219 lb	FT = 20%
UMBER-			BRACING-				
OP CHORD 2x6 SF			TOP CHORD	Structural wood	sheathing direc	ctly applied or 4-11-1	1 oc purlins,
OT CHORD 2x6 SF				except			
/EBS 2x4 SF				2-0-0 oc purlins			
LIDER Left 2x	6 SP No.1 -x 3-8-8		BOT CHORD			10-0-0 oc bracing,	Except:
				6-0-0 oc bracing			
				10-0-0 oc bracin	g: 12-13		
REACTIONS. (size	,						
	orz 2=267(LC 9)						
	plift 10=-33(LC 13), 2=-38(LC 12)						
Max G	arav 10=1103(LC 20), 2=1248(LC 19)						
FORCES (Ib) - Max	Comp./Max. Ten All forces 250 (lb)	or less excent when shown					
	1382/352, 5-6=-1197/406, 6-7=-807/30						
	-1193/353	55,7 0= 1275,407,0 5= 1-	<i>H11000</i> ,				
	=-138/1021, 16-17=-57/802, 14-16=-30	0/52 13-14=-18/871 12-1	3=-154/1095				
	=0/500, 10-11=-202/599	0,02,1011 10,011,12					
	=-326/285, 15-17=-88/660, 6-15=-115/4	481 7-13=-116/677 8-13=	-551/309				
0 11			001/000				
NOTES-							
1) Unbalanced roof live	e loads have been considered for this c	esian.					
	/ult=130mph (3-second gust) Vasd=10		L=6.0psf: h=15ft: Cat.	I: Exp C: Enclosed:			
	and C-C Exterior(2) -0-9-2 to 3-7-11, I						• 10 M
	one;C-C for members and forces & MW					, in the second	in the second se
	ainage to prevent water ponding.	- ,				WAH CA	Bolly
	designed for a 10.0 psf bottom chord I	ve load nonconcurrent with	n any other live loads.			NORTH CA	1. Alin
	n designed for a live load of 30.0psf or			3-6-0 tall by 2-0-0 wi	ide 📢		the SVI
	ottom chord and any other members,		5		2	- in 1	119991 -
	truss to truss connections.	•				.0	

- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

		10-4-9 10-4-9 1-9		23-6-0	26-0		
Plate Offsets (X,Y)	[2:0-5-3,0-2-5], [6:0-3-8,0-3-0], [7:0-	3-8,0-3-0], [9:0-2-4,0-0-4], [10:0)-2-4,0-3-10], [14:0-2-8		0-4-4]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.50 WB 0.40 Matrix-S	Vert(LL) -0.15 Vert(CT) -0.30 Horz(CT) 0.14	n (loc) l/defl 5 12-13 >999 0 12-13 >999 4 10 n/a 1 12-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S	P No.1 P No.1 P No.2 x6 SP No.1 -x 3-8-8, Right 2x6 SP No	.1 -x 1-2-9	BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlins	(6-0-0 max.): 6-7 ctly applied or 1 : 14-16.	ly applied or 6-0-0 c 7, 9-10. 0-0-0 oc bracing, f	
Max Max	ze) 10=0-5-8, 2=0-5-8 Horz 2=267(LC 11) Uplift 10=-28(LC 13), 2=-38(LC 12) Grav 10=1079(LC 2), 2=1220(LC 19)				9. 12 10		
TOP CHORD 2-5=	Comp./Max. Ten All forces 250 (II 1336/343, 5-6=-1152/397, 6-7=-767)=-1053/322		0/373,				
BOT CHORD 2-17	/=-1033/322 /=-141/995, 16-17=-59/784, 14-16=-2 2=-42/781	54/56, 13-14=-23/831, 12-13=-1	131/985,				
÷ ·-	7=-342/289, 15-17=-80/618, 6-15=-11	5/480, 7-13=-97/588, 8-13=-473	3/290				

NOTES-

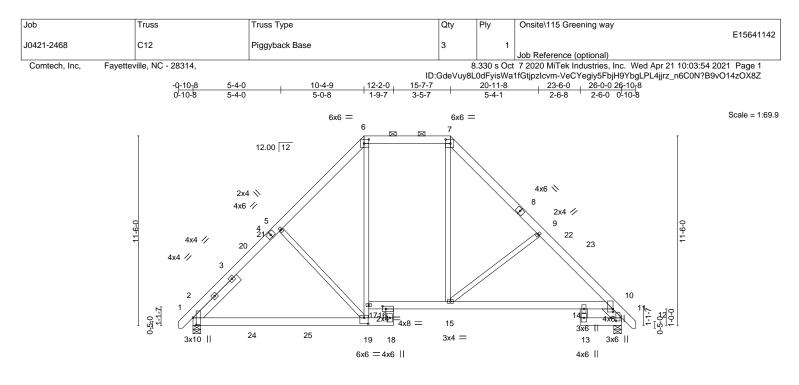
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-4-9, Exterior(2) 10-4-9 to 21-10-2, Interior(1) 21-10-2 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 2.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

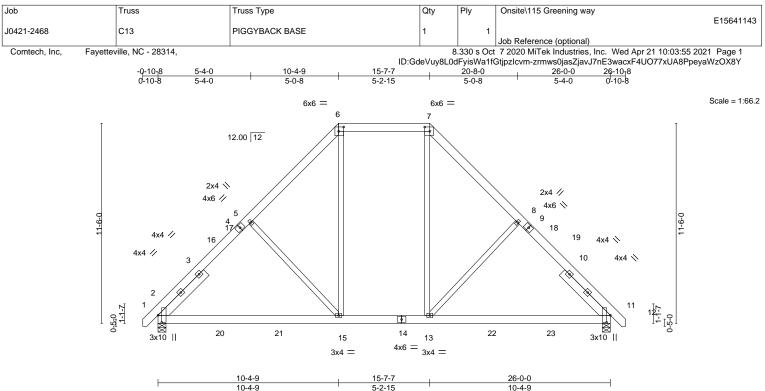
A MITek Attilla 818 Soundside Road Edenton, NC 27932

		<u> </u>		12-2-0	<u>15-7-7</u> 3-5-7			23-6-0		26-0-0 2-6-0	
Plate Offsets (X,	Y) [2:0-5-3,0-2-5], [6:0-3-8,0					16:0-2-8				200	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.36	;	Vert(LL)		14-15	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.50		Vert(CT)	-0.29	14-15	>999	240		
BCLL 0.0	* Rep Stress Incr	YES	WB 0.41		Horz(CT)	0.14	11	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matrix-S		Wind(LL)	0.11	14-15	>999	240	Weight: 222 lb	FT = 20%
LUMBER-				·	BRACING-						
TOP CHORD 2	2x6 SP No.1				TOP CHOP	RD	Structu	ural wood	I sheathing	directly applied or 6-0-0	oc purlins, except
	2x6 SP No.1						2-0-0 c	oc purlins	(6-0-0 max	x.): 6-7.	
	2x4 SP No.2				BOT CHOP	RD.				d or 10-0-0 oc bracing,	Except:
SLIDER L	_eft 2x6 SP No.1 -x 3-8-8, Righ	t 2x6 SP No.1 -:	k 1-2-9				6-0-0 c	oc bracin	g: 16-18.		
I	(size) 2=0-5-8, 11=0-5-8 Max Horz 2=-268(LC 10) Max Uplift 2=-38(LC 12), 11=-3 Max Grav 2=1220(LC 19), 11=	· · ·									
FORCES. (lb)	- Max. Comp./Max. Ten All fo	rces 250 (lb) or	less except when	shown.							
TOP CHORD	2-5=-1335/342, 5-6=-1151/39 10-11=-1050/318	6, 6-7=-766/354	, 7-9=-1201/386,	9-10=-1389/	366,						
BOT CHORD	2-19=-139/997, 18-19=-56/78 10-14=-39/786	6, 16-18=-253/5	6, 15-16=-20/833	, 14-15=-124	1/987,						
WEBS	5-19=-342/290, 17-19=-79/61	7, 6-17=-115/48	0, 7-15=-90/588,	9-15=-475/2	88						
NOTES-											
	oof live loads have been consid	ered for this de	sian								
	7-10; Vult=130mph (3-second g										

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-4-9, Exterior(2) 10-4-9 to 21-10-2, Interior(1) 21-10-2 to 26-9-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	10 4 0		0210	10 4 0		
Plate Offsets (X,Y)	[2:0-4-15,0-2-9], [6:0-3-8,0-3-0], [7:0-3-	3,0-3-0], [11:0-4-15,0-2-9]				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl L/d	PLATES	GRIP
ICLL 20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.14	11-13 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.45	Vert(CT) -0.22	11-13 >999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.37	Horz(CT) 0.02	11 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.11	2-15 >999 240	Weight: 219 lb	FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x6 S	SP No.1		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0 or	c purlins, except
BOT CHORD 2x6 S	SP No.1			2-0-0 oc purlins (6-0-0 max.):	6-7.	
WEBS 2x4 S	P No.2		BOT CHORD	Rigid ceiling directly applied of	r 10-0-0 oc bracing.	
SLIDER Left 2	x6 SP No.1 -x 3-8-8, Right 2x6 SP No.1 -	x 3-8-8		5 5 7 11	0	

REACTIONS. (size) 2=0-5-8, 11=0-5-8 Max Horz 2=-268(LC 10) Max Uplift 2=-38(LC 12), 11=-38(LC 13) Max Grav 2=1214(LC 19), 11=1214(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-5=-1302/347, 5-6=-1120/401, 6-7=-733/358, 7-8=-1120/401, 8-11=-1302/347
- BOT CHORD 2-15=-138/982, 13-15=-20/793, 11-13=-97/842
- WEBS 5-15=-363/288, 6-15=-110/491, 7-13=-110/492, 8-13=-363/288

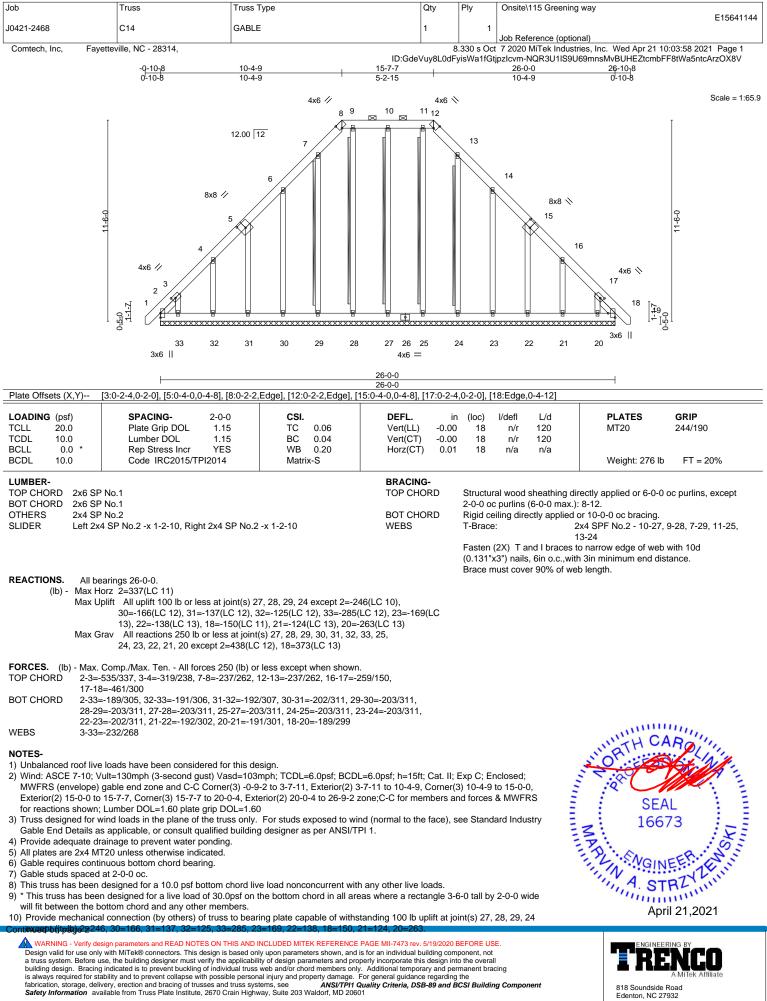
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-4-9, Exterior(2) 10-4-9 to 21-10-2, Interior(1) 21-10-2 to 26-9-2 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

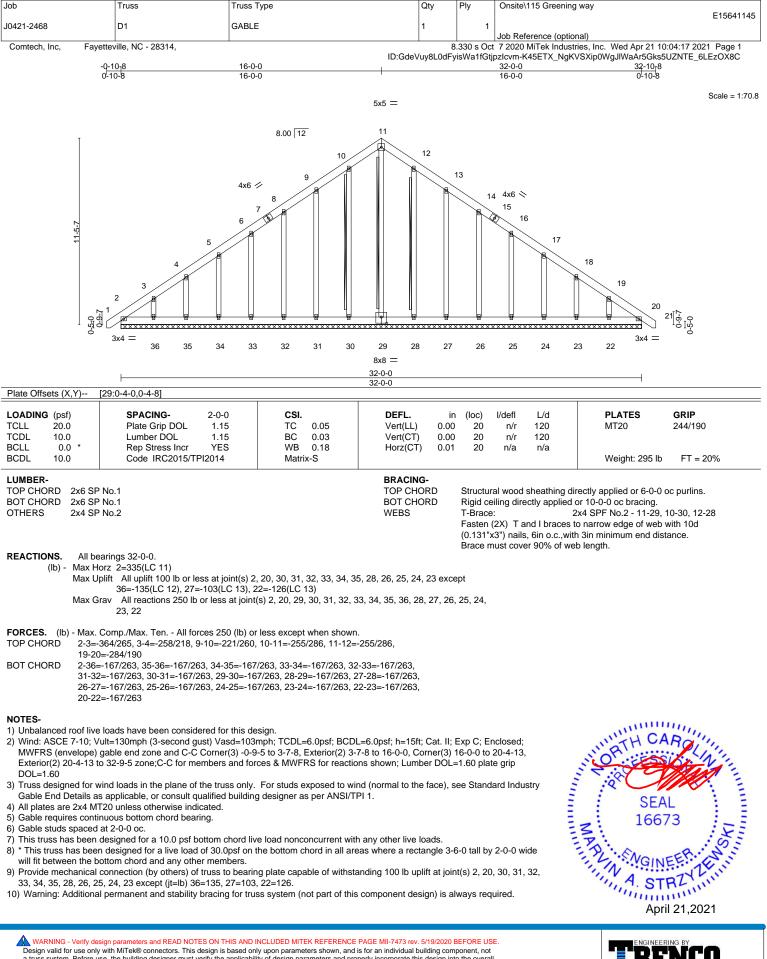
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

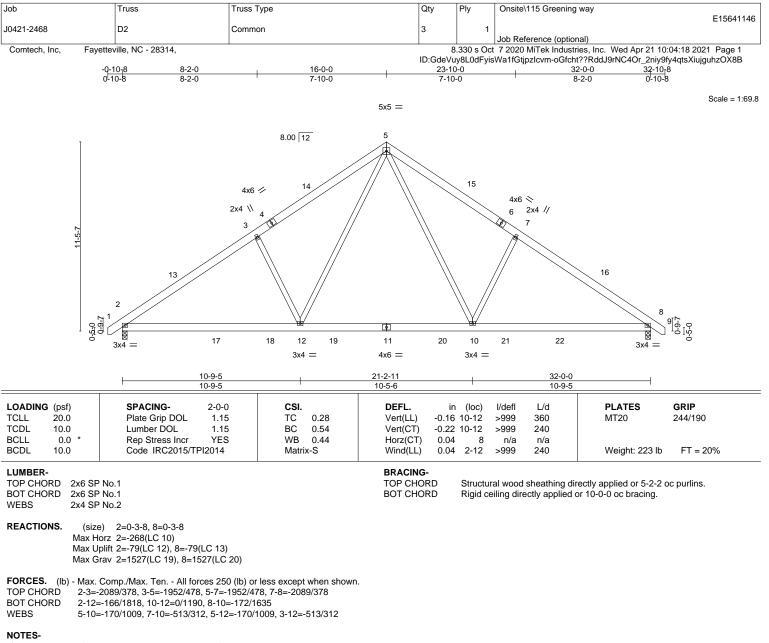
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Edenton, NC 27932


[Job	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way
	J0421-2468	C14	GABLE	1	1	E15641144
	00121 2100					Job Reference (optional)
	Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Apr 21 10:03:58 2021 Page 2
			ID:Gde\	/uy8L0dF	isWa1fGt	pzlcvm-NQR3U1IS9U69mnsMvBUHEZtcmbFF8tWa5ntcArzOX8V

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

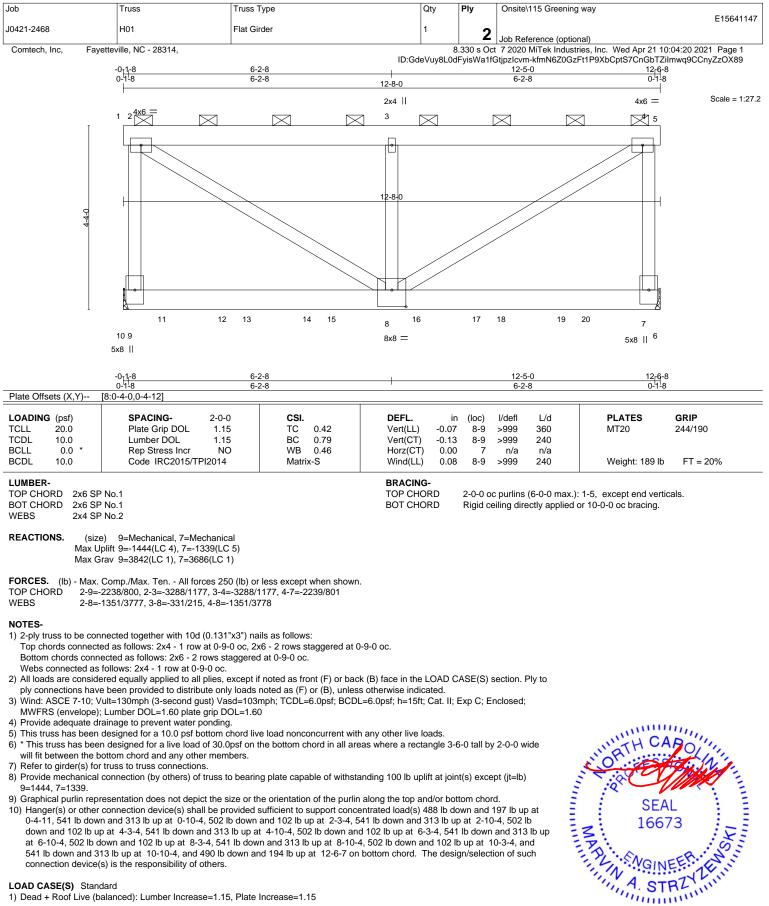
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 16-0-0, Exterior(2) 16-0-0 to 20-4-13, Interior(1) 20-4-13

to 32-9-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

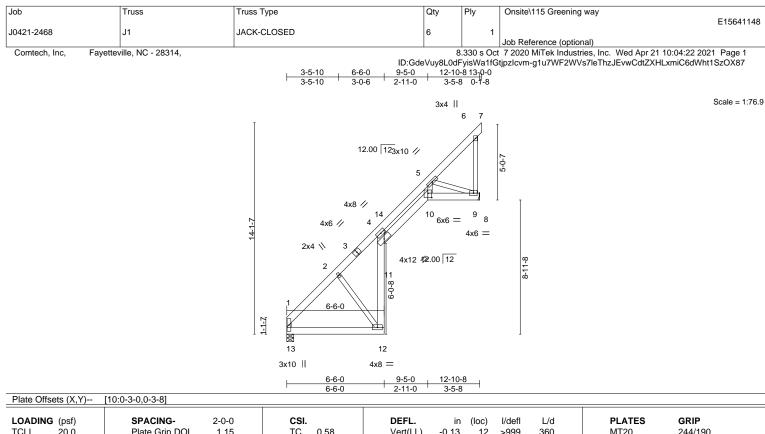
Edenton, NC 27932

April 21,2021

Job	Truss	Truss Type	Qty	Ply	Onsite\115 Greening way
					E15641147
J0421-2468	H01	Flat Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Apr 21 10:04:20 2021 Page 2

ID:GdeVuy8L0dFyisWa1fGtjpzIcvm-kfmN6Z0GzFt1P9XbCptS7CnGbTZiImwq9CCnyZzOX89

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 1-2=-20, 2-4=-60, 4-5=-20, 6-10=-20

Concentrated Loads (lb)

Vert: 9=-488(B) 7=-490(B) 8=-502(B) 11=-508(F) 12=-502(B) 13=-508(F) 14=-502(B) 15=-508(F) 16=-508(F) 17=-502(B) 18=-508(F) 19=-502(B) 20=-508(F) 10=-502(B) 10=-502(

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.58 BC 0.42 WB 0.35 Matrix-S	Vert(CT) -0 Horz(CT) 0	in .13 .26 .24 .22	(loc) 12 12 9 12	l/defl >999 >580 n/a >679	L/d 360 240 n/a 240	PLATES MT20 Weight: 111 lb	GRIP 244/190 FT = 20%
	No.1 *Except* x6 SP 2400F 2.0E	<u> </u>	BRACING- TOP CHORD BOT CHORD	e	except	end verti	cals.	rectly applied or 4-9-3 or 6-3-6 oc bracing.	oc purlins,
Max U	e) 13=0-5-8, 9=Mechanical lorz 13=417(LC 12) lplift 9=-293(LC 12) irav 13=499(LC 1), 9=611(LC 19)								

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-13=-430/0, 1-2=-555/0, 2-4=-465/0, 4-5=-2310/1129

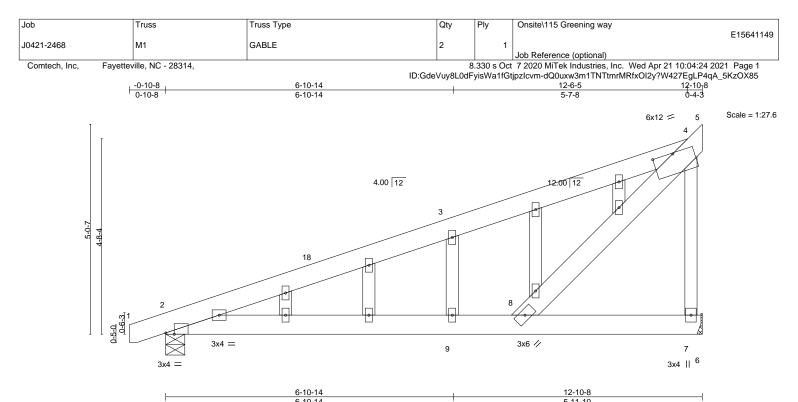
- BOT CHORD 12-13=-380/590, 11-12=-334/567, 4-11=-1302/787, 10-11=-1534/2679, 9-10=-947/1638
- WEBS 5-10=-1050/1980, 5-9=-1744/1009, 2-12=-600/430

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-9 to 4-6-6, Interior(1) 4-6-6 to 13-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

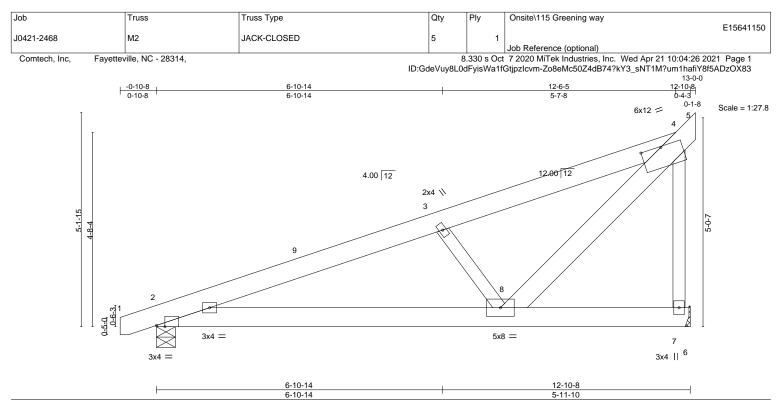

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=293.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

		6-10-14			5-11-10		
Plate Offsets (X,Y)	[2:0-2-7,Edge], [4:0-6-0,0-0-4]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.23 BC 0.37 WB 0.05 Matrix-S	DEFL. in Vert(LL) -0.05 Vert(CT) -0.10 Horz(CT) 0.00 Wind(LL) 0.06	2-9 > 2-9 > 7	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 3OT CHORD 2x6 SP WEBS 2x4 SP OTHERS 2x4 SP	No.1 No.2		BRACING- TOP CHORD BOT CHORD	except en	nd verticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
Max U	e) 7=Mechanical, 2=0-5-8 brz 2=217(LC 12) olift 7=-182(LC 12), 2=-162(LC 8) rav 7=503(LC 1), 2=558(LC 1)						
TOP CHORD 2-3=-	Comp./Max. Ten All forces 250 (lb) o 701/93, 3-4=-705/200, 4-8=-290/828, 4 219/617, 8-9=-219/617						


WEBS 3-9=-383/267

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 12-7-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=182, 2=162.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL)	-0.03	2-8	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.21	Vert(CT)	-0.07	2-8	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.01	7	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.01	2-8	>999	240	Weight: 88 lb	FT = 20%

 TOP CHORD
 2x6 SP No.1
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 2x6 SP No.1
 BOT CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 WEBS
 2x4 SP No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 REACTIONS.
 (size)
 7=Mechanical, 2=0-5-8
 Structural wood sheathing directly applied or 10-0-0 oc bracing.

Max Horz 2=153(LC 12) Max Uplift 7=-82(LC 12), 2=-69(LC 8) Max Grav 7=522(LC 1), 2=557(LC 1)

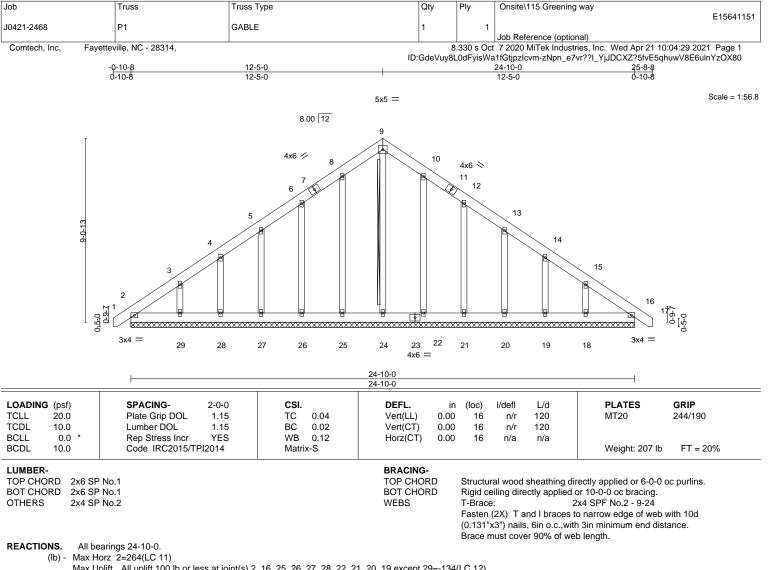
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-834/93, 3-4=-600/51, 4-8=-134/701, 4-7=-490/164
- BOT CHORD 2-8=-226/746 WEBS 3-8=-407/222

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 13-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

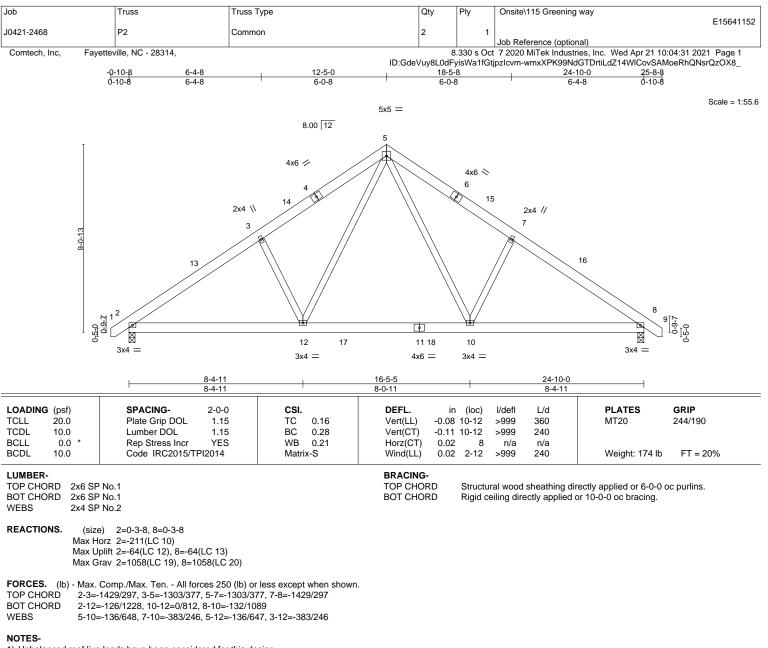
4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 6) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 25, 26, 27, 28, 22, 21, 20, 19 except 29=-134(LC 12), 18=-129(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 16, 24, 25, 26, 27, 28, 29, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-263/202


NOTES-

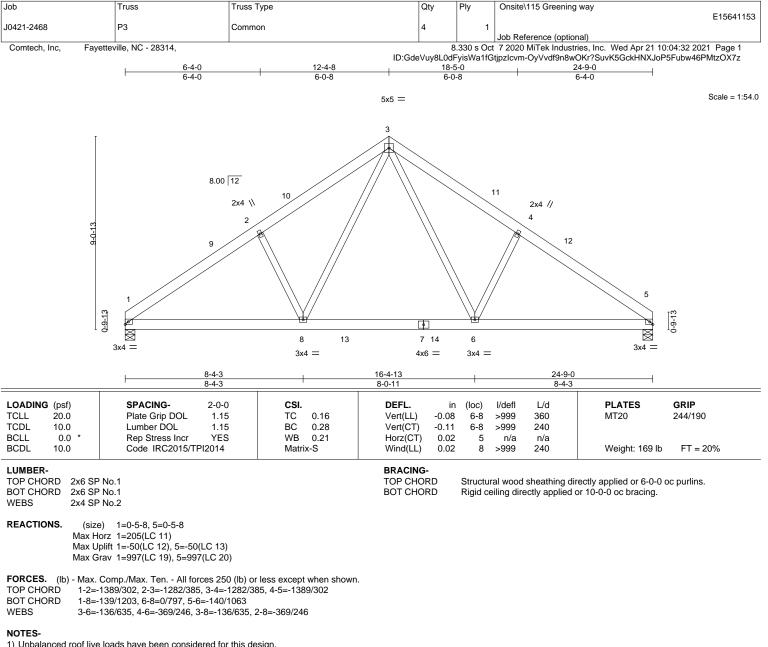
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-5 to 3-7-8, Exterior(2) 3-7-8 to 12-5-0, Corner(3) 12-5-0 to 16-9-13, Exterior(2) 16-9-13 to 25-7-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 25, 26, 27, 28, 22, 21, 20, 19 except (jt=lb) 29=134, 18=129.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road

Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 12-5-0, Exterior(2) 12-5-0 to 16-9-13, Interior(1) 16-9-13 to 25-7-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

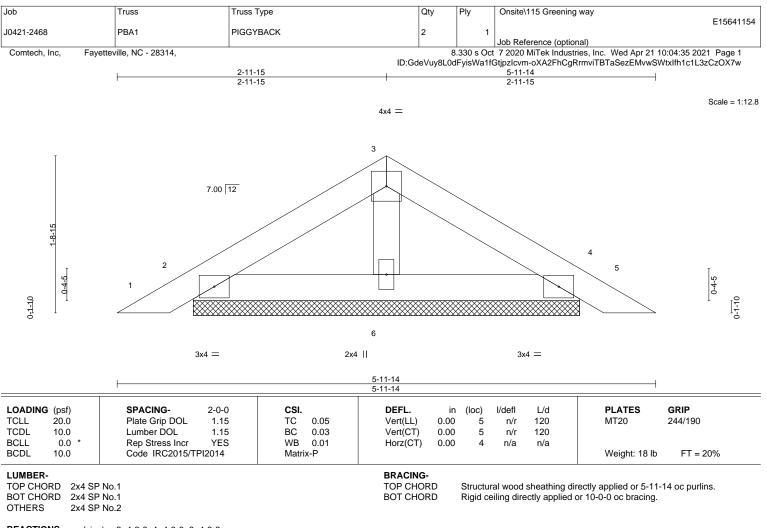
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 12-4-8, Exterior(2) 12-4-8 to 16-9-5, Interior(1) 16-9-5 to 24-6-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=4-3-8, 4=4-3-8, 6=4-3-8

Max Horz 2=47(LC 11)

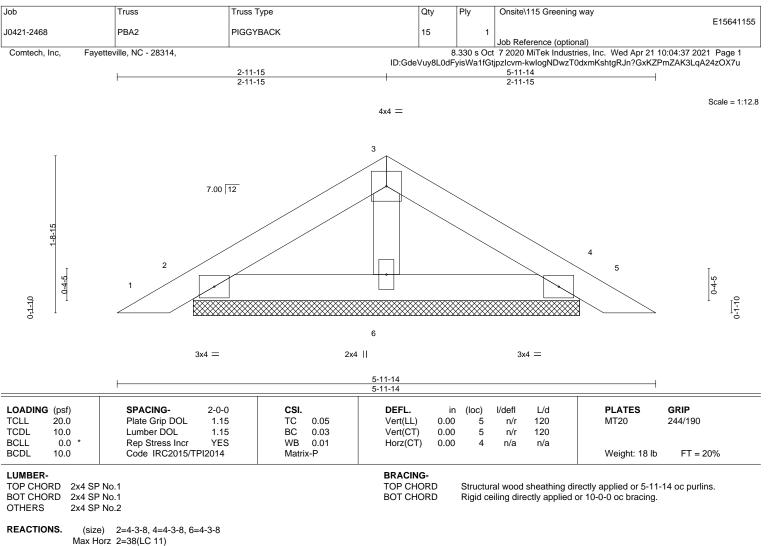
Max Uplift 2=-49(LC 12), 4=-55(LC 13), 6=-3(LC 12) Max Grav 2=127(LC 1), 4=128(LC 1), 6=156(LC 1)

|ax Grav 2=127(LC 1), 4=120(LC 1), 0=150(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.


6) Non Standard bearing condition. Review required.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

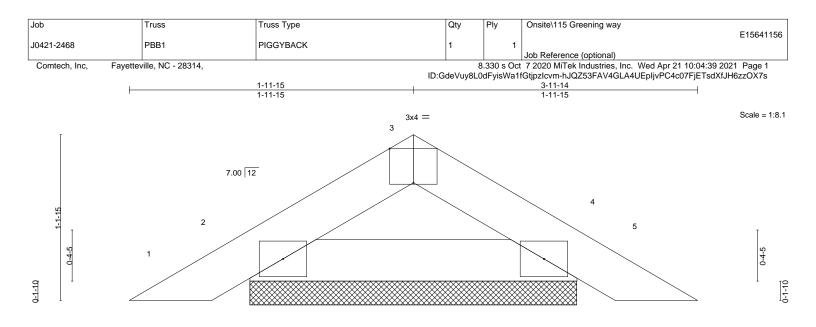
Max Uplift 2=-24(LC 12), 4=-28(LC 13)

Max Grav 2=127(LC 1), 4=128(LC 1), 6=156(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) Non Standard bearing condition. Review required.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

3x4 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [3	3:0-2-0,Edge]	1	1	
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) -0.00 4 n/r 120	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) 0.00 4 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 4 n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 10 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=2-3-8, 4=2-3-8

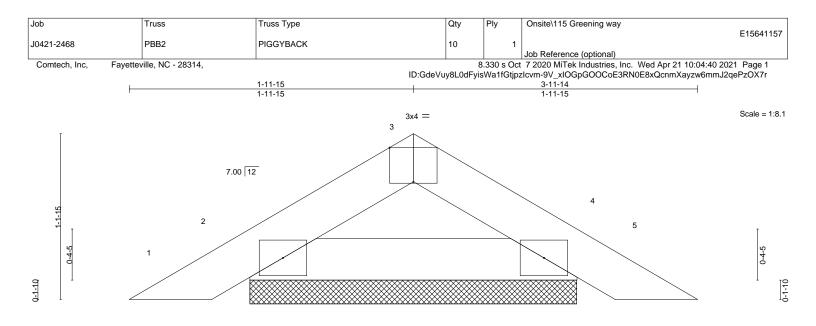
Max Horz 2=30(LC 11) Max Uplift 2=-36(LC 12), 4=-36(LC 13)

Max Grav 2=125(LC 1), 4=125(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) Non Standard bearing condition. Review required.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

3x4 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-11-14 Plate Offsets (X,Y) [3:0-2-0,Edge]					
.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP	
CLL 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) -0.00 4 n/r 120	MT20 244/190	
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) 0.00 4 n/r 120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 4 n/a n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 10 lb FT = 20%	

BOT CHORD

OP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=2-3-8, 4=2-3-8

Max Horz 2=-24(LC 10) Max Uplift 2=-14(LC 12), 4=-14(LC 13)

Max Grav 2=125(LC 1), 4=125(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

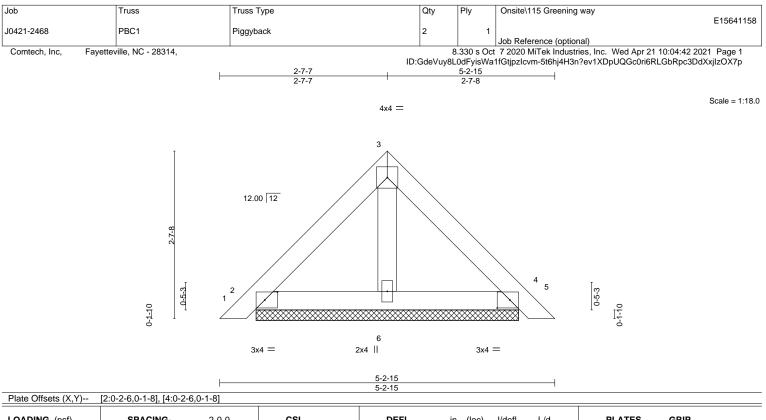
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) Non Standard bearing condition. Review required.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.00 Matrix-P	DEFL. ii Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	5 5	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 20 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1			BRACING- TOP CHORD BOT CHORD				irectly applied or 5-2-15 oc purlins. or 10-0-0 oc bracing.

OTHERS 2x4 SP No.2

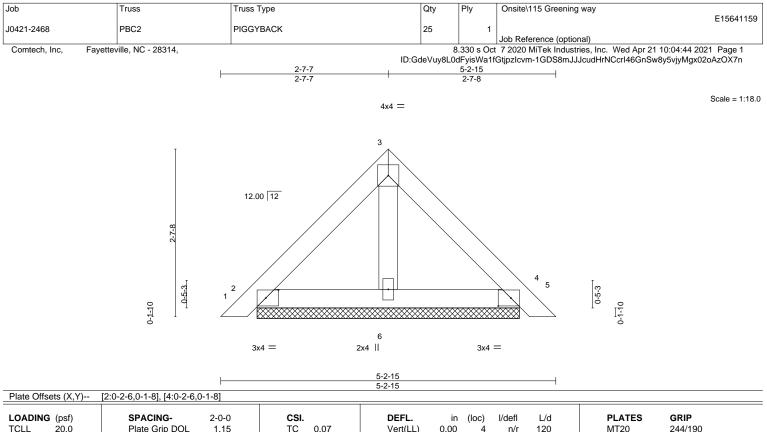
REACTIONS. (size) 2=4-1-5, 4=4-1-5, 6=4-1-5 Max Horz 2=-72(LC 10)

Max Uplift 2=-51(LC 12), 4=-51(LC 13) Max Grav 2=160(LC 1), 4=160(LC 1), 6=103(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.01 Matrix-P	DEFL. i Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00) 5 n/r 120	PLATES GRIP MT20 244/190 Weight: 20 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d Rigid ceiling directly applied	irectly applied or 5-2-15 oc purlins. or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=4-1-4, 4=4-1-4, 6=4-1-4

Max Horz 2=-58(LC 10)

Max Uplift 2=-20(LC 13), 4=-24(LC 13) Max Grav 2=124(LC 1), 4=124(LC 1), 6=127(LC 3)

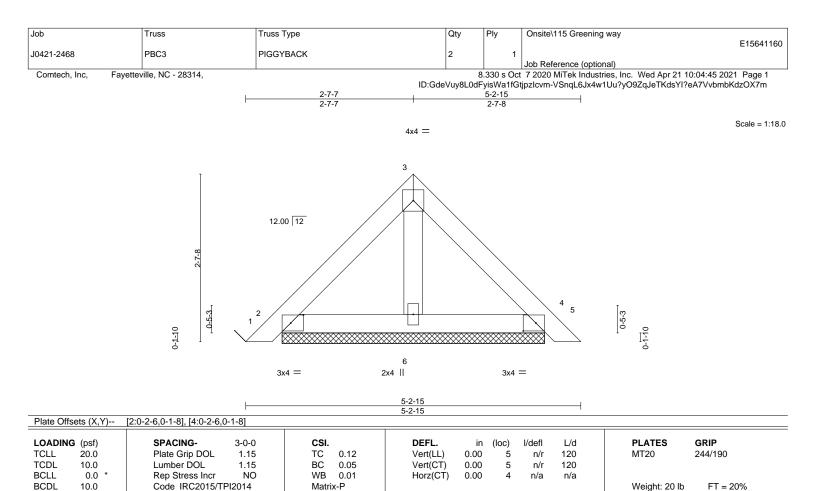
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) Non Standard bearing condition. Review required.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

 LUMBER BRACING

 TOP CHORD 2x4 SP No.1
 TOP CHORD 2x4 SP No.1

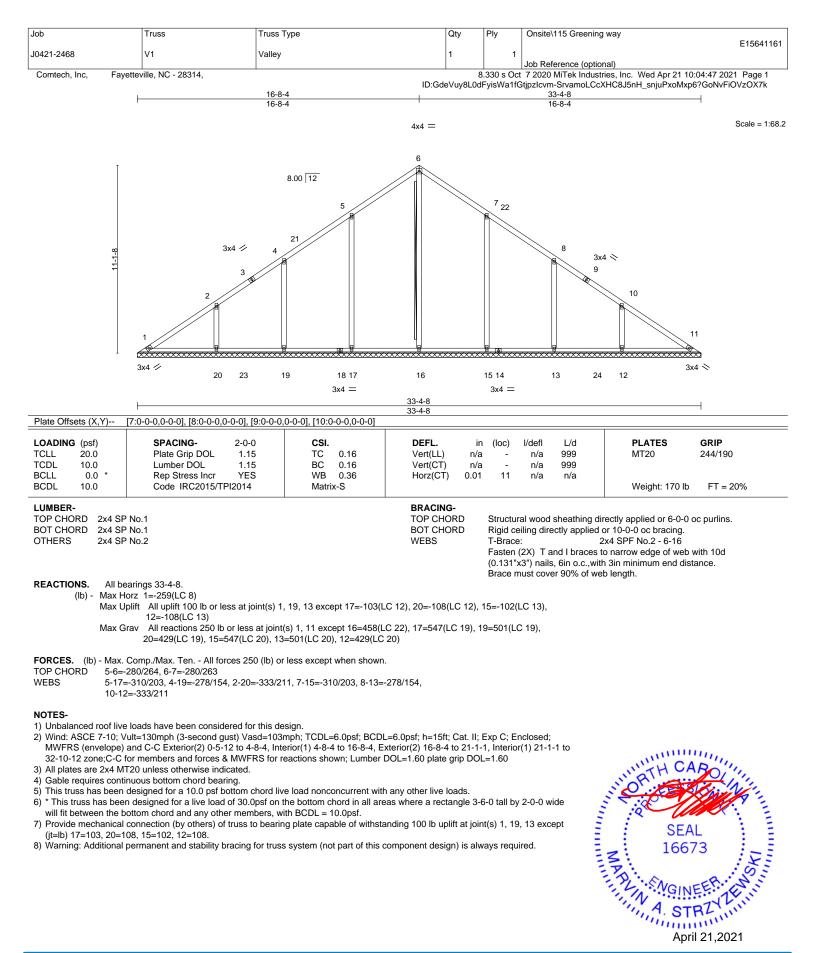
 BOT CHORD 2x4 SP No.1
 Switched from sheeted: Spacing > 2-8-0).

 OTHERS 2x4 SP No.2
 BOT CHORD

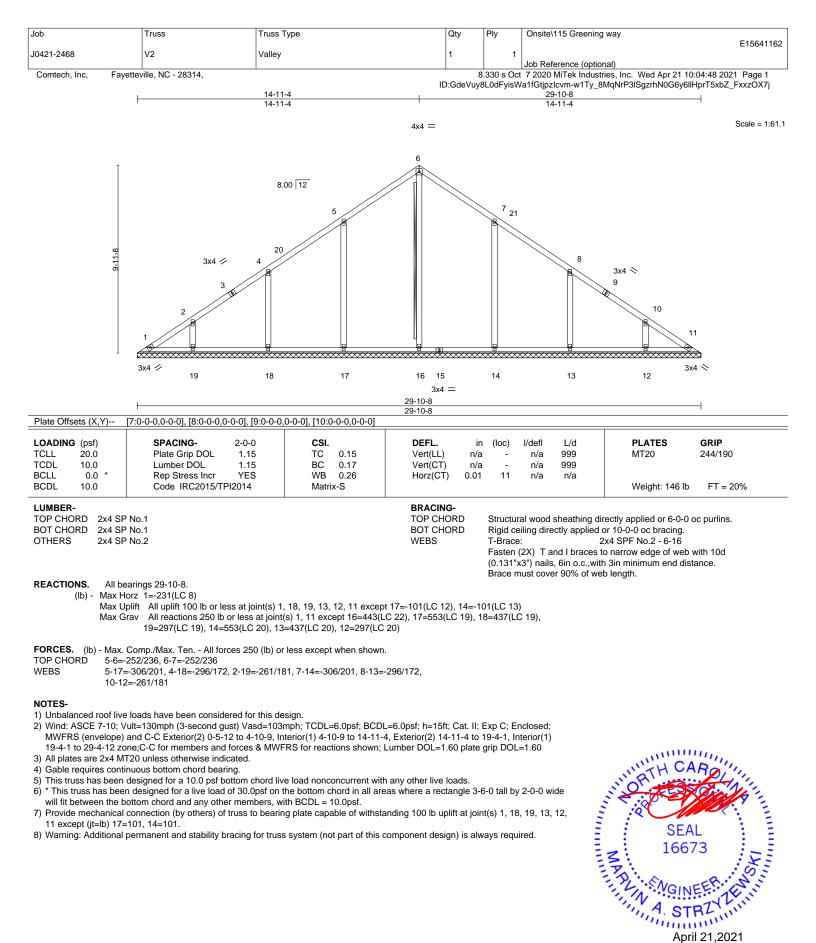
REACTIONS. (size) 2=4-1-5, 4=4-1-5, 6=4-1-5 Max Horz 2=-87(LC 10)

Max Uplift 2=-31(LC 13), 4=-37(LC 13) Max Grav 2=185(LC 1), 4=185(LC 1), 6=191(LC 3)

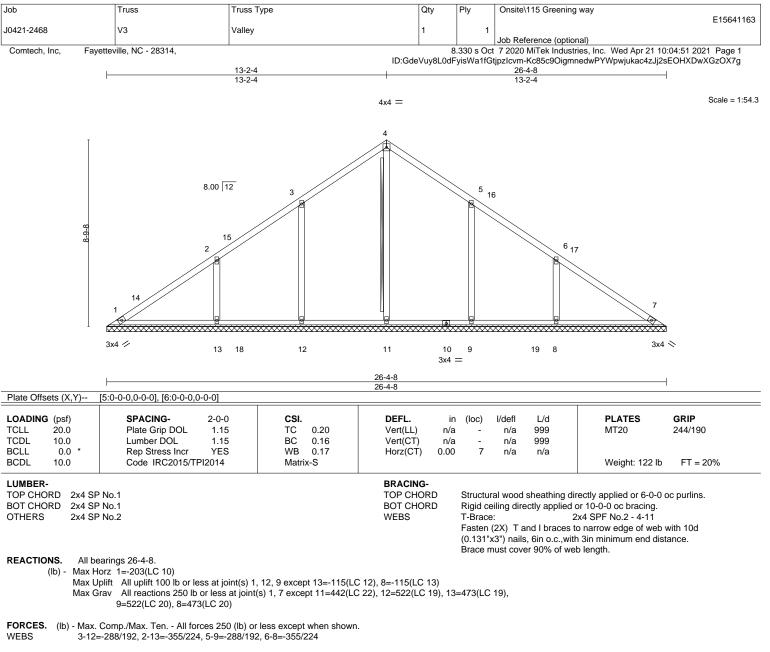
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road

Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

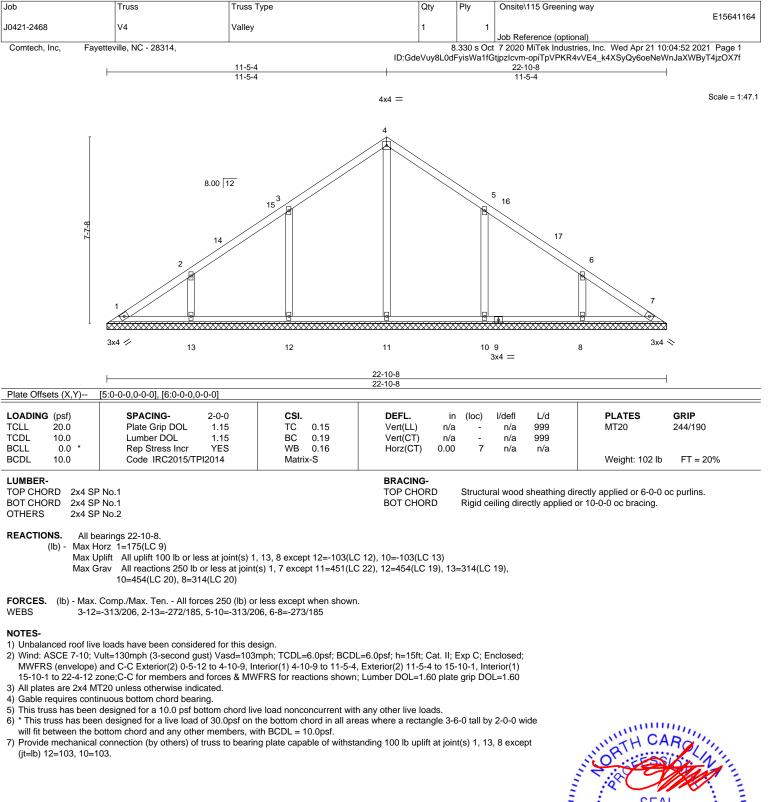
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-12 to 4-10-9, Interior(1) 4-10-9 to 13-2-4, Exterior(2) 13-2-4 to 17-7-1, Interior(1) 17-7-1 to 25-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

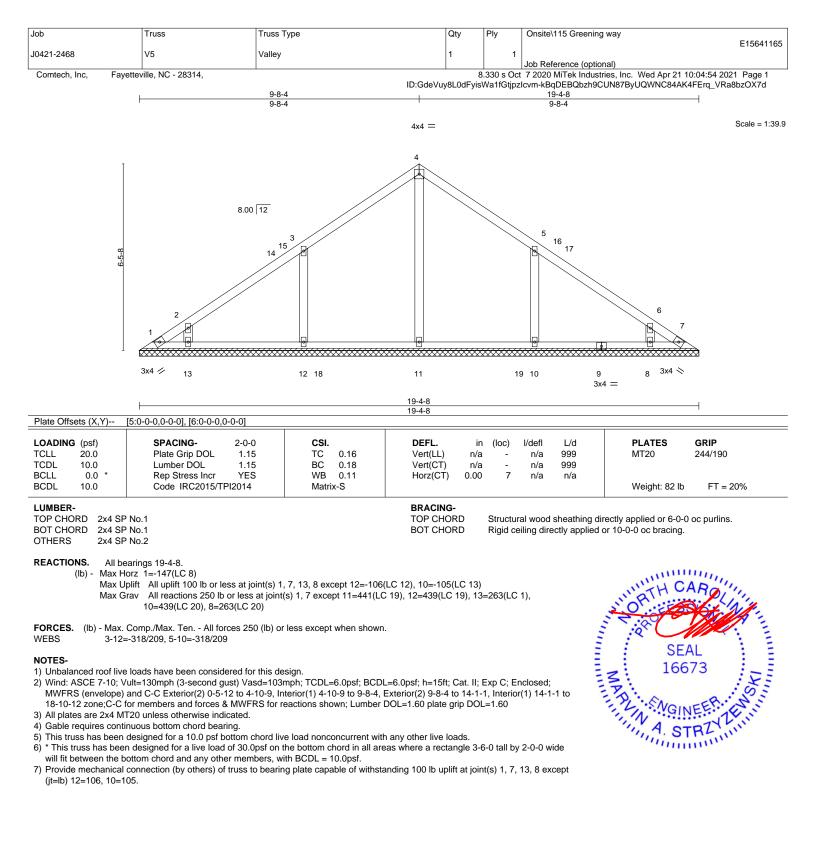
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

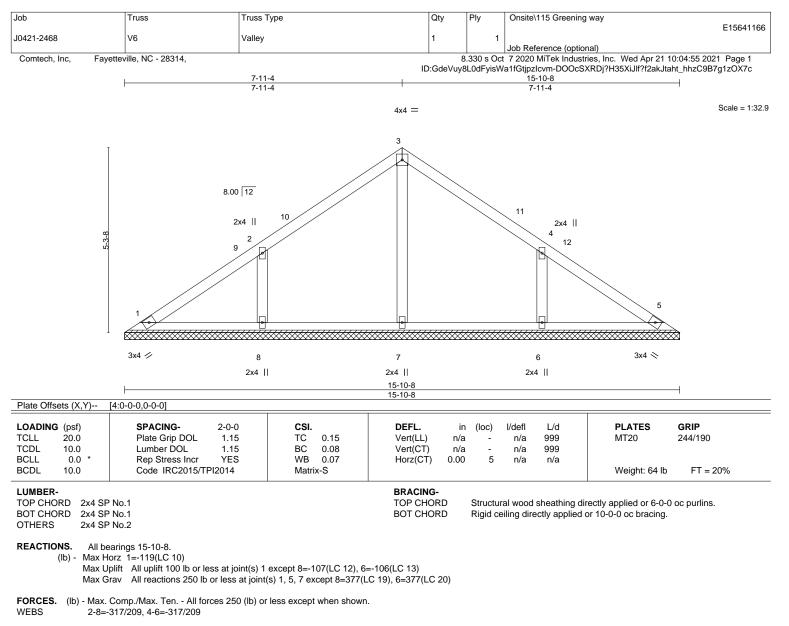

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 9 except (jt=lb) 13=115, 8=115.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A MiTek Affil 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

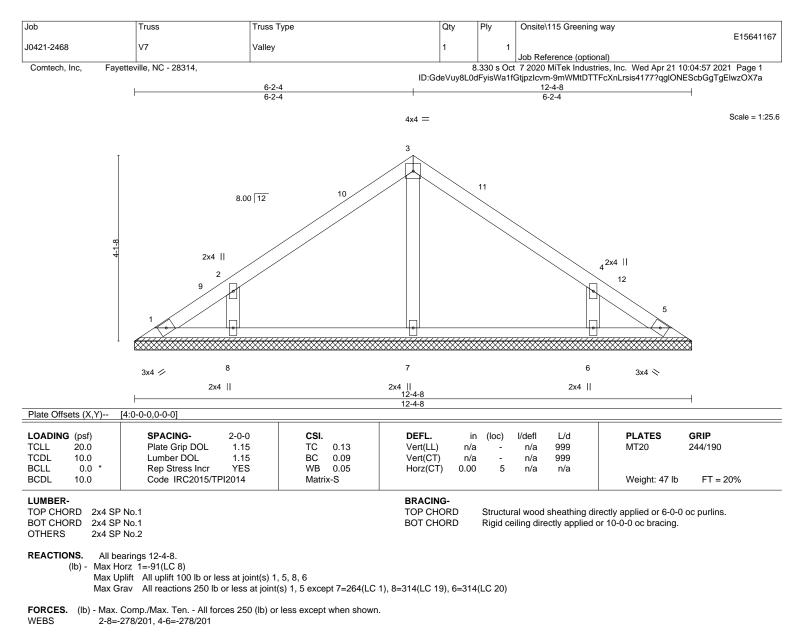
NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-12 to 4-10-9, Interior(1) 4-10-9 to 7-11-4, Exterior(2) 7-11-4 to 12-4-1, Interior(1) 12-4-1 to 15-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=107, 6=106.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

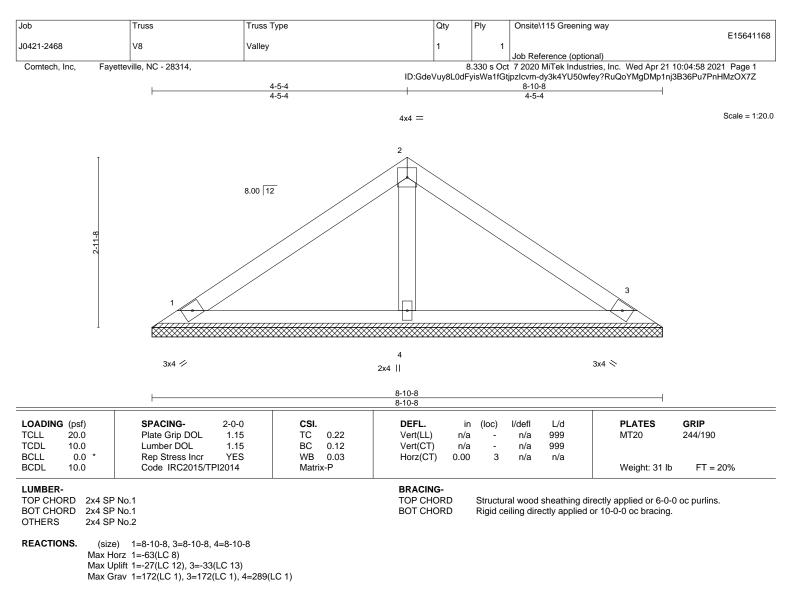
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-12 to 4-10-9, Interior(1) 4-10-9 to 6-2-4, Exterior(2) 6-2-4 to 10-7-1, Interior(1) 10-7-1 to 11-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

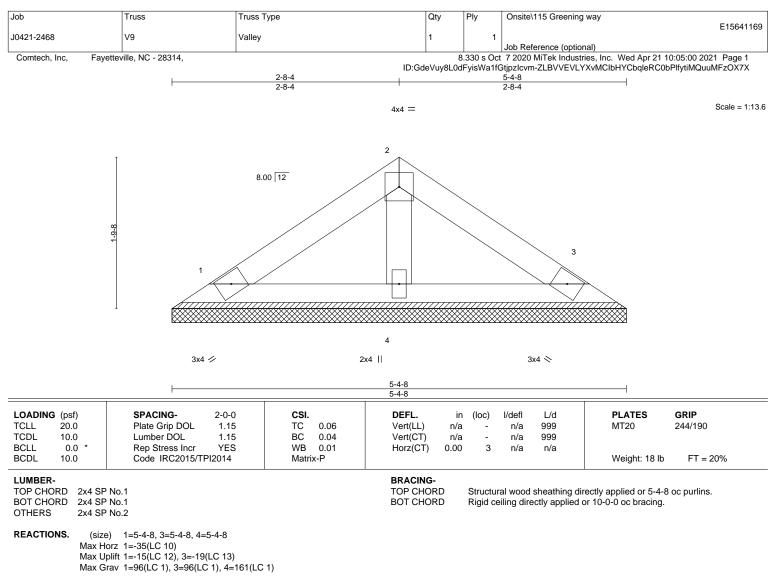
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

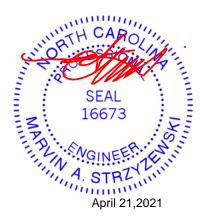
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

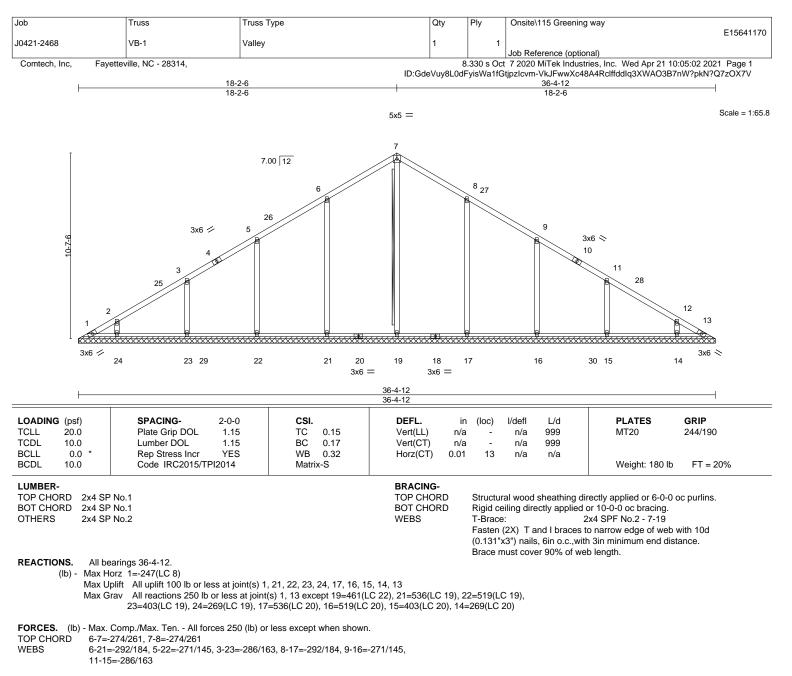
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

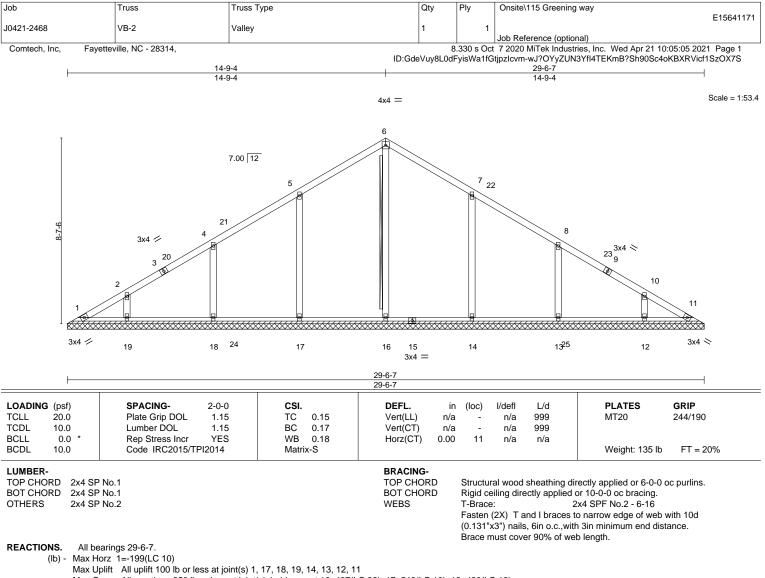
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Ma/S/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-6-8 to 4-11-4, Interior(1) 4-11-4 to 18-2-6, Exterior(2) 18-2-6 to 22-7-3, Interior(1) 22-7-3 to 35-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 21, 22, 23, 24, 17, 16, 15, 14, 13.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

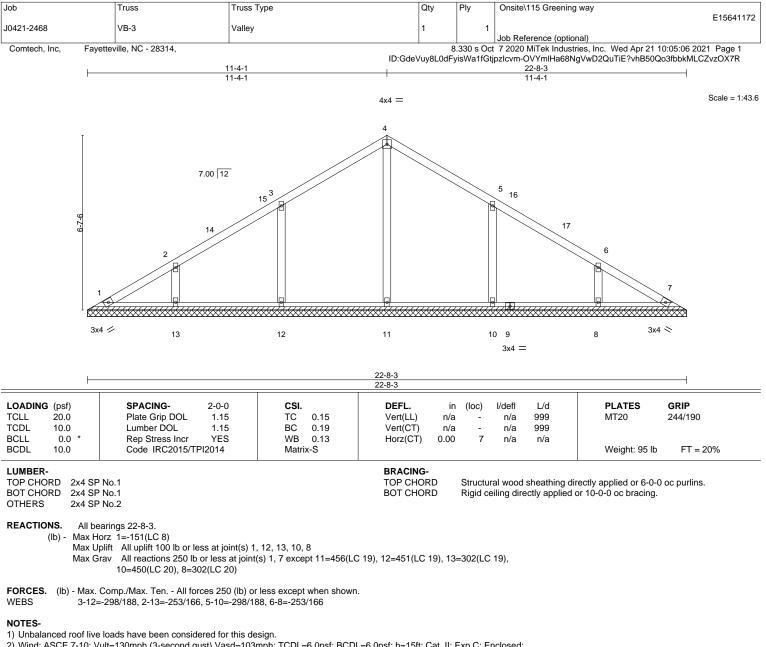
Max Grav All reactions 250 lb or less at joint(s) 1, 11 except 16=437(LC 22), 17=548(LC 19), 18=420(LC 19), 19=284(LC 19), 14=547(LC 20), 13=420(LC 20), 12=284(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 5-17=-290/183, 4-18=-281/157, 7-14=-290/183, 8-13=-281/157

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-6-8 to 4-11-4, Interior(1) 4-11-4 to 14-9-4, Exterior(2) 14-9-4 to 19-2-0, Interior(1) 19-2-0 to 29-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.


4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 17, 18, 19, 14, 13, 12, 11.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

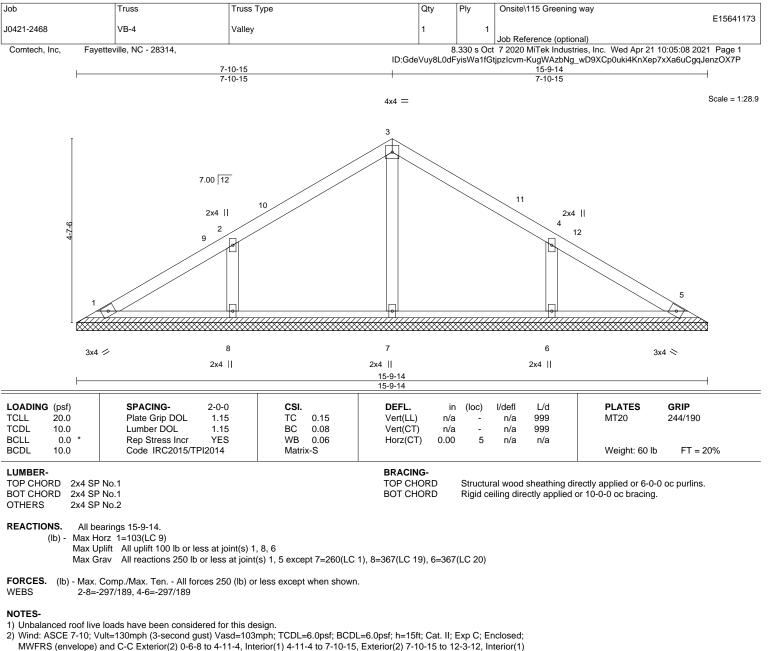
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-6-8 to 4-11-4, Interior(1) 4-11-4 to 11-4-1, Exterior(2) 11-4-1 to 15-8-14, Interior(1) 15-8-14 to 22-1-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

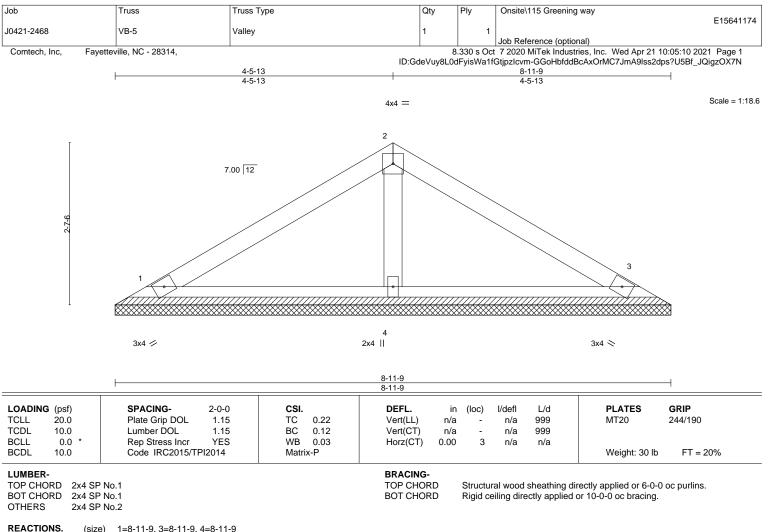

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 13, 10, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- MWFRS (envelope) and C-C Exterior(2) 0-6-8 to 4-11-4, Interior(1) 4-11-4 to 7-10-15, Exterior(2) 7-10-15 to 12-3-12, Interior(12-3-12 to 15-3-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

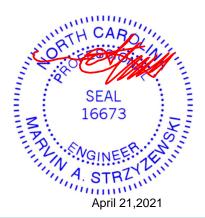
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ONS. (size) 1=8-11-9, 3=8-11-9, 4=8-11-9 Max Horz 1=-55(LC 8)

Max Uplift 1=-26(LC 12), 3=-32(LC 13)

Max Grav 1=166(LC 1), 3=166(LC 1), 4=299(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

