Department of Environment, Health and Natural Re Division of Environmental Health On-Site Wastewater Section Sheet: Property ID: Lot #: File #: Code: ## SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM | Owner: | Applicant: | | | | |---|------------|----------------------------------|----------------|-------| | Address: | 11 | Date Evaluated: | | | | Proposed Facility: | 4 3000 | Design Flow (.1949): 480 (| Property Size: | | | Location of Site: | | Property Recorded: | _ | | | Water Supply: | Public | ☐ Individual ☐ Well _ | □ Spring | Other | | Evaluation Method
Type of Wastewater | | ☐ Pit ☐ Cut ☐ Industrial Process | ☐ Mixed | | es | L
E | .1940 | = | | RPHOLOGY
1941 | PR | | | | | |--------|-----------------------------------|---------------------------|--------------------------------|------------------------------------|------------------------------------|------------------------------|-------------------------|-------------------------|----------------------------| | | Landscape
Position/
Slope % | Horizon
Depth
(In.) | .1941
Structure/
Texture | .1941
Consistence
Mineralogy | .1942
Soil
Wetness/
Color | .1943
Soil
Depth (IN.) | .1956
Sapro
Class | .1944
Restr
Horiz | Profile
Class
& LTAR | | | | 0,, | SBK SCL | FI | 101/27/203" | | | | us | | | | 0-11 | G LS | | | | | | | | | | 11-25,74 | 58 % SCL | FISIP | 10127763" | | | | | | | | 0-23 | C LS | | | | | | | | | | 33-31 | 5814 SCL | FN 55) SP | | | | | 13.4 | | | | T00 Y | VET EVALU | ATE DEGRE | 2 | | | | | | | | 080 | G LS | | | | | | | | | | 20 | 58X SC | F1 55)89 | 10/27/20 22" | | | | US | - | | | | | | | | * | | | | | | | | | | | | | | | | | Description | Initial
System | Repair System | Other Factors (.1946):
Site Classification (.1948): | |-------------------------|-------------------|---------------|--| | Available Space (.1945) | | | Evaluated By: | | System Type(s) | | | Others Present: | | Site LTAR | | | | COMMENTS: ____ | LANDSCAPE POSITIONS | GROUP | TEXTURES | . <u>1955 LTAR</u> | CONSISTENCE MOIST | WET | |--|-------|---|--------------------|--|--| | R-RIDGE
S-SHOULDER SLOPE
L-LINEAR SLOPE | I | S-SAND
LS-LOAMY SAND | 1.2 - 0.8 | VFR-VERY FRIABLE
FR-FRIABLE | NS-NON-STICKY
SS-SLIGHTY STICKY | | FS-FOOT SLOPE
N-NOSE SLOPE
H-HEAD SLOPE | П | SL-SANDY LOAM
L-LOAM | 0.8 - 0.6 | FI-FIRM
VFI-VERY FIRM
EFI-EXTREMELY FIRM | S-STICKY
VS-VERY STICKY | | CC-CONCLAVE SLOPE
CV-CONVEX SLOPE
T-TERRACE
FP-FLOOD PLAN | Ш | SI-SILT
SIL-SILT LOAM
CL-CLAY LOAM
SCL-SANDY CLAY LOAM | 0.6 - 0.3 | | NP-NON-PLASTIC
SP-SLIGHTLY STICKY
P-PLASTIC
VP-VERY PLASTIC | 0.4 - 0.1 STRUCTURE SG-SINGLE GRAIN M-MASSIVE CR-CRUMB GR-GRANULAR SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY PL-PLATY PR-PRISMATIC MINERALOGY SLIGHTLY EXPANSIVE SIC-SILTY CLAY **EXPANSIVE** C-CLAY SC-SANDY CLAY IV | _ | _ | | _ | _ | _ | SHOW | v prof | HC IO | Jacion | s and | omea | site i | eature | s (an | nensi | ons, re | eferen | ces or | r bend | chmar | k, and | Nort | h) | | | | | | |---------|----------|-----|---|-----|--------|------|--------|-------|--------|-------|------|--------|--------|-------|-------|---------|--------|--------|--------|-------|--------|---------------|-----|-----|-----|-----|-----|-----| | | | | | | | | | | | | T | T | T | T | T | T | T | T | T | T | 1 | T | 7 | _ | _ | _ | _ | _ | | \perp | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 1 | | | | | | | 1 | | | | | T | | | | | | + | + | + | + | + | + | + | +- | + | + | + | + | + | + | - | - | _ | | | | | 1 | - 1 | 1 | | 1 | -1 | | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | + | + | + | + | +- | + | + | +- | + | + | + | - | - | - | - | - | - | _ | | | | | 1 | | 1 | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | 1 | | | | | | + | + | +- | | + | + | - | - | | | | | | | 1 | 1 | 1 | | | | | 1 | | | | 1 | 1 | | 1 | 1 | | 1 | | | | | 1 | 1 | 1 | | | | | | | | | | | | | | 1 | _ | + | - | + | +- | +- | +- | +- | - | + | | | - | 1 | 1 | 1 | 1 | | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | | | | | | | | | | | \top | + | 1 | + | + | +- | + | + | +- | + | + | +- | - | - | - | - | - | | | | | | 1 | | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | i i | 1 | | | | | | | T | | | | | + | +- | +- | + | - | + | - | +- | - | + | - | _ | _ | | | | | | | | 1 | | | | | | | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | + | 1 | - | + | +- | | _ | | | _ | | | | | | | | | | | | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | T | | | | | | | | | | | | - | - | - | - | - | - | - | - | - | _ | | | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | | 1 | 1 | 1 | | | 1 | 1 | | 1 | | | 1 | | 1 | | | | | | | | | + | + | + | - | + | _ | - | - | - | - | | _ | | _ | - | | | | | | | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | | | 1 | | | | | | | | | | | | | | | | - | + | - | - | - | - | - | - | - | - | | | | | | | | | | | | | | | | | | 1 | | | | 1 | 1 | 1 | | | 1 | | 1 | | | | | | | | | | | | | | | | _ | - | - | - | - | | | _ | | | | | | 1 | 1 | 1 | | | | | l | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | - | | | - | | | - | _ | _ | | | | | | | | | | | | | 1 | 1 | | | | | | | | | _ | | | | - | | _ | | | _ | | _ | | | | | | | | | | 1 | | | | 1 | | | | | | | | | 1 1 | - 1 | + | _ | _ | - | _ | _ | | | | | | | | | | | | | | 1 1 | | | | | | | | | | | 1 | | | - 1 | | | | | | | - 1 | | | | | | | | | | | | | | - | - | | | | | | | | | | | | | | - 1 | - 1 | - 1 | | | | | - 1 | - 1 | _ | | | | - | _ | | | | | | | | | | | | | | | | | | | - 1 | - 1 | - 1 | | | | | - 1 | | | | - 1 | | | | | | | | | | | | | | | | - | | _ | | - | - | _ | - | _ | | | | | | | | | | | | | | | 1 1 | _ | \vdash | - | - | - | - | | | | | | | | | | | | | | | | | | - 1 | \vdash | | | | | | | | | | | | | | | | - 1 | | | | - 1 | | | | | | | | | | | | | T | T | | | | | | | _ | | | _ | - | _ | - | - | - | - | \rightarrow | | | | | | | | | 1 1 | | | - 1 | | 1 | - 1 | | | | | | | | - 1 | | | | | | | | | | | | | | | | | _ | _ | - | - | | - | - | - | - | - | - | - | - | - | - | _ | _ | | | | | | | | | | - 1 | | | | - 1 | | | | 1 | \vdash | - | - | - | - | _ | 1 | | - 1 | | | | | | | - 1 | | | | | | | | | | | | | | | | | - | - | - | - | - | - | | | | | | | | | | - 1 | | | | | | | | | | | | | | | - 1 | | - 1 | | | | | | | | | | | | | | | | _ | + | - | + | - | - | - | - | - | - | - | - | - | _ | | | | | | | | | 1 | | | | | | | | 1 | - 1 | | | | | | 1 | | | | | | | | | | T | | | | | | | | | | - 1 | - 1 | | | - 1 | - 1 | - 1 | - 1 | | - 1 | - 1 | | - 1 | - 1 | - 1 | | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 |